Chu'dng4
~ ? ~ K
THUA T GIAI LAP CAP HAl. .
Trongdinhly (3.3)dfichomQtthu~tgiai xa'pXl lien ti6p(3.13),
theonguyenly anhX~co,d6clingla mQtthu~tgiaihQit\l ca'pmQt.
TrongphffnnaychungtasenghienCUllmQtthu~tgiaihQiW ca'phai
choh~(1.1), voi mQts6di~uki~nph\llien quail .
Xet h~phuongtrlnhham:
m n 2 m n
hex)=& I I aijklj (Sijk(X)) + I Ibijklj (Sijk(x))+gi(X)
k=lj=l k=lj=l
\:IxE Q c RP;i =l,...,n. (1.1)
Dljavaoxa'pXl
~jV))2=2IjV-I) IjV) - ~jV-I))2 ,
tathuduQcgiaithu~tsaildaychoh~(1.1):
(4
8 trang |
Chia sẻ: huyen82 | Lượt xem: 1432 | Lượt tải: 0
Tóm tắt tài liệu Xấp xỉ và khai triển tiệm cận nghiệm của hệ phương trình hàm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
.1)
lev) =~1(V),...,/~v))Ex ,
f/v\x) =Ii,~Jlaijk [2fj"-l) (Sijk(x))fYJ (Sijk(x»)- (rF-I) (Sijk(x»)j ]
m n (v)
+I I bijklj (Sijk(X))+gi(X) ,
k=lj=l
(xEQ,1~i~n,v=1,2,... ). (4.2)
Ta vi6t l~i(4.2)duoid~ng:
h(v)(x) =f iJ2& aijkl}V-l)(Sijk(x))+bijkJ/}v)(Sijk(x))
j=lk=l
m n
(
(v-I) \2
+ gi (x) - & I I aijk Ij (Sijk(x))J '
k=lj=l
(xEQ,I~i~n,v=I,2,...). (4.3)
Dinh If 4.1.
Gid sit (Hi), (H2)dung.Ntu lev-I) EX thoa
av =11[bijkJII+2&II[aijkJ11.II/(V-I)llx< 1
thih~ (4.3) co nghi~mduynh{{tlev) EX.
(4.4)
15
Chungminh.
B~t
(Tvf)i(x) =if [2&aijkflY-I) (Sijk(x)) +bijk]fj (Sijk(x))
j=Ik=1
m n
(
(v-I) \2
+gi(X)-& I I aijk fj (Sijk(X))j.
k:::lj=1
Ht%(4.3) duQcvie'tl~i nhu sau
lev) =Tvf(v) .
TvfEX, '\ffEX.
(4.5)
(4.6)
HiSn nhien
Ta chungminh Tv: X ~X 1ftmQtanhx~co.
Vdi mQif, hEX taco
n
II (Tvf - Tvh)i(x) I
i=1
n m n
(
(1) t
=I I I 2&aijkfjV- (Sijk(x))+bijkJfj -hj)(Sijk(X))
i=1k=lj=1
~i f i(21&11aijkIIfjV-l) (Sijk (x)) 1)I(fj - hj)(Sijk(X))1
i=lk=lj=1
n m n
+I I IlbijkII(fj - hj )(Sijk(x))1
i=lk=lj=1
~ 21&Iiim~x laijkl i(lfjV-I)(Sijk(X))II(fj -hj)(Sijk(X))1
i=lk=ll:S;j:S;n j=1
n m n
+II max
l
bi"k
l
I
l
(fo-ho)(Siok(X))
11< 0< r; J J r;
i=lk=1 -J _n j=1
Suy fa
IITvf -Tvhllx ~(21&III[aijdllllf(V-l)llx +II[bijk]11)llf-hllx
=avllf-hllx . (4.7)
Do (4.4),Tv 1ftmQtanhx~co .V~yphuongtrlnh(4.6)co nghit%mcluy
nhfft f(V) Ex.
Binh ly (4.1)da:duQcchungminh.
16
Binh Iy 4.2.
Gid sit' (HI), (H2), (H3)dung. Cho aijk E R . Khi do tbnt(li
hai hangso'M va E dUdngsaDehovdi f(O) E KM ehotrudeh~
(4.3)co nghi~mduynh(;{t
fcv) EK M, V v =0,1,2,... (4.8)
Chung minh
Ta sechQnhaih~ngs6M >0, 5>0 (dQCl~pvoi v) saachavoi
f(O) EKM,ta xacdinhduQcf(v)duynha'tli'h~(4.3)saacha
fCv) EKM
Ta sadl;lngchungminhquyn~p:
Gia sa fCv-l) EKM' Ta sechungminhr~ngfey) E KM
Ta chQnM >0va 5>0 thoa
II [bijkJ II + 25 II [aijkJ II M < 1 (4.9)
Khid6
aV =II [bilkJ II + 2511[aijk J 1IIIf(V-I)llx
s II[bijkJII+2511[aijkJIIM <1
Theadinh1:9(4.1),t6nt~iduynha'tf(V) EX la nghi~mcuah~(4.3).
Ta sebuQcthemdi€u ki~ntrenM va 5 dticha fcv) EK M
TruochSttadanhgia Ilf(V)llx'
Ta c6 voi mQix E Q,
~If/V)(x)1=~ I (TvfCv))i(X) I
1=1 1=1
s~ ~f( 25IaijkllfJ~V-l\Sijk(X))I+lbijkl)lfjV)(Sijk(x))1
1=1 1=1k=1
n nmn
I
1
1
2
+Ilgi(X)1+5I I I I aijkl fjv- )(Sijk(X))
i=1 i=1k=lj=1
n m n
S 25I I maxlaijkI. IlfiV-I) (Sijk(x))llfiV) (Sijk(x))!
i=Ik=II:O;j:O;n )=1
n m n
I I
n
+I I m~xlbijklI fjv) (Sijk(x)) +Ilgi(X)1
i=1k=II~J~n j=1 i=1
17
n m n
l
( 1)
1
2
+&I I m~xlaUklI fjV- (SUk(X)) .
i=1k=ll:::;j:::;n j=1
ta Suy fa :
Ilf(V)llx~(2&II [aijk] II M +II [bijk]II )llf(V)llx
+llgllx+&M211[aUk]ll.
V~y
II/(V)II < cll[aijkJIIM2+llgllx ~
x - l-ll[bijk]II-2&II[aijk]IIM -YM'
ChQnM, & thoa(4.9)saocho
hay
Ilf(V)llx~YM <M
3&II [aijk]II M2 - (1-11[bijk]II)M +Ilgllx<0
ChQn&>0 saocho
~=(1-11[bUk]11)2-12&11[aUk]1IIIglix>0
hay
(1-II[buk]II)2
0<& < 1211[aUk]llllgllx
Khi d6tachQnM >0 thoa(4.13),tucla
M/ <M <M/1 2
tfongd6
/ (1-II[bijk]11)-~ / (1~II[bijk]11)+~
M1 = M 2=
6&II[aijk]II' 6&II[aijdll'
la hainghi~mdu'dngcuatamthucvStnlicua(4.13)
ChilY f~ngnSuM , &>0 thoa(4.13)thlclingthoa(4.9).
V~yt6nt?i haih~ngs6du'dngM, & thoa(4.15),(4.16)
Do d6dinhly (4.2)du'<;1cchungminhxong.
18
(4.10)
(4.11)
(4.12)
(4.13)
(4.14)
(4.15)
(4.16)
(4.17)
Binh Iy 4.3.
Gidsa(Hi), (H2),(H])dung.Cho aijkER. Khido,t8nt(Ii hai
hlings6' M >.0,c >0,saDeho:
i) V6'i 1(0)EKM ehotru6'e,day {lev)}xaedtnhbJi h~(4.3)
Iamelthu~tgidihQitl;ll(ipcaphaithoa
II/(V)- Isllx ~PMII/V-I) - Isll: ' Vv =1,2,... (4.18)
trongdo
IIc II [aUkJ >0 ,
PM = l-ll[bukJII-2cMII[aukJII
(4.19)
va if: Ianghi~meuah~(1.1).
ii)Ne'u1(0) dur;ehQndugdnif: saDeho:
PM11/(0)- If:llx<1 , (4.20)
thEday {/(v)} hQitl;le5phaide'nif: vathoameltdanhgia sais6~'
2V
II
(v) -
II
<~
( II
(0) -
II )
-
I IE:X - PM PM I IE: X ' Vv-l,2,...
(4.21)
Chungminh.
if Theodinhly (4.2), dayi(V)E KM, voi v=0,1, 2 , . . .hO~lll
tO~lllduqcxacdinh,voicacgiii thiSt(Hi)-(H]). f)~t:
e(V)=IE: - lev) .
tu (1.1)va (4.3)tathuduqc
e;v)(x)=Ie; (x) - h(v) (x)I
=8~ltlaijk [/£~(Sijk(x)) +(JY-l) (Sijk(X))r - 2/Y-I) (Sijk (x))/Y) (Sijk(X))]
m n (v)
+I I bijkej (Sijk(x))
k=lj=l
19
=&E};aijk [/c~(Sijk(x)) +vt-I)(Sijk(X)))- 2It-l) (Sijk (x)lc) (Sijk (X))]
+f I [bijk+25aijkfjV-I)(Sijk(x))~jV)(Sijk(x))
k=Ij=I
= 5 f Iaijk [j~j(Sijk(X))- flY-I) (Sijk (X))f
k=Ij=l
+f I [bijk+25aijkfjv-I) (Sijk(x))]ejV)(Sijk(x)) .
k=Ij=l
Suy fa
n n
II efV\x)1= Ilf&i (x)- h(V) (x) I
i=I i=l
(4.22)
nmn
[ () 12:::; 5 I I Iaijkf&j (Sijk (x)) - fj v-I (Sijk (x)) J
i=I k=lj=I
+~~Itl [bijk+2£aijdY-1)(Sijk(x»]e)V\Sijk(x)~
nm n{ \2
:::;5I Imaxlaijkl I\ejV-I) (Sijk (x))j
i=lk=I I::;'j::;'n j=l
n m n
+I I m~xIbijkI II e)V)(Sijk (x)) I
i=lk=ll::::;j::::;n j=l
nm n
l
el)
li
e)
I+25I I m~x laijk I I fjV- (Sijk (x)) e/ (Sijk (x)) .
i=lk=ll::::;j::::;n j=l
V~y
IIe(V)llx :::;(251If(V-I)llxll [aijd 11+11[bijkJ II )11e(V)llx +511[ajdlll!e(V-I)II:
:::;(25MII[aijkJII+ II[bijkJII )llevllx+511[aijkJ II Ile(V-I)II:.
II
(V)
II
< 511[aijkJII
II
(V-1)
11
2
e x -1-II[bijkJII-25MII[aijkJIIe x'
(4.23)
suyfa (4.24)
nghlala
20
Il/e - I(V)II ~ & II [aijk] 1111j~- I(V-lf
X l-ll[bijk]II-2& M II[aijk~1 '
hay
II/V) - J&llx ~PMVV-l) - JII: ' Vv=1,2,... , (4.25)
vdi
c: II [aijkJ II >O.
PM =1-II[bijkJII-2c: Mil [aijkJ II
ii/Trude h€t, taehQnbudeli;ipbandftu1(0) E K M du gftnf (; ,
nghlalathoa
PM 11/(0)- Ic:llx <1.
La'y zeD)EX, taKaydtfngdayli;ipdon {z(n)}lien k€t vdi anhx~co
T:KM ~KM
nhutrongdinh193.3,chuang3:
z(n)=Tz(n-l)==(I - B)-l(c:Az(n-l)+g),n =1,2,... (4.26)
Khi doday{z(n)}hQit~trongX v€ nghi~ffif{;euah~(1.1)vataco
ffiQtdanhgiasais6:
n
11/{;-z(n)llx~llz(0)-Tz(0)llx'(1~())' Vn =1,2,...,
(4.27)
vdi
2c:Mil [aijk JII()= <1
1-11[b(jkJII .
Tli (4.26),(4.27),taehQnnoEN duIOnsaoeho:
no
PM III -z(no)llx ~ PM Ilz(O)-Tz(0)llx(1()-()) < 1 .
V~ytaehQn
(4.28)
1(0) =z(no) . (4.29)
Tacotli (4.24)
21
IIe(vJllx ~ 13M II e(V-1JII: ~13M(13MIIe(V-2JII:r
22
~ ([JM )1+21IeeV-2)11
3
,;, (PM )1+2+2211e(v-3)II:
0;...0;(/3M )1+2+22+...+2V-'II e(O)II~
o>(J3M) ';SlleCO)C=L~Mlle(otr.
Dinh1y4.3daduQcchungminh.
._.