Tính điều khiển được hệ phương trình vi phân đại số tuyến tính

Tài liệu Tính điều khiển được hệ phương trình vi phân đại số tuyến tính: ... Ebook Tính điều khiển được hệ phương trình vi phân đại số tuyến tính

pdf67 trang | Chia sẻ: huyen82 | Lượt xem: 1346 | Lượt tải: 0download
Tóm tắt tài liệu Tính điều khiển được hệ phương trình vi phân đại số tuyến tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
§¹i häc th¸i nguyªn TRƯỜNG ®¹i häc SƯ ph¹m Vi diÖu minh TÝnh ®iÒu khiÓn ĐƯỢC hÖ PHƯƠNG tr×nh vi ph©n ®¹i sè tuyÕn tÝnh Chuyªn ngµnh: Gi¶i tÝch M· sè : 60.46.01 LuËn v¨n Th¹c sü to¸n häc Người hướng dẫn: PGS.TS. TẠ DUY PHƯỢNG Th¸i Nguyªn - 2008 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1 Môc lôc Trang Lêi nãi ®Çu.. ............................................................................................. 1 Chƣơng 1 PHƢƠNG TRÌNH VI PHÂN ĐẠI SỐ TUYẾN TÍNH VỚI HỆ SỐ HẰNG ...................................................................................6 §1 Tính giải được của hệ phương trình vi phân đại số tuyến tính với hệ số hằng ........................................................................................ 6 §2 Tính điều khiển được của hệ phương trình vi phân đại số tuyến tính với hệ số hằng. ............................................................................... 35 Chƣơng 2 PHƢƠNG TRÌNH VI PHÂN ĐẠI SỐ TUYẾN TÍNH CÓ HỆ SỐ BIẾN THIÊN .............................................................................................. 41 §1 Tính giải được của hệ phương trình vi phân đại số tuyến tính với hệ số biến thiên… ................................................................................... 41 §2 Tính điều khiển được của hệ phương trình vi phân đại số tuyến tính với hệ số biến thiên .............................................................................. 63 KÕt luËn................................................................................................... 72 Tµi liÖu tham kh¶o. ............................................................................. 74 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2 LỜI NÓI ĐẦU Lý thuyết điều khiển toán học là một trong những lĩnh vực toán học ứng dụng quan trọng mới được phát triển khoảng 50 năm trở lại đây. Công cụ chính của lý thuyết điều khiển toán học là những mô hình và các phương pháp toán học giải quyết những vấn đề định tính và giải số các hệ thống điều khiển. Rất nhiều bài toán trong khoa học, công nghệ, kỹ thuật và kinh tế được mô tả bởi các hệ phương trình vi phân chứa tham số điều khiển và cần đến những công cụ toán học để tìm ra lời giải. Một trong những vấn đề đầu tiên và quan trọng nhất trong lý thuyết điều khiển hệ thống là lý thuyết điều khiển được, tức là tìm một chiến lược điều khiển sao cho có thể chuyển hệ thống từ một trạng thái này sang một trạng thái khác. Bài toán điều khiển được liên quan chặt chẽ đến các bài toán khác như bài toán tồn tại điều khiển tối ưu, bài toán ổn định và ổn định hóa, bài toán quan sát được,… Mặc dù lý thuyết điều khiển đã được hình thành cách đây khoảng 50 năm, nhưng nhiều bài toán và vấn đề về điều khiển như: điều khiển được hệ phương trình vi phân ẩn tuyến tính dừng và không dừng có hạn chế trên biến điều khiển, điều khiển được hệ phương trình vi phân và sai phân ẩn tuyến tính có chậm, những bài toán liên quan giữa điều khiển được, quan sát được và ổn định hoá, …, hiện nay vẫn còn mang tính thời sự và được rất nhiều nhà toán học trên thế giới cũng như trong nước quan tâm. Phương trình vi phân thường đã được nghiên cứu từ rất lâu, khoảng 200 năm trở lại đây. Tuy nhiên lý thuyết phương trình vi phân ẩn, trong đó có phương trình vi phân đại số tuyến tính lại mới được thật sự quan tâm trong vòng 40 năm trở lại đây. Phương trình vi phân đại số tuyến tính có rất nhiều điểm đặc biệt mà ta không thể tìm thấy ở phương trình vi phân thường, ví dụ: ma trận hệ số là ma trận suy biến, không có tính chất “nhân quả” giữa đầu vào và đầu ra,…, làm cho việc nghiên cứu những vấn đề liên quan trở nên phức tạp nhưng lại rất hấp dẫn. Hiện nay, mặc dù đã có nhiều cố gắng khảo sát những tính chất đặc biệt ấy, nhưng việc Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3 nghiên cứu hệ phương trình vi phân suy biến vẫn còn là thời sự, bởi còn rất nhiều câu hỏi chưa được giải đáp. Mục đích của luận văn này là trình bày các kết quả mở rộng tiêu chuẩn điều khiển được của các hệ điều khiển mô tả bởi phương trình vi phân thường – tiêu chuẩn Kalman – cho hệ phương trình vi phân đại số tuyến tính dừng và không dừng. Luận văn cố gắng trình bày một cách có hệ thống từ đơn giản đến phức tạp, từ phương trình vi phân đại số tuyến tính dừng đến phương trình vi phân đại số tuyến tính không dừng. Tiêu chuẩn điều khiển được dạng Kalman được đặc trưng thông qua tiêu chuẩn về hạng của ma trận hệ số. Thống nhất đi theo hướng nghiên cứu đó, trước tiên luận văn trình bày tiêu chuẩn điều khiển được mở rộng cho hệ phương trình vi phân đại số thông qua ma trận hệ số của các hệ phương trình vi phân ẩn tuyến tính dừng và sau đó là cho hệ mô tả bởi hệ phương trình vi phân ẩn tuyến tính không dừng. Các tiêu chuẩn điều khiển được này nói chung phức tạp hơn rất nhiều so với tiêu chuẩn Kalman. Nội dung của luận văn gồm hai chương: Chương 1 nghiên cứu hệ phương trình vi phân đại số tuyến tính với hệ số hằng. Mục 1 chương 1 trình bày hai cách tiếp cận hệ phương trình vi phân đại số tuyến tính nhằm nghiên cứu tính chất tập nghiệm của phương trình dạng ( ) ( ) ( )Ex t Ax t Bu t trong đó E là ma trận nói chung suy biến. Cách tiếp cận thứ nhất là thông qua cặp ma trận chính quy để đưa phương trình trên về hệ: 1 1 1 1 1 2 2 2 2 ( ) ( ) ( ); ( ) ( ) ( ), 0, x t A x t B u t Nx t x t B u t t   trong đó phương trình thứ nhất là phương trình vi phân thường và phương trình thứ hai là phương trình vi phân với ma trận lũy linh. Cách tiếp cận thứ hai nhằm nghiên cứu cấu trúc tập nghiệm của phương trình vi phân với hệ số hằng thông qua ma trận cơ sở. Mục này giới thiệu khái niệm toán tử hiệu chỉnh, nghiệm của phương trình vi phân đại số được tìm thông qua Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 4 toán tử hiệu chỉnh . Công thức nghiệm này cho thấy rõ hơn sự khác biệt của phương trình vi phân suy biến so với phương trình vi phân thường, ngoài ra việc tìm ra cấu trúc tập nghiệm còn nhằm áp dụng vào việc nghiên cứu tính điều khiển được của hệ phương trình vi phân tuyến tính được trình bày ở mục 2. Mục 2 trình bày tính điều khiển được của hệ phương trình vi phân đại số tuyến tính với hệ số hằng theo [6], trong đó tiêu chuẩn điều khiển được là mở rộng của tiêu chuẩn hạng Kalman. Chương 2 nghiên cứu cấu trúc tập nghiệm và tính điều khiển được của hệ phương trình vi phân đại số tuyến tính có hệ số biến thiên. Mục 1 của chương 2 trình bày tính giải được của phương trình vi phân tuyến tính không dừng theo cuốn sách [7]. Bằng cách tác động toán tử hiệu chỉnh trái vào phương trình vi phân ẩn, ta có thể đưa phương trình từ phức tạp về đơn giản để dễ nghiên cứu hơn. Mục 2 của chương 2 trình bày tính điều khiển được hệ phương trình vi phân đại số với hệ số biến thiên theo [9]. Thống nhất với mục 1, mục 2 cũng dùng toán tử hiệu chỉnh trái để đưa việc nghiên cứu tiêu chuẩn điều khiển được hệ suy biến không dừng về nghiên cứu hệ đơn giản hơn. Mặc dù luận văn chủ yếu là trình bày lại các kết quả trong [6], [7], [8], [9], nhưng chúng tôi cố gắng thể hiện những lao động của mình trong quá trình đọc, nghiên cứu và mở rộng các kết quả ấy cho hệ phương trình vi phân đại số tuyến tính. Thí dụ: Mục 1.1 chương 1 trình bày công thức nghiệm tường minh của phương trình vi phân tuyến tính không dừng với ma trận luỹ linh là kết quả của tác giả, đã được báo cáo tại Hội nghị nghiên cứu khoa học sau đại học do Đại học Sư phạm Thái Nguyên tổ chức (Thái Nguyên, tháng 7-2008) và được đăng trong [3]. Chúng tôi cũng cố gắng chi tiết hóa hoặc tìm ra những cách chứng minh khác với cách chứng minh trong [6], [7], [8], [9]. Trong toàn bộ luận văn, chúng tôi cố gắng diễn giải những định lý, bổ đề một cách dễ hiểu nhất. Chúng tôi hy vọng rằng, luận văn cho thấy rõ hơn sự phát triển trong nghiên cứu tiêu chuẩn điều khiển được hệ phương trình vi phân từ đơn giản đến phức tạp, từ phương trình vi phân thường đến phương trình vi phân ẩn suy biến với hệ số biến thiên. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 5 Luận văn được hoàn thành dưới sự hướng dẫn khoa học của PGS – TS Tạ Duy Phượng. Xin được tỏ lòng cám ơn chân thành nhất tới Thầy. Tác giả xin cám ơn chân thành tới Trường Đại học Sư phạm – Đại học Thái Nguyên, nơi tác giả đã nhận được một học vấn sau đại học căn bản. Và cuối cùng, xin cám ơn gia đình, bạn bè, đồng nghiệp đã cảm thông, ủng hộ và giúp đỡ trong suốt thời gian tác giả học Cao học và viết luận văn. Thái Nguyên, ngày 18 tháng 9 năm 2008 Tác giả Vi Diệu Minh Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 6 Chƣơng 1 PHƢƠNG TRÌNH VI PHÂN ĐẠI SỐ TUYẾN TÍNH VỚI HỆ SỐ HẰNG §1 TÍNH GIẢI ĐƢỢC CỦA HỆ PHƢƠNG TRÌNH VI PHÂN ĐẠI SỐ TUYẾN TÍNH VỚI HỆ SỐ HẰNG 1.1 Hệ phƣơng trình vi phân đại số tuyến tính với ma trận lũy linh Xét phương trình vi phân đại số tuyến tính dạng ( ) ( ) ( ) ( )Nx t x t B t u t , 0t ³ , (1.1.1.1) trong đó N là ma trận vuông cấp 2n , không phụ thuộc vào t và là ma trận lũy linh bậc h , tức là 2 0h nN = với 2 0n là ma trận vuông cấp 2n có tất cả các thành phần bằng 0; ( )x t là một hàm khả vi hầu khắp nơi nhận giá trị trong không gian 2n¡ và thỏa mãn phương trình (1.1.1.1) hầu khắp nơi (là nghiệm của phương trình vi phân (1.1.1.1)); ( )B t là ma trận cấp 2n m´ và ( )u t là vectơ hàm m chiều. Trước tiên ta chứng minh Bổ đề sau (xem [3]). Bổ đề 1.1 Giả sử ( )B t và ( )u t tương ứng là ma trận hàm và vectơ hàm có các thành phần là các hàm khả vi liên tục đến cấp h , trong đó h là bậc của ma trận lũy linh N . Khi ấy với mọi 1 k h£ £ ta có 1 ( ) 1 ( 1) 1 ( 1 ) ( ) 1 0 ( ) ( ) ( ) ( ) k k k k k k i k i i k i N x t N x t N C B t u t , (1.1.1.2) trong đó ( ) ( )kx t là đạo hàm cấp k của vectơ hàm ( )x t , tương tự, ( )( )iu t là đạo hàm cấp i của vectơ hàm ( )u t , còn ( )( )sB t là đạo hàm cấp s của ma trận hàm ( )B t , ! !( ) ! i k k C i k i = - với 0 i k£ £ . Chứng minh Nhân phương trình (1.1.1.1) với ma trận N rồi lấy đạo hàm hai vế ta được: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 7 2 ( ) ( ) ( ) ( ) ( ) ( )N x t Nx t N B t u t B t u t   . Lại tiếp tục nhân phương trình này với N rồi lấy đạo hàm hai vế ta được: 3 2 2 2 2 2 (2 ) ( ) 2 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).i i i i N x t N x t N B t u t B t u t B t u t B t u t N x t N C B t u t         Như vậy, công thức (1.1.1.2) đúng với 1,2, 3s = . Giả sử công thức (1.1.1.2) đúng với mọi s k h£ < . Ta sẽ chứng minh nó đúng với 1s k= + . Thật vậy, theo qui nạp ta có 1 ( ) 1 ( 1) 1 ( 1 ) ( ) 1 0 ( ) ( ) ( ) ( ) k k k k k k i k i i k i N x t N x t N C B t u t . Nhân phương trình này với N rồi lấy đạo hàm hai vế ta được: 1 1 ( 1) ( ) ( ) ( ) ( 1 ) ( 1) 1 0 ( ) 0 ( ) 0 ( 1) 1 1 1 ( 1) 1 ( 2) 2 ( 2) 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) k k k k k k i k i i k i i k i k k k k k k k k k k k k k k k k k k x t N x t N C t u t B t u t N x t N C B t u t N C B t u t N C B t u t N C B t u t N C B t u t N C     2 ( 3) 1 ( 1) ( 1) 1 ( ) ( ) 1 1 1 ( ) ( ) ( 1 ) ( 1) 1 1 2 (2) ( 2) 2 ( 1) 1 1 1 1 ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) k k s k s s k s k s s k k k s k s s k s k s s k k k k k k k k k k k k k B t u t N C B t u t N C B t u t N C B t u t N C B t u t N C B t u t N C B t u t N C B t u    ( 1) 1 ( ) 1( ) ( ) ( ) k k k k kt N C B t u t( ) 0 ( ) 0 1 ( 1) 1 1 1 1 2 ( 2) 1 ( ) ( ) 1 1 1 1 2 1 ( 1) 1 ( ) 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ... ( ) ( ) ( ) ( ). k k k k k k k k k k k s s k s s k k k k k k k k k k k k k k x t N C B t u t N C C B t u t N C C B t u t N C C B t u t N C C B t u t N C B t u t    Nhưng ( ) 1 1 ! !( 1 )! i k k C i k i - - = - - nên 0 0 1 1k kC C- = = ; 1 1 1 k k k kC C - - = = và 1 1 1 s s s k k kC C C Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 8 nên 1 ( 1) ( ) 0 ( ) 0 1 ( 1) 1 1 1 1 2 ( 2) 1 ( ) ( ) 1 1 1 1 2 1 ( 1) 1 ( ) 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ... ( ) ( ) ( ) ( ) k k k k k k k k k k k k k k s s k s s k k k k k k k k k k k k k k k k N x t N x t N C B t u t N C C B t u t N C C B t u t N C C B t u t N C C B t u t N C B t u t N x    0 ( ) 1 ( 1) 2 ( 2) ( ) ( ) 1 ( 1) ( ) ( ) ( ) ( ) 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ... ( ) ( ) ( ) ( ) ( ) ( ) ( ). k k k k k k k k k s k s s k k k k k k k k k k k k k k s k s s k s t N C B t u t N C B t u t N C B t u t N C B t u t N C B t u t N C B t u t N x t N C B t u t    Vậy theo nguyên lý qui nạp, công thức (1.1.1.2) được chứng minh. Từ Bổ đề 1.1 ta có công thức nghiệm sau đây của hệ (1.1.1.1). Mệnh đề 1.1 ([3]) Giả sử ( )B t là ma trận hàm và ( )u t vectơ hàm có các thành phần là các hàm khả vi liên tục đến cấp h . Khi ấy nghiệm của hệ phương trình vi phân tuyến tính suy biến (1.1.1.1) được tính theo công thức 1 ( ) 0 ( ) ( ) ( ) h k k k x t F t u t , (1.1.1.3) trong đó 1 ( )( ) ( ) h s k s k k s s k F t N C B t - - = = - å . Chứng minh Viết lại (1.1.1.2) với 1,2,...,k h= ta được 0 0( ) ( ) ( ) ( )Nx t x t C B t u t ; 2 0 1 1( ) ( ) ( ) ( ) ( ) ( )N x t Nx t NC B t u t NC B t u t    ; 3 2 2 0 2 1 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )N x t N x t N C B t u t N C B t u t N C B t u t      ; ………. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 9 1 ( ) 1 ( 1) 1 ( 1 ) ( ) 1 0 1 ( 1) 1 0 ( 1) 1 1 ( 2) 1 1 1 ( 1 ) ( ) 1 1 ( 1) 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ... ( ) ( ). k k k k k k i k i i k i k k k k k k k k k i k i i k k k k k N x t N x t N C B t u t N x t N C B t u t N C B t u t N C B t u t N C B t u t  ……… 1 ( ) 1 ( 1) 1 ( 1 ) ( ) 1 0 1 ( 1) 1 0 ( 1) 1 1 ( 2) 1 1 1 ( 1 ) ( ) 1 1 ( 1) 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ). h h h h h h i h i i h i h h h h h h h h h i h i i h h h h h N x t N x t N C B t u t N x t N C B t u t N C B t u t N C B t u t N C B t u t  Cộng vế với vế các đẳng thức này và để ý đến tính chất lũy linh của ma trận N , tức là 0hN = , sau khi nhóm các số hạng ở hai vế, ta được 1 1 0 ( ) 1 ( 1) 0 1 1 ( ) ( ) 1 ( 1) 1 ( ) 0 0 ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ... ( ) ( ) ( ) ( ) ( ). h h s s s s s s s s h s k s k k h h s s k h k k k x t N C B t u t N C B t u t N C B t u t N B t u t x t F t u t  Từ đây suy ra 1 ( ) 0 ( ) ( ) ( ). h k k k x t F t u t Vậy Mệnh đề 1.1 được chứng minh. Trong trường hợp ( )B t Bº là ma trận hằng ta có Hệ quả 1.1 ([6], trang 17) Giả sử ( )B t Bº là ma trận hằng và ( )u t vectơ hàm có các thành phần là các hàm khả vi liên tục đến cấp h . Khi ấy nghiệm của phương trình ( ) ( ) ( )Nx t x t Bu t (1.1.1.4) được tính theo công thức 1 ( ) 0 ( ) ( ) h k k k x t N Bu t . (1.1.1.5) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 10 Chứng minh Khi ( )B t Bº thì 1 ( )( ) ( ) h s k s k k k k k s s k F t N C B t N C B N B - - = = - = - = -å nên ta có ngay công thức (1.1.1.5). 1.2 Công thức nghiệm của phƣơng trình vi phân đại số tuyến tính có điều khiển Trong mục này ta sẽ đưa ra công thức nghiệm cho phương trình vi phân đại số tuyến tính dạng ( ) ( ) ( ) ( )Ex t Ax t B t u t . (1.1.2.1) trong đó ma trận E nói chung suy biến ( det E có thể bằng 0). Định nghĩa 1.2 Cặp ma trận , n nE A  được gọi là chính quy nếu tồn tại một số phức  sao cho 0E A hoặc đa thức 0sE A . Bổ đề 1.2 (Bổ đề 1-2.2, [6], trang 7) Cặp ma trận ( ),E A là chính quy nếu và chỉ nếu tồn tại hai ma trận không suy biến P và Q sao cho 1 0 0 nI QEP N , 1 2 0 0 n A QAP I , trong đó 1 2n n n+ = , 11 1 n n A  , 1n I và 2n I là hai ma trận đơn vị tương ứng cấp 1n và 2n ; 2 2n nN  là ma trận lũy linh. Bổ đề 1.2 chỉ ra rằng với giả thiết chính quy của cặp ma trận ( ),E A , hệ (1.1.2.1) có thể viết dưới dạng sau: 1 1 1 1 2 2 2 ( ) ( ) ( ) ( ), (1.1.2.2 ) ( ) ( ) ( ) ( ). (1.1.2.2 ) x t A x t B t u t a Nx t x t B t u t b   (1.1.2.2) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 11 Thật vậy, do ( ),E A là cặp ma trận chính qui nên tồn tại các ma trận không suy biến P và Q sao cho 1 0 0 nI QEP N , 1 2 0 0 n A QAP I . Nhân hai vế của (1.1.2.1) về bên trái với ma trận không suy biến Q ta được ( ) ( ) ( ) ( )QEx t QAx t QB t u t . Đặt ( ) ( )x t Px t= % hay 1( ) ( )x t P x t-=% . Khi ấy ( ) ( )x t Px t= && % và phương trình trên có thể viết thành ( ) ( ) ( ) ( )QEPx t QAPx t QB t u t  . (1.1.2.3) hay 11 2 0 0 ( ) ( ) ( ) ( ) 00 n n I A x t x t QB t u t IN   . Đặt 1 2 x x x æ ö ÷ç ÷= ç ÷ç ÷çè ø % % % và 1 2 ( ) ( ) ( ) B t QB t B t   , khi ấy phương trình trên có dạng 1 1 1 11 2 2 22 ( ) ( ) ( ) ( ); ( ) ( ) ( ) ( ) n n I x t A x t B t u t Nx t I x t B t u t       hay 1 1 1 1 2 2 2 ( ) ( ) ( ) ( ); ( ) ( ) ( ) ( ) x t A x t B t u t Nx t x t B t u t       với 1 2 1 2( ) , ( ) n n x t x t   và 2 2n nN  là ma trận lũy linh. Từ nay về sau, ta luôn giả thiết cặp ma trận ( ),E A là chính qui. Khi ấy để nghiên cứu hệ (1.1.2.1) ta chỉ cần nghiên cứu hệ (1.1.2.2). Hệ (1.1.2.2a) là hệ phương trình vi phân thường có điều khiển. Nó đã được nghiên cứu kĩ trong các tài liệu về lý thuyết điều khiển. Cụ thể, với mỗi điều kiện Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 12 ban đầu 0 1 1 n x  và mỗi hàm đo được cho trước ( )u t , 0t , nghiệm của (1.1.2.2a) có dạng (xem, thí dụ, [2], [4]): ( )01 1 1 1 1 0 ( ) ( ) ( ) t A t A t s s x t e x e B s u s ds . (1.1.2.4a) Theo Mệnh đề 1.2, nghiệm của hệ (1.1.2.2b) được tính theo công thức 1 1 1 ( ) ( ) ( ) 2 2 0 0 ( ) ( ) ( ) ( ) ( ) h h h k s k s k k k s k k s k x t F t u t N C B t u t . (1.1.2.4b) Như vậy, nghiệm 1 2 ( ) ( ) ( ) x t x t x t của (1.1.2.2) tính được tường minh theo công thức (1.1.2.4a) và (1.1.2.4b). Ta nói nghiệm (1.1.2.4) tương ứng với điều khiển ( )u t đã chọn. Chúng ta cũng lưu ý rằng, để có được công thức (1.1.2.4b), ta đã phải giả thiết ( )B t và ( )u t có các thành phần là các hàm khả vi liên tục đến cấp h , mặc dù trong định nghĩa nghiệm của (1.1.2.4a), thì chỉ cần tính chất đo được của hàm ( )u t . Đây cũng là một trong những điểm khác biệt giữa phương trình vi phân thường và phương trình vi phân đại số. Hệ quả 1.2 Giả sử ( )B t Bº là ma trận hằng và ( )u t vectơ hàm có các thành phần là các hàm khả vi liên tục đến cấp h . Khi ấy nghiệm của phương trình: ( ) ( ) ( )Ex t Ax t Bu t có dạng: ( )01 1 1 1 1 0 ( ) ( ) t A t A t s s x t e x e B u s ds 1 ( ) 2 0 ( ) ( ) h k k k x t N Bu t . Đối với hệ phương trình vi phân đại số (1.1.2.1), ta cũng có một cách tiếp cận khác thông qua ma trận cơ sở để nghiên cứu cấu trúc của tập nghiệm. Dưới đây chúng tôi trình bày cách tiếp cận này theo [7]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 13 1.3 Công thức nghiệm của hệ phƣơng trình vi phân đại số với ma trận cơ sở 1.3.1 Hệ phƣơng trình vi phân đại số với ma trận cơ sở Một cách tự nhiên, hệ phương trình vi phân đại số được hiểu là hệ 1 1 1 2 2 1 3 1 4 2 2 ( ) ( ) ( ) ( ); (1.1.3.1) 0 ( ) ( ) ( ), (1.1.3.2) x t R x t R x t f t R x t R x t f t  trong đó 1 1( ) nx t  và 2 2( ) nx t  ; iR , 1,2,3,4i và jf (t), 1,2j là các ma trận và vectơ có số chiều tương ứng. Hệ trên gồm một phương trình vi phân thường và một ràng buộc đại số (một phương trình không chứa đạo hàm của các ẩn 1 2,x x ). Đặt 1 21 1 3 42 2 0 ; ; ; 0 0 R Rx f I x f E A R Rx f , trong đó 1n I I là ma trận đơn vị cấp 1n , 0 là các ma trận gồm tất cả các phần tử bằng 0 có số chiều tương ứng; A và f là ma trận và vectơ có số chiều tương ứng. Dưới đây, để cho gọn, ta thường chỉ viết các ma trận đơn vị và ma trận gồm tất cả các phần tử bằng 0 là I và 0 mà không chỉ rõ số chiều của các ma trận. Với cách đặt trên, hệ (1.1.3.1), (1.1.3.2) có thể viết được dưới dạng: Ex Ax f (1.1.3.3) hay Ex Ax f (1.1.3.4) Nhận xét 1.3.1 Trong các tài liệu, hệ phương trình vi phân đại số thường được đồng nhất với hệ (1.1.3.4). Tuy nhiên, cách viết (1.1.3.1), (1.1.3.2) chỉ đòi hỏi là 1x có đạo hàm. Cách viết (1.1.3.4) đòi hỏi là x có đạo hàm, tức là toàn bộ các tọa độ, hay 2x cũng phải có đạo hàm. Từ đó ta thấy, (1.1.3.3) và (1.1.3.4) nói chung là khác nhau. Dưới đây, để phù hợp với các tài liệu, ta vẫn gọi hệ (1.1.3.3), (1.1.3.4), trong đó ma trận E có thể suy biến ( det E có thể bằng 0) là hệ phương trình vi phân đại Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 14 số. Dạng đặc biệt (1.1.3.1)-(1.1.3.2) được gọi là dạng nửa hiển (nửa hiển) của hệ phương trình vi phân đại số. Nhận xét 1.3.2 Nói chung ma trận E và ma trận A trong (1.1.3.3) và (1.1.3.4) không nhất thiết phải là ma trận vuông, nhưng chúng phải có cùng kích thước. Thí dụ, nếu nx  và ma trận A có số chiều là m n thì E cũng phải có số chiều là m n , còn f phải là một vectơ có số chiều là 1m . Bổ đề 1.3.1 Tồn tại dãy ma trận 0 1 2, , ,....C C C ( gọi là hệ ma trận cơ sở) sao cho mọi nghiệm của hệ phương trình 0 0 0 1 0 ( ) ( ) ( ) ; (1.1.3.5) ( ) ( ) ( ) . (1.1.3.6) i i i i i i dx t d C Ax t C f t dt dt d I C E x t C f t dt cũng là nghiệm của (1.1.3.3). Chứng minh Chọn 0 1 2, , ,....C C C thoả mãn hệ 0 0 0 1 (1.1.3.7) , 0,1,2,..., (1.1.3.8)i i i EC A AC E EC AC I i trong đó 0 i là nhân Kroneker, tức là 0 1, 0; 0, 0. i i i Giả sử ( )x t là nghiệm của (1.1.3.5)-(1.1.3.6). Nhân (1.1.3.5) với E , ta được: 0 0 0 0 ( ) ( ) ( ) ( ( )) ( ) ( ) . (*) i i i i i i Edx t d EC Ax t EC f t dt dt d Ex t EC Ax t EC f t dt Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 15 Nhân (1.1.3.6) với A , ta được: 0 1 0 0 1 0 ( ) ( ) ( ) ( ) ( ) ( ) . (**) i i i i i i d A I C E x t AC f t dt d Ax t AC Ex t AC f t dt Lấy (*) trừ (**) ta được: 0 0 1 0 ( ( )) ( ) ( ) ( ) ( ) i i i i d Ex t Ax t EC Ax t AC Ex t EC AC f t t . Từ (1.1.3.7) và (1.1.3.8) ta có: 0 0 0 ( ( )) ( ) 0 ( ) ( ) ( ) i i i d d Ex t Ax t I f t f t f t dt dt . suy ra ( ) ( ) ( )Ex t Ax t f t . Vậy ta đã chứng minh được, mọi nghiệm của (1.1.3.5), (1.1.3.6) đồng thời cũng là nghiệm của (1.1.3.3). Nhận xét Nếu không thêm điều kiện thì hệ (1.1.3.7)-(1.1.3.8) có thể có vô số nghiệm hoặc vô nghiệm. Thí dụ 1.3.1 Với 1 2 1 0 ; 0 1 ; x E A x x ; ( )f t  . Phương trình (1.1.3.3) có dạng 1 2( ) ( ) ( )x t x t f t . (1.1.3.3’) Chọn 0 1 0 ; ; ; 1,2,3... 0 1 i c c C C C i c và c bất kỳ. Vì 0 1 0 1EC AC I I (đúng vì 1I , ma trận đơn vị) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 16 1 2 1 0 ; 0 ; 2,3...i i EC AC c c EC AC c c i Vì c bất kỳ nên có vô số iC thỏa mãn hệ (1.1.3.7)-(1.1.3.8), hay hệ (1.1.3.7)- (1.1.3.8) không có tính duy nhất nghiệm. Hệ (1.1.3.5)có dạng ( ) 2 ( ) ( ) ( ) 1 i i c cdx t f t f t cdt hay ( )1 1 ( )2 2 ( ) ( ); ( ) ( ) ( ). i i i i dx t c f t dt dx t f t c f t dt (1.1.3.5’) Hệ (1.1.3.6) có dạng ( ) 1 ( ) ( ) ( ) 1 i i c c x t f t f t c hay ( ) 1 0 ( ) 2 1 ( ) ( ); ( ) ( ) ( ). i i i i x t c f t x t f t c f t (1.1.3.6’) Tích phân (1.1.3.5’) (đạo hàm (1.1.3.6’)) ta được (1.1.3.6’) (được (1.1.3.5’) hay hai hệ (1.1.3.5’) và (1.1.3.6’) là trùng nhau. Hơn nữa, thay ( )x t là nghiệm của (1.1.3.5’) (hay (1.1.3.6’)) vào (1.1.3.3’), ta thấy (1.1.3.3’) thỏa mãn với mọi hàm giải tích ( )f t . Thí dụ 1.3.2 Với 1 0 ; ; 0 1 E A x  Phương trình (1.1.3.3) có dạng: 1 1 2 20 x f x f  Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 17 Từ phương trình (1.1.3.7) ta có 0 0EC A AC E 01 02 01 02 1 0 0 1 , , 0 1 1 0 c c c c 02 01 0 0 c c . Vậy 0 0 0C ; Thay vào (1.1.3.8) với 0i : 0 0 1 0EC AC I 11 12 1 0 0,0 , 0 1 c c I 11 12 11 0 0 1 00 0 10 0 c c c Phương trình ma trận này vô nghiệm. Vậy hệ (1.1.3.7), (1.1.3.8) (với E và A đã cho trong thí dụ này) là vô nghiệm. 1.3.2 Hệ phƣơng trình xác định ma trận cơ sở Trong Bổ đề 1.3.1 ta đã chọn 0 1 2, , ,....C C C thoả mãn hệ (1.1.3.7) - (1.1.3.8) mà chưa nói đến sự tồn tại của hệ ma trận cơ sở này. Định lý dưới đây trả lời câu hỏi đó. Định lý 1.3.2 Giả sử hệ 0 1 0 1 ; (1.1.3.9) , 0,1,2,... (1.1.3.10) i i i i i i EC AC I C E C A I i với điều kiện 0 0 0 1 1 1 ; (1.1.3.11) (1.1.3.12) C C EC C AC là giải được ứng với 0 1, ,..., ,...iC C C , trong đó 0 i là nhân Kroneker, tức là 0 1, 0; 0, 0. i i i (1.1.3.13) Khi ấy, nếu 0 1,C C đã biết thì các ma trận còn lại iC , 2,3,...i có thể nhận được theo công thức truy hồi 1 1 1 1( 1) ( ) i i iC C E C . (1.1.3.14) Do tính kết hợp của phép nhân ma trận, ta có thể viết (1.1.3.14) dưới dạng 1 1 1 1( 1) ( ) i i iC C EC . (1.1.3.15) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 18 Chứng minh Cho 0i , từ ( 1.1.3.9) và (1.1.3.10) ta có: 0 1EC AC I (1.1.3.16) và 0 1C E C A I . (1.1.3.17) Nhân trái với 1C vào hai vế của (1.3.16) ta được: 1 0 1 1 1C EC C AC C . (1.1.3.17) Từ (1.1.3.12) ta suy ra 1 0 0C EC . (1.1.3.18) Nhân phải với 1C vào hai vế của (1.1.3.17) ta được: 0 1 1 1 1C EC C AC C . (1.1.3.17’) Từ (1.1.3.12) ta suy ra 0 1 0C EC . (1.1.3.19) Ta sẽ chứng minh iC tính theo công thức (1.1.3.14) và (1.1.3.15) thoả mãn hệ: 1 1 ; (1.1.3.20) , 2,3,... (1.1.3.21) i i i i EC AC C E C A i Cũng có nghĩa là Định lý 1.3.2 được chứng minh. Ta sẽ chứng minh (1.1.3.20)-(1.1.3.21) bằng phương pháp quy nạp toán học. Với 2i công thức (1.1.3.14) cho 2 1 1C C EC . (1.1.3.21) Nhân hai vế với E ta được 2 2 1 1 1( )EC EC EC EC . (1.1.3.22) Với 3i công thức (1.1.3.14) cho 2 2 2 3 1 1 1 1( 1) ( ) ( )C C E C C E C . (1.1.3.23) Nhân hai vế với A ta được: 2 2 3 1 1 1 1( ) ( )AC A C E C AC EC . Mà theo (1.1.3.16) thì 1 0AC EC I nên theo (1.1.3.19) ta có Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 19 2 2 2 3 0 1 0 1 1 2 2 0 1 1 1 1 ( )( ) ( ) ( ) ( ) ( ) . AC EC I EC EC EC EC EC EC EC EC EC (1.1.3.24) Vậy từ (1.1.3.22) và (1.1.3.24) suy ra 2 3EC AC . Nhân phải hai vế của (1.1.3.21) với E ta được 2 2 1 1 1( )C E C EC E C E . Nhân phải hai vế của (1.1.3.23) với A ta được 2 3 1 1( )C A C E C A . Mà theo (1.1.3.17) và (1.1.3.17’) thì 1 0C A C E I và 0 1 1 1 1C EC C AC C . Theo (1.1.3.18) ta có 2 2 23 1 0 1 0 1 2 2 1 1 0 1 1 ( ) ( ) ( ) ( ) ( ) ( ) C A C E C E I C E C E C E C EC EC E C E C E Vậy 2 3C E C A . Như vậy với 2i thì công thức nghiệm (1.1.3.14) và (1.1.3.15) thoả mãn hệ (1.1.3.20) và (1.1.3.21). Giả sử công thức nghiệm (1.1.3.14) và (1.1.3.15) thoả mãn hệ (1.1.3.20) và (1.1.3.21) với i k . Ta chứng minh điều này cũng đúng với 1i k . Thật vậy, với 1i k thì theo (1.1.3.14) ta có: 1 1 1 1 2 1( 1) ( ) ; ( 1) ( ) k k k k k kC C E C C E Vậy: 1 1 1 1 1 2 1 1 1 ( 1) ( ) ; ( 1) ( ) ( 1) ( ) . k k k k k k k k EC E C E AC A C E AC E C E Mà theo (1.1.3.16) thì 1 0AC EC I nên theo (1.1.3.19) ta có 1 2 0 1 1 1 0 1 1 1 1 ( 1) ( ) ( ) ( 1) [ ( ) ]+ ( 1) ( ) ( 1) ( ) k k k k k k k k k AC EC I E C E EC EC EC E C E C E Vậy 1 2k kEC AC . Tương tự, theo (1.1.3.15) ta có Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 20 1 1 1( 1) ( ) k k kC C EC và 1 1 2 1 1( 1) ( ) k k kC C EC nên 1 1 1 1 1 1 1 1 1 2 1 1 1 1 ( 1) ( ) ( 1) ( ) ; ( 1) ( ) ( 1) ( ) . k k k k k k k k k k C E C EC E C E C A C EC A C E C A Mà theo (1.1.3.17) thì 1 0C A C E I nên do (1.1.3.18) ta có 1 1 1 1 2 1 1 1 0 1 1 1 1 0 1 1 1 ( 1) ( ) ( 1) ( ) ( ) ( 1) ( ) ( 1) ( ) ( 1) ( ) . k k k k k k k k k k k C A C E C A C E C E I C E C EC E C E C E Vậy 1 2k kC E C A . Khẳng định đúng với 1i k , vậy công thức nghiệm (1.1.3.14) và (1.1.3.15) thoả mãn. Hệ (1.1.3.20) và (1.1.3.21) được chứng minh. Định lý chứng minh xong. Nhận xét Với giả thiết của Định lý 1.3.2, ta có các công thức hệ quả sau đây 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 ; 0,1,... (1.1.3.25) ; (1.1.3.26) ; (1.1.3.27) ; (1.1.3.28) ; (1.1.3.29) ( ) ; (1.1.3.30) ( 1) ( ) , 1,2... . (1.1.3.31) i i i i i EC A A i C EC AC C A C AC E EC AC EC C E C EC A EC EC AC AC i Chứng minh Từ (1.1.3.9) và (1.1.3.10) ta có (1.1.3.25): 0 0 1 1( )i i i i i iEC A AC A A A C A I AC E . Từ (1.1.3.11) và (1.1.3.25) với 0i vừa chứng minh, ta có (1.1.3.26): 0 0 0 0 0AC AC EC EC AC . Tương tự, từ (1.1.3.11) và (1.1.3.25) với 0i ta có (1.1.3.27): 0 0 0 0 0C A C EC A C AC E . Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 21 Từ (1.1.3.12) và (1.1.3.25) với 1i , ta có (1.1.3.28) và (1.1.3.29): 1 1 1 1 1 1 1 1 1 1 ; . EC EC AC AC EC C E C AC E C EC A Theo (1.1.3.11) ta có: 2 0 0 0 0( )AC AC AC AC . Nhân hai vế với 0AC ta được: 2 3 0 0 0 0 0( ) ( )AC AC AC AC AC . Vậy 2 3 0 0 0( ) ( ) ....AC AC AC Công thức (1.1.3.30) được chứng minh. Theo (1.1.3.12) ta có: 2 1 1 1 1( )AC AC AC AC . Nhân hai vế với 1AC ta được: 2 3 1 1 1 1 1( ) ( ) ( )AC AC AC AC AC . Vậy 2 3 1 1 1 1 1( ) ( ) ... ( 1) ( ) i iAC AC AC AC Công thức (1.1.3.31) được chứng minh. 1.3.3 Cặp ma trận chính quy Định nghĩa 1.3.3 Cặp ma trận ( , )E A được gọi là chính quy nếu tồn tại một số (thực hoặc phức ) sao cho det( ) 0A E . Nhận xét 1, Nếu sao cho det( ) 0A E thì tồn tại vô số có tính chất._.

Các file đính kèm theo tài liệu này:

  • pdfLA9544.pdf
Tài liệu liên quan