ChuangII ..Tfchtensorcuacaed(liso Trang17
CHUONG 2
" ?" ,,"
TICR TENSOR CUA CAC DAI SO.
2.1.DAI s6TREN VANH:
2.1.1.Dinhnghla:
GiasaA la mQtvanhtuyy vagiasaK la vanhgiaohoan
codonvithltanoiAla mQtd(;1is6trenK n€u vachin€u anhX(;1:
K xA ~ A saocho:
(a,x) ~ ax
(i) (A,+)la K -modununitaltrai
(ii) '<:ja E K, V x,y EA ..a (xy)=(ax)y=x(ay)
Vi elu: N€u KIa vanhgiaohoancodonvi thlvanhHitcacaematr~nnx
n (Ky hi~u:MatnK)trenKIa d(;1is6trenK haycongQila K -d(;1is6,
2.1.2Dinhnghla
Gia sli'K
10 trang |
Chia sẻ: huyen82 | Lượt xem: 1897 | Lượt tải: 2
Tóm tắt tài liệu Tích Tensor của các đại số đơn, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
la vanhgiaohoanvoidonvtA, B la K- d(;lis6 :
(
'
) M
~ d ',.( ? A ]' ~ ' h ? A. ' - l'), Qt (;11so con cua - _a mQtvan4 con cua, va cung la
K-modunconcuaA
(ii)MQtideand(;lis6cuaA vilaIa ideancuavanhA vaclinglaK -
moduliconcuaA.
(iii) MQtd6ngca'"ucuaK - d(;lis6f : A ~ B la mQtd6ngca'"uvanh
vavilala d6ngca'"uK - moduli.
Tu'ongtV: MQt d~ngdiu cuaK - d(;1is6 f : A~ B la mQtd~ng
ca'"uvanhvala mQtd~ngca'"uK- modUli.
2.1.3.wIenhd~
Ch~(angII : Tichtensorcuacaedr;zisf)' Trang18
Ne'uA la.mQtd(;tis6 trenvanhgiaohoanK thl t~pcac idean
chinhquycuad(;tis6 A phiii trungvoi t~pcacideanchinh quytren
vanhA.
2.1.4- lVIenhd~
ChoA la d(;tis6trenvanhgiaohoanK, khi d6 miA-modun
ba'tkhii quyrheanghiad(;tis6 la A-modunba'tkhii quyrheanghla
vanh .Ngu'Qcl(;tim6i modUliba'tkhii quyrheanghlavanhco th~
du'QcxemxetmQtcachduynha'tnhu'mQtmoduliba'tkhii quyrhea
nghiac1~is6.
2.2.DAI s6 TREN TRU<JNG:
Caekhaini~md(;tis6c1on,d(;tis6 moduli,ideand~is6,d6ng
ca'uc1£;lis6trentru'dngK c1u'Qcc1inhnghlatu'ongtt!nhu'dadinhnghla
trenvanh.Trongph§nnaytagiiisuK la tru'dng.
Ne'uA la d(;tis6 khac0 co c1onvi trentru'dngK thl anhX(;t
0::K --"'A c1inhnghlaboi k -c)k.l~la 1d6ngdfu K-d(;tis6.
Nhan xel ~Ne'uAla cl(;tiso "*0 codonvi trentru'dngK, thl a: K -c)A
voi a du'<;1cdinhnghlanhu'tren,taco Ima la d(;tis6 con
n~mtrongHimcuaA.
2.2.1Dinhnghia
MQtph§ntu a cua d(;tis6 A trentru'dngK dUila s6 d(;tis6
trenK ne'ua la nghit%mcuamQtdathuctrongK[x]. A c1uQcgi'la
mQtc1~is6c1~is6trenK ne'u'\faeA c1~ula d~is6trenK.
Nhdn xet: Ne'uA huu h(;tnchi~uthl A Ia d(;lis6 c1(;lis6 tren K.
Thijt vijy : Giii su dimKA =n
'>-I L 1 3 n+l
}
1, h" ( 1) h~ h?. h th
" "" ,,00vaeA=»!-l,a-,a, ,a a ~ n+ p an~u,p\l uctuyenti.
k k ) k n+1 0 '>-Ik K t
"" ? " k kh" dl:: h' . 0=> la+ ?a-+ + n+,a =, Vie at ca cac i ong ong t (11= .
ChuangII : Tfchtensorcuacaed(liso' Trang19
=>f(x) =k,x+kzxz+ +kn+lXn+'=O,Vk;E K[x] la da thuenh~na lam
nghi~m.
~ a lasod£;lisotrenK ~ Ala d£;lisod£;lisotrenK.
22 " B~ d~. 0 e
Gia saK la tntongd6ngd£;liso.Ne'uD la mQtd£;liso ehiad£;liso
tren K thiD =K
Ch~(ngminh:
Tac6:K ehuatmngtameuaD =>Kc D
Ne'uaED thi f(a) =0, "If E K[x]
Ma KIa tnlC1ngd6ngd£;liso =>f(x)=k (x-kl)(x-k2) (x-kn)
( vdi k, ki E K, k ;f:0)
Khi d6: f(a)=(a-kl)(a-k2) (a-kn)=0
DoD lad£;lisochia=>3i : a-ki =0=> a=ki E K ~ Dc K.
V~yD=K
2.3.DAI SONHAN - CENTROID
" 31 D . ,," h""--- al son an
Gia saR la d£;lisotrenvanhgiaohmlnK c6donvi. GQiE(R) la
caetVd6ngcftucuacaenh6mcQngeuaR ,'<:faER. Ta dinhnghia
Ta: R~ R
X H XTa=xa
Va La:R ~ R
X H XLa=ax
'<:fa,bERtae6Ta,Lac E(R)
,. GQiL(R) la vanhcaneuaE(R) sinhbdiTaLa
L(R)= {Ta+Lb+~Ta.Lb.,a,b,ai,bi E R}
I 1 1
ChucmgII : Tichtensorcuacaedt;lisrI Trang20
=>' L(R) du<lcgQila d?i s6nhan.
2.3.2.DinhnghiaCentroid:
Centroidcila R la t~pnhungphftntli'trongE(R) magiaohoan
vdinhungphftntli'cilaL(R).
Kyhi~u: ~={<;oE E(R)/ qX:J=(}(P,O"E L(R)}
2.3.3.B6 d~: Ne'uR2=R thiCentroidcilaRIa giaohoan
2.3.4DinhnghiatamcuaR
. Tam cua R ky hi~u:C(R)={xE R/xy=lX,'IIyE R}
2.4.DAI SO D<JN
2.4.1Dinhnghla
R duQcgQilad?is6dontrentruongK ne'uRIa d?is6trenK ,
R2:t{O}vaR khongcoideanth1!Cs1,1'haiphianao
Nhiill xel.. ChoR la motdaisotrentru'dngK. ne'uR la dais6don- . . .
thiR la L(R) -modunba'tkhaguy.
2.4.2.DinhIV : ChoR la d?i s6donthi :
(i) CentroidJ cilaR 1ftmQt'1l'ong.
(ii) TamcuaR :f.{O}q R codonvi
(iii) B?i s6nhanL(R) dayd~ccaephepbie'nd6ituye'ntinhtrong
R trencentroid:5
Chungminh
(i) Ta co:R la don'
=>R-L(R)lamocunba'tkhaguy=>C(R)Iavanhchia
=>:3lavanhchia
Ma R don=>R2 =R giaohoan
=>:3cotinhcha'tgiaohoan.V~y:5cilaR la mQtru'dng.
Chuang II ..Tichtensorcuacaed{liso Trang21
(ii) (~ ) hi€n nhien
(~) Oia saC(R) *-{OJ,v c EC(R) , c*-o ,taco :
- a(xc)=x(ac)vfta(cx)=(ac)x
~ x(ac) =(ac)x( vi c EC(R) ) ~ ac EC (R)
OQi 'R ={Tc / c E C (R) },vdiTc du'Qcdinh nghla nhu'(j ml.;lc
2.3.1.Taki€m tradu'Qc'R 1ftmQtideancua~
Mft J 1ftmQttru'ong~ 'R= {O}hay 'R= J
Neu "1={OJ=?C (R)={OJ(kh6ngthoaVIC(R) *- {OJ)
~ 'R=~~ 'R codonvi.V?yR cochuadonvi
(iii) Suyratuh~quacuadinh19dftyd~c.
2.4.3.lYlenhd~:
NeuR 1ftd<;lis6doncodonvi thico th€ d6ngnhatcentroidJ vdi
tamcuaR.
Changminh
Ta co : C(R) c ~( hi€n nhien)
\:-I C'"j '1"' "'h'~~ . b . e-. r'O/ R'
V IT E '-. ~ a. 1 Ullg illln 1 . :j C '-, )
Va E ~,V r E R, r *- 0 taxet: (lr) a=(lTr)a =(la) Tr=(la)r
D~ta=La ~ (Ir) a =ar~ r a =ar
Tu'ongtl!: r cr=(d) a =(1.Lr) a =(lcr)Lr=r(1.cr)=fa
~ ar=ra~ a E C(R) dor a =ra~ r (a - a) =0
Do ~1ftru'ongliena - a =0~ a=a E C(R) ~ :5c C(R)
V?y:5=C(R)
2.5. Tich tensorcuacaemodun
Oia saR 1ftvftnhcodonvi,M 1ftR-modunphai,N 1ftR-moduntnii.
Chuang1/: Tichtensorcuacaedfli s6' Trang22
2.5.1- Dinhnghia
Gia sli'( P, +) 1anhomAben,anhx~f: M XN ~ P bie'n(m,n)thanh
. f(m,n)dU<;5cg9i1aanhx~songtuye'ntinhne'uthoa:
. f ( m[ +mz, n) =f ( mt,n) +f(mz,n) , Villi, mz E M
. f (m, nl +nz ) =f (m, nl ) +f(m,nz,) ,Vnl,nz E M
. f ( m,rn) =f ( mr,n ) ,v r E R
2.5.2-Dinhnghia:
Gia slr f: M x N ~ P (voiP, T 1anhomcQngAben)
cp: M x N ~ T.,va f ,cp1aanhx~songtuye'ntinh.
Ta noi : f coth€ phantichquaT neu:3d6ngCelUh saocho:f =h.cp:
f(m,n) =h«p(m,n», V (m,n)EM x N.
f
Tacosod6giaohoan: M x N~ P
<p~/ h
T
2.5.3- DinhIi ( slft6nt~icuatichtensor)
Voi M, N nhutrenset6nt~iT 1anhomAbenvaanhx~songtuye'ntinh
t :M x N ~ T saocho:
(i) t (m,n)sinhra(T,+)tl1c1aVUE T tacod~ng:
u=I t(ffij,'J)' mi E M, nlE N
hh
(ii) m6ianhx~canbang<p:M x N ~ P (P nhomAbellmyy) co
th€ phantichdU<;5CquaT.
ChuangII : Tichtensorcuacaedr;ziso' Trang23
2.5.4- DinhIil..Nh6m T dl1<;5cxaydl,I'ngnhutrongdinh1:92.5.3dU<;5c
gQi1atfchtensorcuaM vaN. Ky hit%uM Q9RN.
2.5.5- He qua(Tinhduynha'tcuatfchtensor)
Giasa(M Q9'RN, t') voi M Q9'RN 1atfchtensorcuaM vaN
d6va anhX?: t': M xN ~ M Q9'RN 1aanhX?songtuye'nHnhthoa
2.6.3khid6: t6nt?i d~ngca'uA :M Q9RN ~ M Q9'RN saocho:
v(m,n)E M x N tac6: A(t(m,n)=t' (m,n)
Nhanxet:
Anh cua(m,n)ky hit%u1a:m @n,dot 1aanhX?songtuye'nHnhDen:
(mj + mz) <2)n =mj <2)n + mz <2)n
m[<2)(nl+nz)=ml <2)nl +m[<2)nz
\. mr@n=m<2)rn
2.5.6.Hequa: M6i anhX? songtuye'ntinh<p: M X N ~ P, P la nh6m
Aben. Anh X? (.pco th€ duQcphan tkh duy nha'tqua
T=MQ9RN
Nhanxet : Tichtensordu<;5cxacdinhduynha'tsaikhac1d~ngca'u.
2.5.7.DinhIvtichtensoreuahaid6ngea'u:
Chof :M ~ M', g :N ~ N' lacacR-d6ngca'u.C5d6M,M' 1a
cacR-modunphai,N,N' 1acacR-moduntrai.Khid6:t6nt?iduynha't
d6ngca'u .
f <2)g: M0R N ~ M' 0RN' thoa :
(fQ?>g)(mQ?>n)=f(m)Q?>g(n).
2.5.8.Caetinheha'teuatichtensor
Chl£cJng II : Tichtensorcuacaedt;lis6' Trang24
1)Gia saN Ia R-moduntreEvaRIa vanhgiaohminthiR@RN :::N
2)Tinhgiaohoan:ChoM IaR-modun,N IaR-moduntrai,gQiR' la
vanhphilod~ngca'uvdiR tac6:M@RN ==N@R'M
,. ?" A
2.6.TICH TENSORCUA CAC KHONGGIAN VECTOR:
CaedfnhnghTavaxaydlfngrichtensorcuacaekhonggianvectatren
traiJnghoanloan tl((jrzgtT!nha eachxay drpzgcua rich tensorcua cae
moauntrenvanh.
2.6.1.DinhIi :
Gia sa E, F la hai khonggianvectOtrentHrongT, t6n tC;!imQt
khonggianvectOM trenT va anhxC;!songtuyentinhcp: E x F ~ M
saocho: neuf 18.anhxC;!songtuyentinhba'tky cuaE x F ~ G trenT
thi :3!AnhxC;!tuyentinhg :M ~ Gthoadi~uki~nf =gocp.
Nhanxet: NeuM vacpt5ntC;!ithiM chilacp(ExF)
Ma M lamQtkhonggianvectOnenM luauchilat6hqptuyentinh
cuacaephtintU'cuacp(ExF).N6ieachkhacM chilakhonggiansinh
bdi cp(ExF).
KhonggianM dlfngttrkhonggianE vaF thoacaedi~uki~ntren
gQiIatichtensorcuakhonggianE vaF.Ky hi~u:E @ F
Gia tri cp(x,y)cuaanhx~cplingvdi x E E, yE F gQiIa tichtensor
cuavectoxvay.Kyhi~ux @y.
2.6.2.Tinhcha't
(1)E @ F :::F 0 E.(tinhgiaohoancuatichtensor)
ChuangII ..Tfchtensorcilacaedr,ziso Trang25
(2)T 0 E ==E
2.6.3.Menh d~:
Chotru'ongD vahaikh6nggianvectdM,N trenD. TrongM @DNtaco :
(i) Ne"u f1,f2,. . ,fnla t~phii'uh~ncacvectddQcl~ptuye"ntinh
n
trongM trenD thl It; 0xi=0=>Xi =0(i=l, . . .,n),V XiEN
i=1
(ii) ne"uel ,e2,. . .enla t~phii'uh~ncacvectddQcl~ptuye"ntinh
trongN trenD thl LYj 0ei =0=>yj=0 0=1,. '.' n),V YjE M
, ?, ",'",
2.7.TICH TENSOR CUA CAC DAI SO TREN VANH.
MQidinhnghfavatinhchatcilatichtensorcilamoduntrenvanhta
cothi v(mdf!,ngd6'ivaitichtensorciladq.iS(Jtrenvanh
Nhu'cachKaydlfngtichtensorcuamoduntrenvanhtrongtru'ong
h<;5pM,N la 2 d~isotrenvanhR thltaclingcotichM@RN.
2.7.1.Dinhnghia
ChoM,N la 2d~isotrenvanhgiaohoanR. Tadinhnghiaphep
nhancuaM vaN nhu'sau:
"ifai,Cj E M, Ifbi, dj E N ta co:
(Iai 0R bJ(ICj 0R d) =(Iaicj 0R bid)(1)
i j i,j
2.7.2Dinhnghia
Gia saM,N la 2 d~isotrenyanhgiaohoanR (coddnvi) thltich
tensorM@RNclingvdi pheptoan dU<;5Cdinhnghianhu(1) l~p
thanhmQtd~isodU<;5cgQila tichtensord~isocuaM vaN.
2.7.3Menhd~:
* Gia saM, N la d~isoconcuaA, giasa ab=ba,V aE M, V
bEN. B~t~=MN={Laibi /ai E M,bi EN} thl ann X£;l:
i
ChU:cJngII : Tfchtensorcuacaed(lis6' Trang26
<p:M 0 N ~ ~ lamQtd6ngca'u
""a Q9b ~"" a.b.L.. IlL.. I 1
~ ? ~ "~,, ,
2.8.TICH TENSOR CUA CAC DAI SO TREN TRUdNG.
TrangphftnnaytagiasaK la mQttntong.Taco : K - d,~lisosela K-
modUlitrungthanh.Gia saA,B la haid(;liso trenK
* Ne'uB codonvi la IB d~tA ={a01B/ aEA}
Xet a'X(;l: <p:A ~ A
a ~ a 0 IB
Ta co : <pla mQtd£ngca'u
Tu'ongtl!:Ne'uA codonvi la lA,d~t B ={IA 0b / b E B}thl
\jf:B ~ B: la d£ngca'u
b~IA0b
V~ 1 - 1, ()() L l a
'
ph6n h?" It,;n " I' ,..,,',n A ""t)(>B- ~- 'J:j'>' LAU CU UVll v, ~ua r1.~
Nhfmxet..TacoA,Bd~uchuaI
'II ; E A, bE B :; =a01B, b=IA0b,
;.b =(a0IB)(1A0b)
=alA0hb =a0b
=>A0B =A.B= {L;Ji;la;E A,~E Jj }
I
A0B =A.B duqcxetd trengQila tkh tensorcuamoduli
A,B trenK. VI v~ytacoth~coid(;lisoA 0 B la tichtensorcua
2d(;lisoconAvaB.
._.