Xấp xỉ và khai triển tiệm cận nghiệm của hệ phương trình hàm

Chu'dng4 ~ ? ~ K THUA T GIAI LAP CAP HAl. . Trongdinhly (3.3)dfichomQtthu~tgiai xa'pXl lien ti6p(3.13), theonguyenly anhX~co,d6clingla mQtthu~tgiaihQit\l ca'pmQt. TrongphffnnaychungtasenghienCUllmQtthu~tgiaihQiW ca'phai choh~(1.1), voi mQts6di~uki~nph\llien quail . Xet h~phuongtrlnhham: m n 2 m n hex)=& I I aijklj (Sijk(X)) + I Ibijklj (Sijk(x))+gi(X) k=lj=l k=lj=l \:IxE Q c RP;i =l,...,n. (1.1) Dljavaoxa'pXl ~jV))2=2IjV-I) IjV) - ~jV-I))2 , tathuduQcgiaithu~tsaildaychoh~(1.1): (4

pdf8 trang | Chia sẻ: huyen82 | Lượt xem: 1420 | Lượt tải: 0download
Tóm tắt tài liệu Xấp xỉ và khai triển tiệm cận nghiệm của hệ phương trình hàm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
.1) lev) =~1(V),...,/~v))Ex , f/v\x) =Ii,~Jlaijk [2fj"-l) (Sijk(x))fYJ (Sijk(x»)- (rF-I) (Sijk(x»)j ] m n (v) +I I bijklj (Sijk(X))+gi(X) , k=lj=l (xEQ,1~i~n,v=1,2,... ). (4.2) Ta vi6t l~i(4.2)duoid~ng: h(v)(x) =f iJ2& aijkl}V-l)(Sijk(x))+bijkJ/}v)(Sijk(x)) j=lk=l m n ( (v-I) \2 + gi (x) - & I I aijk Ij (Sijk(x))J ' k=lj=l (xEQ,I~i~n,v=I,2,...). (4.3) Dinh If 4.1. Gid sit (Hi), (H2)dung.Ntu lev-I) EX thoa av =11[bijkJII+2&II[aijkJ11.II/(V-I)llx< 1 thih~ (4.3) co nghi~mduynh{{tlev) EX. (4.4) 15 Chungminh. B~t (Tvf)i(x) =if [2&aijkflY-I) (Sijk(x)) +bijk]fj (Sijk(x)) j=Ik=1 m n ( (v-I) \2 +gi(X)-& I I aijk fj (Sijk(X))j. k:::lj=1 Ht%(4.3) duQcvie'tl~i nhu sau lev) =Tvf(v) . TvfEX, '\ffEX. (4.5) (4.6) HiSn nhien Ta chungminh Tv: X ~X 1ftmQtanhx~co. Vdi mQif, hEX taco n II (Tvf - Tvh)i(x) I i=1 n m n ( (1) t =I I I 2&aijkfjV- (Sijk(x))+bijkJfj -hj)(Sijk(X)) i=1k=lj=1 ~i f i(21&11aijkIIfjV-l) (Sijk (x)) 1)I(fj - hj)(Sijk(X))1 i=lk=lj=1 n m n +I I IlbijkII(fj - hj )(Sijk(x))1 i=lk=lj=1 ~ 21&Iiim~x laijkl i(lfjV-I)(Sijk(X))II(fj -hj)(Sijk(X))1 i=lk=ll:S;j:S;n j=1 n m n +II max l bi"k l I l (fo-ho)(Siok(X)) 11< 0< r; J J r; i=lk=1 -J _n j=1 Suy fa IITvf -Tvhllx ~(21&III[aijdllllf(V-l)llx +II[bijk]11)llf-hllx =avllf-hllx . (4.7) Do (4.4),Tv 1ftmQtanhx~co .V~yphuongtrlnh(4.6)co nghit%mcluy nhfft f(V) Ex. Binh ly (4.1)da:duQcchungminh. 16 Binh Iy 4.2. Gid sit' (HI), (H2), (H3)dung. Cho aijk E R . Khi do tbnt(li hai hangso'M va E dUdngsaDehovdi f(O) E KM ehotrudeh~ (4.3)co nghi~mduynh(;{t fcv) EK M, V v =0,1,2,... (4.8) Chung minh Ta sechQnhaih~ngs6M >0, 5>0 (dQCl~pvoi v) saachavoi f(O) EKM,ta xacdinhduQcf(v)duynha'tli'h~(4.3)saacha fCv) EKM Ta sadl;lngchungminhquyn~p: Gia sa fCv-l) EKM' Ta sechungminhr~ngfey) E KM Ta chQnM >0va 5>0 thoa II [bijkJ II + 25 II [aijkJ II M < 1 (4.9) Khid6 aV =II [bilkJ II + 2511[aijk J 1IIIf(V-I)llx s II[bijkJII+2511[aijkJIIM <1 Theadinh1:9(4.1),t6nt~iduynha'tf(V) EX la nghi~mcuah~(4.3). Ta sebuQcthemdi€u ki~ntrenM va 5 dticha fcv) EK M TruochSttadanhgia Ilf(V)llx' Ta c6 voi mQix E Q, ~If/V)(x)1=~ I (TvfCv))i(X) I 1=1 1=1 s~ ~f( 25IaijkllfJ~V-l\Sijk(X))I+lbijkl)lfjV)(Sijk(x))1 1=1 1=1k=1 n nmn I 1 1 2 +Ilgi(X)1+5I I I I aijkl fjv- )(Sijk(X)) i=1 i=1k=lj=1 n m n S 25I I maxlaijkI. IlfiV-I) (Sijk(x))llfiV) (Sijk(x))! i=Ik=II:O;j:O;n )=1 n m n I I n +I I m~xlbijklI fjv) (Sijk(x)) +Ilgi(X)1 i=1k=II~J~n j=1 i=1 17 n m n l ( 1) 1 2 +&I I m~xlaUklI fjV- (SUk(X)) . i=1k=ll:::;j:::;n j=1 ta Suy fa : Ilf(V)llx~(2&II [aijk] II M +II [bijk]II )llf(V)llx +llgllx+&M211[aUk]ll. V~y II/(V)II < cll[aijkJIIM2+llgllx ~ x - l-ll[bijk]II-2&II[aijk]IIM -YM' ChQnM, & thoa(4.9)saocho hay Ilf(V)llx~YM <M 3&II [aijk]II M2 - (1-11[bijk]II)M +Ilgllx<0 ChQn&>0 saocho ~=(1-11[bUk]11)2-12&11[aUk]1IIIglix>0 hay (1-II[buk]II)2 0<& < 1211[aUk]llllgllx Khi d6tachQnM >0 thoa(4.13),tucla M/ <M <M/1 2 tfongd6 / (1-II[bijk]11)-~ / (1~II[bijk]11)+~ M1 = M 2= 6&II[aijk]II' 6&II[aijdll' la hainghi~mdu'dngcuatamthucvStnlicua(4.13) ChilY f~ngnSuM , &>0 thoa(4.13)thlclingthoa(4.9). V~yt6nt?i haih~ngs6du'dngM, & thoa(4.15),(4.16) Do d6dinhly (4.2)du'<;1cchungminhxong. 18 (4.10) (4.11) (4.12) (4.13) (4.14) (4.15) (4.16) (4.17) Binh Iy 4.3. Gidsa(Hi), (H2),(H])dung.Cho aijkER. Khido,t8nt(Ii hai hlings6' M >.0,c >0,saDeho: i) V6'i 1(0)EKM ehotru6'e,day {lev)}xaedtnhbJi h~(4.3) Iamelthu~tgidihQitl;ll(ipcaphaithoa II/(V)- Isllx ~PMII/V-I) - Isll: ' Vv =1,2,... (4.18) trongdo IIc II [aUkJ >0 , PM = l-ll[bukJII-2cMII[aukJII (4.19) va if: Ianghi~meuah~(1.1). ii)Ne'u1(0) dur;ehQndugdnif: saDeho: PM11/(0)- If:llx<1 , (4.20) thEday {/(v)} hQitl;le5phaide'nif: vathoameltdanhgia sais6~' 2V II (v) - II <~ ( II (0) - II ) - I IE:X - PM PM I IE: X ' Vv-l,2,... (4.21) Chungminh. if Theodinhly (4.2), dayi(V)E KM, voi v=0,1, 2 , . . .hO~lll tO~lllduqcxacdinh,voicacgiii thiSt(Hi)-(H]). f)~t: e(V)=IE: - lev) . tu (1.1)va (4.3)tathuduqc e;v)(x)=Ie; (x) - h(v) (x)I =8~ltlaijk [/£~(Sijk(x)) +(JY-l) (Sijk(X))r - 2/Y-I) (Sijk (x))/Y) (Sijk(X))] m n (v) +I I bijkej (Sijk(x)) k=lj=l 19 =&E};aijk [/c~(Sijk(x)) +vt-I)(Sijk(X)))- 2It-l) (Sijk (x)lc) (Sijk (X))] +f I [bijk+25aijkfjV-I)(Sijk(x))~jV)(Sijk(x)) k=Ij=I = 5 f Iaijk [j~j(Sijk(X))- flY-I) (Sijk (X))f k=Ij=l +f I [bijk+25aijkfjv-I) (Sijk(x))]ejV)(Sijk(x)) . k=Ij=l Suy fa n n II efV\x)1= Ilf&i (x)- h(V) (x) I i=I i=l (4.22) nmn [ () 12:::; 5 I I Iaijkf&j (Sijk (x)) - fj v-I (Sijk (x)) J i=I k=lj=I +~~Itl [bijk+2£aijdY-1)(Sijk(x»]e)V\Sijk(x)~ nm n{ \2 :::;5I Imaxlaijkl I\ejV-I) (Sijk (x))j i=lk=I I::;'j::;'n j=l n m n +I I m~xIbijkI II e)V)(Sijk (x)) I i=lk=ll::::;j::::;n j=l nm n l el) li e) I+25I I m~x laijk I I fjV- (Sijk (x)) e/ (Sijk (x)) . i=lk=ll::::;j::::;n j=l V~y IIe(V)llx :::;(251If(V-I)llxll [aijd 11+11[bijkJ II )11e(V)llx +511[ajdlll!e(V-I)II: :::;(25MII[aijkJII+ II[bijkJII )llevllx+511[aijkJ II Ile(V-I)II:. II (V) II < 511[aijkJII II (V-1) 11 2 e x -1-II[bijkJII-25MII[aijkJIIe x' (4.23) suyfa (4.24) nghlala 20 Il/e - I(V)II ~ & II [aijk] 1111j~- I(V-lf X l-ll[bijk]II-2& M II[aijk~1 ' hay II/V) - J&llx ~PMVV-l) - JII: ' Vv=1,2,... , (4.25) vdi c: II [aijkJ II >O. PM =1-II[bijkJII-2c: Mil [aijkJ II ii/Trude h€t, taehQnbudeli;ipbandftu1(0) E K M du gftnf (; , nghlalathoa PM 11/(0)- Ic:llx <1. La'y zeD)EX, taKaydtfngdayli;ipdon {z(n)}lien k€t vdi anhx~co T:KM ~KM nhutrongdinh193.3,chuang3: z(n)=Tz(n-l)==(I - B)-l(c:Az(n-l)+g),n =1,2,... (4.26) Khi doday{z(n)}hQit~trongX v€ nghi~ffif{;euah~(1.1)vataco ffiQtdanhgiasais6: n 11/{;-z(n)llx~llz(0)-Tz(0)llx'(1~())' Vn =1,2,..., (4.27) vdi 2c:Mil [aijk JII()= <1 1-11[b(jkJII . Tli (4.26),(4.27),taehQnnoEN duIOnsaoeho: no PM III -z(no)llx ~ PM Ilz(O)-Tz(0)llx(1()-()) < 1 . V~ytaehQn (4.28) 1(0) =z(no) . (4.29) Tacotli (4.24) 21 IIe(vJllx ~ 13M II e(V-1JII: ~13M(13MIIe(V-2JII:r 22 ~ ([JM )1+21IeeV-2)11 3 ,;, (PM )1+2+2211e(v-3)II: 0;...0;(/3M )1+2+22+...+2V-'II e(O)II~ o>(J3M) ';SlleCO)C=L~Mlle(otr. Dinh1y4.3daduQcchungminh. ._.

Các file đính kèm theo tài liệu này:

  • pdf5_2_2.pdf
  • pdf0_2_2.pdf
  • pdf1_2_2.pdf
  • pdf2_2_2.pdf
  • pdf3_2_2.pdf
  • pdf4_2_2.pdf
  • pdf6_2_2.pdf
  • pdf7_2_2.pdf
  • pdf8.pdf
  • pdf9.pdf
  • pdf10_2.pdf
Tài liệu liên quan