NGHIÊN CỨU KHOA HỌC
54 Tạp chí Nghiên cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
Determining rotational mass coefficient
for simulation of motion dynamic of vehicle
Xác định hệ số khối lượng quay phục vụ
việc mô phỏng động lực học chuyển động của ôtô
Vu Thanh Trung, Ngo Thi My Binh
Email: vuthanhtrung286@gmail.com
Sao Do University
Received date:19/02/2020
Accepted date: 27/3/2020
Published date: 30/3/2020
Abstract
The rotating mass coefficient (γ
m
)
7 trang |
Chia sẻ: huong20 | Ngày: 19/01/2022 | Lượt xem: 432 | Lượt tải: 0
Tóm tắt tài liệu Y Xác định hệ số khối lượng quay phục vụ việc mô phỏng động lực học chuyển động của ô tô, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
is a coefficient that takes into account the effect of rotating parts of the
crankshaft mechanism and the drivetrain system on the driving dynamics of cars. The paper presents the
results of the research to determine the rotation mass coefficient of Hyundai Starex by theory (based on
the experimental data set of rotation details of the crankshaft mechanism, components of the drivetrain
system and use of Inventor software) combined with experimentation (test vehicle on a roller test bed).
The research results are used as input parameters for simulation models, calculating parameters for
evaluating the quality of linear motion dynamics of Hyundai Starex cars.
Keywords: Moment of inertia; rotating mass coefficient; roller test platform (Chassis Dynamometer).
Túm tắt
Hệ số khối lượng quay (γ
m
) là hệ số kể đến ảnh hưởng của cỏc chi tiết chuyển động quay của cơ cấu
khuỷu trục thanh truyền và hệ thống truyền lực đến động lực học chuyển động của ụtụ. Bài bỏo trỡnh bày
kết quả nghiờn cứu xỏc định hệ số khối lượng quay của xe Hyundai Starex bằng lý thuyết (dựa trờn bộ dữ
liệu đo thực nghiệm cỏc chi tiết chuyển động quay của cơ cấu khuỷu trục thanh truyền, cỏc bộ phận thuộc
hệ thống truyền lực và sử dụng phần mềm Inventor) kết hợp với thực nghiệm (thử xe trờn bệ thử con lĕn).
Kết quả nghiờn cứu được dựng làm thụng số đầu vào cho mụ hỡnh mụ phỏng, tớnh toỏn cỏc thụng số đỏnh
giỏ chất lượng động lực học chuyển động thẳng của xe Hyundai Starex.
Từ khúa: Moment quỏn tớnh; hệ số khối lượng quay; bệ thử con lĕn (Chassis Dynamometer).
1. INTRODUCTION
The inertial force has a great influence on the
linear motion of the vehicle when accelerating or
decelerating. The inertial force consists of two
components: The inertial force of linear motion and
the inertial force of rotational motion. The inertial
force of linear motion depends on the vehicle’s
mass and its acceleration. Meanwhile, the inertial
resistance of rotation is dependent on the moment
of inertia and angular acceleration of all rotating
parts starting from the transmission crankshaft of
the engine to the active wheel of the vehicle.
To simplify the calculation of driving dynamics,
rotation coefficient (γ
m
) is often used when
considering the effect of rotational inertia drag
[1, 2]. However, because the exact determination
of rotational mass coefficient is quite complicated,
some studies [4, 6] often use the following empirical
formulas [1, 2]:
(1)
In which:
ξ0 - Gear ratio of the powertrain.
We see that the determination of γ
m
according to
201.04 0.0025mg x= +
Reviewer: 1. Assoc.Prof.Dr. Tran Van Nhu
2. Assoc.Prof.Dr. Le Van Quynh
LIấN NGÀNH CƠ KHÍ - ĐỘNG LỰC
55Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
formula (1) has not included the specific structural
characteristics of the engine and the powertrain
of the vehicle. The experimental coefficients in (1)
are fixed, so there is not enough basis to be able
to choose an appropriate vehicle. Moreover, in
specialized software that simulates the dynamics
of vehicles such as GT-Drive, Simdriveline in
Matlab/Simulink. It is necessary to have input
about inertia moment parameters of each cluster
such as engine, gearbox, cardan shaft, active
bridge, wheel [10, 11].
Accurate and detailed determination of the rotating
mass coefficient γ
m
according to the characteristics
of the vehicle is difficult because it is necessary
to identify inertia moment of many details in the
structure of crankshaft mechanism, drivetrain
system and tires. These details have a complex
structure; some of them have heterogeneous
materials and material distribution. Today, along
with the development of simulation software
(SolidWorks, Catia, Inventor...), the calculation of
the inertia moment of the details is easier when
there are sufficient structural parameters and
their materials. The rotating mass coefficient is
determined by calculation (theoretically) as above
should also be checked and compared with the
rotating mass coefficient determined experimentally
with vehicles when operating on roller testing
platforms.
This paper presents the results of the research on
determining the detailed rotating mass coefficient
of Hyundai Starex cars by theory (using Inventor
software combined with the measurement data
set for dimensions, the volume of related details)
combined with the experiment (on the roller testing
platform, the active wheel of Hyundai Starex is
forced to rotate by the roller of the testing platform).
The research results are used as input parameters
for the model of linear motion simulation of Hyundai
Starex cars [5].
2. THEORETICAL BASIS FOR DETERMINING
THE ROTATING MASS COEFFICIENT
The influence of rotating mass coefficient on the
driving motion of the vehicle is determined by the
formula [1]:
(2)
In which:
γ
m
- The rotating mass coefficient;
F - Traction at active wheels;
∑R - total drag of the road and air;
m - vehicle mass;
a - car acceleration.
In formula (2), is determined by formula [1]:
(3)
In which:
I
w
- moment of inertia of the active wheel;
I
1
, I
2
,...I
n
- moment of inertia of component rotating
masses with corresponding gear ratios;
ξ1, ξ2,...ξ3 rbx - rolling radius of wheels;
I - rotating mass coefficient of total rotating
components from the engine to the active wheel.
According to [9], rotating mass coefficient ( zI ) for
the axis of rotation of any solid object is determined
by the formula:
(4)
In which:
r - turning radius of the differential mass dm, m;
r - density of material, kg/m3;
dV - the volume of differential mass dm, m3.
For components with relatively simple structures
(cardan shaft, semi-axle, active wheel), Inventor
software will be directly used for calculation and
determination of rotating mass coefficient. For
complex assemblies (crankshaft mechanism
structure, gear box) will use a combination of
calculation results from Inventor with the theoretical
formulas to determine inertia moment.
Inertia moment of the engine eI is determined by
the formula, [8]:
2( )e cgi fw c cr c cyl fwI I I m m R n I= + = + + (5)
With:
cgiI - inertia moment of crankshaft and parts
mounted on the shaft, [kg.m2];
fwI - inertia moment of flywheel, [kg.m2];
cm - Shaft mass, [kg];
crm - Big part volume, [kg];
cR - turning radius of crankshaft, [m];
cyln - Engine cylinder number.
The inertia moment of a gearbox is determined by
the formula [12]:
mF R mag- =ồ
2 2 2w 1 1 2 2
2 2 2 2 21 ... 1n nm
bx bx bx bx bx
I I I I I
mr mr mr mr mr
x x xg = + + + + + = +ồ ồ ồ ồ
2 2. . .zI r dm r dVr= =ũ ũ
NGHIấN CỨU KHOA HỌC
56 Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
With:
II - inertia moment of the primary shaft of gearbox
(clutch shaft), [kg.m2];
III - inertia moment of intermediate axis, [kg.m2];
ai - the gear ratio of the gear pair always matches
the gearbox;
zkI - inertia moment of plain gear on secondary
shaft, [kg.m2];
ki - transmission ratio of gearbox to gear pair of
k gear;
m - the number of plain gears on the secondary shaft;
lI - inertia moment of reverse gear, [kg.m2];
li - the gear ratio of the number of reverse gears
is calculated from the primary shaft of the gearbox
to the regular reverse gears that are dynamically
related to the gears on the intermediate shaft.
3. RESULTS OF DETERMINING THE ROTATING
MASS COEFFICIENT
3.1. According to the theoretical method
The object of the study is the engine and powertrain
of the Hyundai Starex CVX (model 2008) with the
main specifications shown in Table 1:
Table 1. Main specifications of Hyundai Starex, [14]
No Parameter Unit Value
1
Engine (Model:
D4CB 2.5 TCI-A)
Diesel, 4-stroke, 4-cylinder,
1-line, VGT turbocharger,
using Common Rail-type
injection system
2
Vehicle weight
- Front axle
- Rear axle
kg 2,285
1,235
1,050
3
Base length
ì Width m 3,2 ì 1,920
4 Gearbox ratios -
5
Gear 1 4,393
Gear 2 2,306
Gear 3 1,356
Gear 4 1,0
Gear 5 0,763
6 Tire radius m 0,3535
Due to the lack of detailed design documents of
the crankshaft mechanism, drivetrain system, the
author chose to directly determine the parameters
of interest on the actual details of the engine and
the vehicle with an appropriate measuring device.
The results of building a 3D drawing of the main
components in the crankshaft mechanism structure
of the D4CB 2.5 TCI-A engine in Inventor software
are shown in Figure 1.
Figure 1. Figure (3D) key details of the crankshaft
mechanism structure in 2014 Autodesk Inventor
software
The results of calculation and determination of
the inertia moment of the crankshaft mechanism
and drivetrain system of Hyundai Starex by the
theoretical method are presented in Table 2.
Table 2. Results of calculating the inertia moment
of the crankshaft mechanism and drivetrain system
No Inertia moment Unit Value
1 Inertia moment of engine,
eI
kg.m2 0,75
2
Inertia moment of transmission at
gear 1, 1hI kg.m
2 0,0079
3
Inertia moment of transmission at
gear 2, 2hI kg.m
2 0,0083
4
Inertia moment of transmission at
gear 3, 3hI kg.m
2 0,0088
5
Inertia moment of transmission at
gear 4, 4hI kg.m
2 0,0077
6
Inertia moment of transmission at
gear 5, 5hI kg.m
2 0,0085
7 Inertia moment of cardan shaft, pI kg.m2 0,01152
8 Inertia moment of drive shaft,
dI
kg.m2 0,01389
9 Inertia moment of half shaft, dsI kg.m2 0,003
10 Inertia moment of wheel,
wI
kg.m2 1,26
Combining the data in Table 2 with formula (3) we
will determine the total inertia moment and rotating
mass coefficient of Hyundai Starex car with different
manual numbers as shown in Table 3.
2 2 2
1
m
h I II a zk k l l
k
I I I i I i I i- - -
=
= + + +ồ (6)
LIấN NGÀNH CƠ KHÍ - ĐỘNG LỰC
57Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
Table 3. Total inertia moment and rotating mass
coefficient determined by theory
No Specs Unit Gear 1 Gear 2 Gear 3 Gear 4 Gear 5
1
Total
inertia
moment, I
LT
kg.m2198,11 55,62 23,61 19,23 18,4
2
I
e
/I
LT
% 0,379 1,348 3,177 3,900 4,076
I
h
/I
LT
% 0,004 0,015 0,037 0,040 0,046
I
p
/I
LT
% 0,006 0,021 0,049 0,060 0,063
I
d
/ I
LT
% 0,007 0,025 0,059 0,072 0,075
I
ds
/I
LT
% 0,002 0,005 0,013 0,016 0,016
I
w
/ I
LT
% 0,636 2,265 5,337 6,552 6,848
3
Rotating
mass
coefficient,
γ
mLT
1,70 1,194 1,082 1,067 1,064
From Table 2 and Table 3, we see: Inertia moment of
the active wheel accounts for the largest proportion
in the total inertia moment (because the active wheel
has the largest mass and turning radius) compared
to the remaining components. However, according
to formula (3), the impact of engine inertia moment
on the total inertia moment is the largest because
in addition to the engine having a relatively large
inertia moment ( eI = 0,75), the ratio of engine to
active wheel is the largest, especially when at
No. 1, the transmission ratio of the powertrain is the
largest (ξso1= 4,393 ì 3,615 = 15,881).
3.2. According to the experimental method
3.2.1. Experimental equipment
The experiment of determining the rotating mass
coefficient of Hyundai Starex is conducted on the
48 “roller test platform (at Chassis Dynamometer
at Light Duty Test Cell of National Motor Vehicle
Emission Test Center/Vietnam Register) with a
layout. as shown in Figure 2. Main specifications of
48” roller testing platform (AVL Zửllner GMBH) are
shown in Table 4.
During the test, the vehicle speed - v (km/h), the
pulling power of the roller P (kW), the pulling force
of the roller F (N) are determined directly from
the roller test platform. Other parameters such as
the external torque exerting on the active wheel
- M (Nm), the angular acceleration of the active
wheel -e (m/s2) are determined indirectly from the
measurement parameters ( F , v ) of the platform.
Inertia moment of total empirical measurement is
determined by the formula, [3]:
Where:
M
t
, M
g
,
e
t
, e
g
- the external torque and the active
wheel angular acceleration when the roller
accelerates and decelerates.
Figure 2. General layout of Chassis Dynamometer
at Light Duty Test Cell-NETC
Table 4. Main specifications of 48 roller test
platform, [7]
No Specifications Unit Value
1
Maximum weight of active
bridge kg 4500
2 Test vehicle weight kg 454ữ5448
3 Inertial mass of 2 rollers kg 1678
4 Maximum acceleration m/s2 5,3
5 Maximum pulling force N 5870
6 Maximum test speed km/h 200
3.2.2. The order of conducting experiments
To determine the inertia moment, the roller test
platform is controlled to operate in a “passive” mode
(using the roller of the testing platform to turn the
vehicle’s active wheel), the engine does not start,
the clutch is in the state closed, and the position
of the gear varies from 1 to 5. In each hand, use
the rollers of the testing platform to pull the wheel
to actively accelerate to the speed max
3
v
, and then
disconnect the power to the rollers to let the wheel
actively decelerate to 0 km/h.
3.2.3. Experimental results
After determining the external torque values and
acceleration of the active wheel angle, proceed to
select the values M
t
, M
g
,
e
t
, e
g
at the time that the
active wheel angular velocity when accelerating
and decelerating is equal [3]. The empirical results
determine the values M
t
, M
g
,
e
t
, e
g
corresponding to
the transmissions are presented in Table 5.
t gTN
t g
M MI e e
-
=
+
(6)
NGHIấN CỨU KHOA HỌC
58 Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
Table 5. Experimental results to determine M
t
, M
g
,
e
t
, e
g
No Parameter Unit Gear 1Gear 2Gear 3Gear 4Gear 5
1
External
torque, when
accelerating, M
t
Nm 3,478 853 332 195 166,6
2
External
torque, when
decelerating, M
g
Nm 8,9 1,58 2,47 4,71 6,97
3
Acceleration
of wheel
angle when
accelerating et
rad/
s2
8,602 7,61 6,97 4,76 4,3
4
Acceleration
of wheel angle
when slowing
down,
e
g
rad/
s2
8,601 7,62 6,98 4,81 4,28
The value of the total and rotating mass coefficient
determined by empirical method is shown in Table 6.
Table 6. Inertia moment of total and rotating mass
coefficient determined by experiment
No Parameter Unit Gear 1 Gear 2Gear 3Gear 4Gear 5
1
Total inertia
moment, I
TN
kg.m2 201,64 56,01 23,64 19,84 18,6
2
Rotation mass
coefficient,
γ
mTN
1,71 1,196 1,083 1,069 1,065
4. COMMENTS
In Table 7 presents the results of determining
inertia moment, rotation mass coefficient with 3
cases: Calculating based on empirical formula
(1); Theoretical calculations (Table 3) and
experimentally on roller test platforms (Table 6).
We see:
Table 7. Summary of the results of determining
inertia moment and rotation mass coefficient on 3
alternatives
No Parameter Unit Gear 1 Gear 2 Gear 3 Gear 4 Gear 5
1
Total inertia
moment
(experimental),
I
TN
kg.m2 201,64 56,01 23,64 19,84 18,6
2
Total inertia
moment
(theoretical),
I
LT
kg.m2 198,11 55,62 23,61 19,23 18,4
Compare
I
LT
to I
TN
% 1,75 0,7 0,13 3,07 1,08
No Parameter Unit Gear 1 Gear 2 Gear 3 Gear 4 Gear 5
3
Total inertia
moment total
(experience), I
KN
kg.m2 191.45 61.03 28.57 20.75 16.85
Compare
to
I
KN
I
T
% 5,05 8,96 20,85 4,59 9,41
4
Rotation mass
coefficient
(theoretical), γ
mTN
1,71 1,196 1,083 1,069 1,065
5
Rotation mass
coefficient
(theoretical), γ
mLT
1,70 1,194 1,082 1,067 1,064
Compare γmLT to γmTN % 0,58 0,17 0,09 0,19 0,09
6
Rotation mass
coefficient
(experience), γ
mLT
1,67 1,21 1,1 1,07 1,06
Compare
γ
mTN to γmTN % 2,34 1,17 1,66 0,09 0,47
- The value of inertia moment and rotation mass
coefficient tends to decrease when moving to a
higher gear.
- At gear 1, the inertia moment and rotation mass
coefficient spin a lot bigger than at gear 5 in all 3
options.
- Rotation mass coefficient when determined
experimentally has difference value when
determined by theory. Specifically, the errors in
turn are 0,58%, 0,17%, 0,09%, 0,19%, and 0,09%
at gears: 1, 2, 3, 4 and 5. The cause of this error
is mainly due to the theoretical calculation ignoring
the compression pressure values in the engine
cylinder, but when experimented, the engine
cylinder still has the compression pressure (not
burning). In addition, ignoring other factors such as
auxiliary parts of rotation in the engine, wheel slip to
the road surface, tire pressure,...
- Rotation mass coefficient when determined
experimentally has a different value from the
empirical formula. Specifically, the errors are
respectively 2,34%, 1,17%, 1,66%, 0,09%, 0,47%
at gears: 1, 2, 3, 4, and 5. The main cause of
errors is due to the fact that when determining
by empirical formula, only the transmission ratio
of the powertrain is concerned, not the structural
characteristics of each vehicle.
LIấN NGÀNH CƠ KHÍ - ĐỘNG LỰC
59Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
5. CONCLUSION
The paper has identified the total inertia moment
and rotation mass coefficient of Hyundai Starex
CVX by theory (on the basis of using Inventor
software) and experiment (on roller test platform),
corresponding to each transmission number of
the gearbox.
The detailed value of inertia moment of parts and
rotation mass coefficient calculated by Inventor
software has high accuracy and will be used
as input parameters for Hyundai Starex’s linear
motion simulation software such as GT-Drive,
Matlab Simulink.
REFERENCES
[1] J.Y,Wong (2008), Theory of ground vehicles,
John Wiley &Sons, Inc.
[2] Thomas D. Gillespie (2014), Fundamentals
of Vehicle Dynamics, Society of Automotive
Engineers Inc.
[3] Xerghờiev L.V (1990), Lý thuyết xe tĕng (Tài
liệu dịch), Học viện KTQS.
[4] Nguyễn Đỡnh Tuấn, Phạm Trung Kiờn,
Nguyễn Hoàng Vũ (2012), Phỏt triển mụ
hỡnh mụ phỏng động lực học chuyển động
thẳng của xe tĕng trong Matlab/Simulink/
SimDriveline, Khoa học và Kỹ thuật, Học
viện Kỹ thuật Quõn sự.
[5] Nguyễn Hoàng Vũ (2014), Thuyết minh đề
tài NCKH & PTCN cấp Quốc gia “Nghiờn cứu
chế tạo thử nghiệm ECU phự hợp cho việc
sử dụng nhiờn liệu diesel sinh học với cỏc
mức pha trộn khỏc nhau”, mó số ĐT.08.14/
NLSH, thuộc Đề ỏn phỏt triển nhiờn liệu sinh
học đến nĕm 2015, tầm nhỡn đến nĕm 2025.
[6] Nguyễn Hoàng Vũ (20120), Bỏo cỏo tổng kết
đề tài NCKH & PTCN cấp Quốc gia “Nghiờn
cứu sử dụng nhiờn liệu diesel sinh học (B10
và B20) cho phương tiện cơ giới quõn sự”,
mó số ĐT.06.12/NLSH, thuộc Đề ỏn phỏt
triển nhiờn liệu sinh học đến nĕm 2015, tầm
nhỡn đến nĕm 2025.
[7] AVL Zửllner GMBH, Chassis Dynamometer
System for Exhaust Emission Analysis.
[8] Raffaele Di Martino (2005), Modelling and
Simulation of the Dynamic Behaviour of
the Automobile, PhD thesis in Mechanical
Engineering, University of Salerno.
[9] Aleksander UBYSZ (2010), Problems of
rotational mass in passenger vehicles,
Department of Vehicle Construction, Faculty
of Transport, Silesian Technical University,
Poland.
[10] GT-SUITE (2011), Vehicle Driveline and HEV
tutorial, Gamma Technologies, Inc.
[11] Matlab&Simulink, SimDriveline™ User’s
Guide, The Mathwork, Inc, 2010.
[12] Lờ Vĕn Tụy (2012), Thử nghiệm và mụ phỏng
ụ tụ trờn bệ thử động lực học, Đại học Bỏch
khoa Đà Nẵng.
[13]
[14] Hyundai Motor Company, Technical
Specifications for H1 – Bus
NGHIấN CỨU KHOA HỌC
60 Tạp chớ Nghiờn cứu khoa học, Trường Đại học Sao Đỏ, ISSN 1859-4190, Số 1 (68) 2020
THễNG TIN TÁC GIẢ
Vu Thanh Trung
- Summary of training and research process (time of graduation and training and research
program):
+ 2006: Graduated from University with a major in Dynamic Mechanical Engineering
+ 2011: Graduated Master degree in Automotive Engineering
- Summary of current Job: Lecturer, Faculty of Automotive, Sao Do University
- Areas of interest: Automotive dynamics; new energy, alternative fuel in vehicle; Control
engineering application for automotive systems.
- Email: vuthanhtrung286@gmail.com
- Phone: 0968567683
Ngo Thi My Binh
- Summary of training and research process (time of graduation and training and research
program):
+ 2006: Graduated from University with English major
+ 2010: Graduated Master of English major
- Summary of current job (positions, offices): Lecturer, Department of Tourism and Foreign
Languages, Sao Do University
- Areas of interest: Basic English, English for Automotive Engineering Technology, English for
Business and Tourism.
- Email: tienganhmybinhsd@gmail.com
- Phone. 0984188873
Các file đính kèm theo tài liệu này:
- y_xac_dinh_he_so_khoi_luong_quay_phuc_vu_viec_mo_phong_dong.pdf