Phương pháp toán tử cho bài oán Exciton hai chiều

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH KHOA VẬT LÝ Eo0oD KHĨA LUẬN TỐT NGHIỆP Giáo viên hướng dẫn: ThS. HỒNG ĐỖ NGỌC TRẦM Sinh viên thực hiện: TRƯƠNG MẠNH TUẤN Tp. HỐ HỒ CHÍ MINH 05/2010 Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 1 Lời cảm ơn Trong quá trình thực hiện và hồn thành khĩa luận này, ngồi những nỗ lực của bản thân, tơi đã nhận được sự quan tâm giúp đỡ và động viên của quý thầy cơ

pdf79 trang | Chia sẻ: huyen82 | Lượt xem: 1528 | Lượt tải: 0download
Tóm tắt tài liệu Phương pháp toán tử cho bài oán Exciton hai chiều, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
trong khoa Vật lý trường Đại học Sư phạm thành phố Hồ Chí Minh Tơi xin đựơc bày tỏ lịng biết ơn chân thành tới ThS. Hồng Đỗ Ngọc Trầm - giáo viên hướng dẫn luận văn này – cơ đã tận tình hướng dẫn, truyền thụ cho tơi những kiến thức bổ ích, những kinh nghiệm quý báu để tơi thực hiện khĩa luận này, đồng thời truyền cho tơi lịng nhiệt tình trong nghiên cứu khoa học. Tơi cũng xin được cảm ơn anh Lê Quý Giang , chị Nguyễn Thị Mận và các thành viên cùng đề tài Nghiên cứu khoa học đã hướng dẫn, giúp đỡ tơi trong việc lập trình với ngơn ngữ lập trình FORTRAN 77. Xin cảm ơn gia đình, người thân đã hỗ trợ tinh thần tơi cĩ thể hồn thành khĩa luận này. Một lần nữa tơi xin chân thành cảm ơn. Trương Mạnh Tuấn Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 2 MỞ ĐẦU Ngày nay với sự phát triển như vũ bão của khoa học kỹ thuật, các hệ lượng tử được xét đến ngày càng đa dạng, trong đĩ cĩ nhiều bài tốn chưa tìm được lời giải, từ đĩ phát sinh nhu cầu xây dựng và phát triển các phương pháp giải các bài tốn cơ học lượng tử - cụ thể là giải các phương trình Schrưdinger. Một trong những phương pháp mạnh và phổ biến cĩ thể kể đến là phương pháp lý thuyết nhiễu loạn. Ý tưởng chính của lý thuyết nhiễu loạn là tách Hamiltonian của bài tốn thành hai thành phần: một phần cĩ thể xác định được nghiệm chính xác, phần cịn lại là “nhiễu loạn” sẽ đĩng gĩp vào kết quả thơng qua các bổ chính; trong đĩ điều kiện áp dụng là thành phần “nhiễu loạn” phải nhỏ so với thành phần chính. Đây cũng chính là hạn chế lớn của phương pháp này, vì trong thực tế thành phần tách ra khơng đủ nhỏ để coi là “nhiễu loạn”. Như vậy, việc xây dựng một phương pháp để giải các bài tốn phi nhiễu loạn là cần thiết. Phương pháp tốn tử (Operator Method, viết tắt là OM) được xây dựng từ thập niên 80 của thế kỉ trước. Đây là một trong các phương pháp mạnh cho một dải rất rộng các bài tốn phi nhiễu loạn nêu trên [7]. Ý tưởng chính của OM [7] nằm trong bốn bước sau: (1) - Biểu diễn tốn tử Hamiltonian qua các tốn tử sinh hủy: ˆ ˆ( , ) ( , , )H x p H a a ω+→ ; (2) - Tách Hamiltonian thành phần trung hịa và khơng trung hịa: 0ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( , ) ( , , )H a a H a a V a aω ω ω+ + += + ; (3) - Chọn tham số ω sao cho 0 ˆ ˆ( , )H a a ω+ là thành phần chính của Hamiltonian và từ đây ta cĩ nghiệm riêng của 0 ˆ ˆ( , )H a a ω+ là năng lượng gần đúng bậc khơng; (4)- Xem ˆ ˆ( , , )V a a ω+ là thành phần nhiễu loạn và tính các bổ chính bậc cao theo các sơ đồ thích hợp. Qua nghiên cứu và ứng dụng trong một loạt các bài tốn cụ thể về lý thuyết trường, chất rắn, vật lý nguyên tử… OM đã chứng tỏ tính ưu việt và hiệu quả của nĩ [7] . Một số ưu điểm cĩ thể kể ra như: (1) - Đơn giản hĩa việc tính tốn các yếu tố ma trận phức tạp, đưa về các phép biến đổi thuần đại số. Vì vậy cĩ thể sử dụng các chương trình tính tốn trên biểu tượng như Matlab, Mathematica để tự động hĩa quá trình tính tốn; Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 3 (2) - Cho phép xét các hệ lượng tử với trường ngồi cĩ cường độ bất kì. Từ đây cĩ thể tìm giá trị năng lượng và hàm sĩng của hệ trong tồn miền thay đổi của tham số trường ngồi. Một trong những khĩ khăn chung khi áp dụng OM là đa phần các bài tốn cĩ tốn tử Hamilton chứa các biến động lực ở mẫu số hoặc trong trong dấu căn nên nếu đơn thuần chuyển sang biểu diễn các tốn tử sinh hủy thì sẽ gây khĩ khăn khi tính tốn. Để giải quyết vấn đề này, trong các cơng trình trước [3], [7] các tác giả đã sử dụng mối liên hệ giữa bài tốn nguyên tử hydro và bài tốn dao động tử điều hịa thơng qua phép biến đổi Levi-Civita giúp đưa các phương trình về dạng bài tốn dao động tử phi hịa khá quen thuộc – cách giải này khá “đẹp mắt” về hình thức và cũng đã phát huy tác dụng đối với một số bài tốn [7]. Tuy nhiên, đối với các bài tốn phức tạp hơn, việc xác định năng lượng một cách gián tiếp như vậy gây một số khĩ khăn khi tính tốn, lập trình để tìm nghiệm. Do đĩ, trong đề tài này tơi sử dụng phương pháp tốn tử tìm năng lượng E một cách trực tiếp bằng cách sử dụng phép biến đổi Laplace để đưa phần tọa độ ra khỏi mẫu số và dấu căn. Đây được coi là một bước phát triển OM. Với ý nghĩa đĩng gĩp vào sự phát triển của OM, luận văn này chỉ áp dụng OM cho một bài tốn đơn giản, dễ dàng tìm nghiệm chính xác bằng phương pháp giải tích để tiện đối chiếu, so sánh và rút ra kết luận: bài tốn exciton hai chiều, từ đĩ cĩ cơ sở để áp dụng cho các bài tốn phức tạp hơn sau này. Tuy đây là bài tốn đơn giản nhưng cũng là một bài tốn được quan tâm do ý nghĩa thực tiễn của nĩ [4], [8]. Một trong những khâu quan trọng khi sử dụng OM là chọn giá trị tham số tự do ω , việc chọn ω phù hợp sẽ tối ưu hĩa tốc độ tính tốn do đĩ khảo sát sự hội tụ của phương pháp theo tham số ω là một nhiệm vụ quan trọng. Với mục tiêu là tìm hiểu sâu hơn về một số vấn đề trong cơ học lượng tử và bước đầu làm quen với việc nghiên cứu khoa học, tác giả tự đặt ra cho mình các nhiệm vụ như sau: - Tìm hiểu về lý thuyết nhiễu loạn, cụ thể là nhiễu loạn dừng, tính lại sơ đồ xác định các bổ chính năng lượng, hàm sĩng, áp dụng cho một bài tốn phổ biến trong cơ học lượng tử là bài tốn dao động tử phi điều hịa. Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 4 - Tìm hiểu về OM (sơ đồ tính tốn, các ưu điểm..) trên cơ sở đối chiếu, so sánh với phương pháp lý thuyết nhiễu loạn thơng qua việc giải bài tốn dao động tử phi điều hịa. - Hồn thiện các kĩ năng tính tốn: tính tốn trên các tốn tử sinh hủy, biến đổi giải tích. - Bước đầu làm quen với ngơn ngữ lập trình (FORTRAN 77, 90). - Đưa ra lời giải cho bài tốn exciton hai chiều bằng phương pháp tốn tử, so sánh với kết quả thu được bằng lời giải giải tích. - Khảo sát tính hội tụ của phương pháp tốn tử theo tham số ω . Phương pháp nghiên cứu: - Sử dụng ngơn ngữ lập trình FORTRAN 77 để tìm nghiệm số. - tính tốn đại số để tìm biểu thức giải tích. - Đối chiếu, so sánh kết quả số thu được bằng lời giải giải tích và lời giải theo OM. Bố cục của luận văn được tác giả chia làm 4 chương: Chương 1: Giới thiệu phương pháp tốn tử qua bài tốn dao động tử phi điều hịa Tác giả giới thiệu OM thơng qua ví dụ bài tốn dao động tử phi điều hịa, đồng thời đối chiếu với phương pháp lý thuyết nhiễu loạn truyền thống để thấy được tính hiệu quả của phương pháp này. Trước hết tơi viết lại sơ đồ lý thuyết nhiễu loạn Rayleigh-Schrưdinger và áp dụng cho bài tốn nêu trên. Sau đĩ tác giả đưa ra các bước cơ bản của OM và áp dụng cho cùng một bài tốn. Kết quả bằng số cho thấy phương pháp nhiễu loạn chỉ áp dụng được cho trường hợp tham số phi điều hịa 0.1λ < trong khi phương pháp tốn tử cho kết quả hội tụ nhanh hơn nhiều lần và đúng cho mọi giá trị của tham số λ . Chúng ta sẽ sử dụng phương pháp này để giải quyết vấn đề nêu ra trong luận văn. Chương 2: Exciton – Bài tốn exciton hai chiều Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 5 Chương này tác giả giới thiệu các kiến thức cơ bản về exciton, thiết lập phương trình Schrưdinger cho bài tốn và đưa ra lời giải giải tích. Đây là các kiến thức nền, làm cơ sở cho phần tiếp theo. Chương 3: Bài tốn exciton hai chiều Tác giả tiến hành áp dụng (OM) để giải quyết bài tốn exciton hai chiều. Dùng chương trình FORTRAN 77 để giải các phương trình truy tốn, tìm ra một số mức năng lượng của exciton hai chiều, đồng thời khảo sát sự hội tụ tương ứng với mức năng lượng cơ bản theo giá trị ω . Phần kết luận: Việc áp dụng phép biến đổi Laplace và OM cĩ thể giải quyết hiệu quả bài tốn exciton hai chiều. Kết quả thu từ bài tốn exciton hai chiều ngồi trường hợp mức năng lượng cơ bản, các trường hợp mức năng lượng kích thích hồn tồn phù hợp với kết quả thu được từ phương pháp giải tích. Với việc khảo sát tham số ω trong bài tốn, ta đã xác định được các giá trị ω đặc biệt trong trường hợp mức năng lượng kích thích. Hướng phát triển tiếp của đề tài là: tiếp tục khảo sát ω để tìm ra quy luật tối ưu hĩa tốc độ tính tốn, sử dụng các sơ đồ khác nhau để tính tốn nghiệm chính xác. Từ đĩ ứng dụng OM cho bài tốn exciton âm và exciton dương trong từ trường… Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 6 CHƯƠNG 1 GIỚI THIỆU PHƯƠNG PHÁP TỐN TỬ QUA BÀI TỐN DAO ĐỘNG TỬ PHI ĐIỀU HỊA Trong chương này ta sẽ giới thiệu các bước cơ bản của OM thơng qua ví dụ bài tốn dao động tử phi điều hịa. Để minh họa những ưu điểm của phương pháp mới này ta sẽ trình bày song song với phương pháp lý thuyết nhiễu loạn [1], [2] và so sánh các kết quả bằng số của hai phương pháp. 1.1 Sơ đồ Rayleigh- Schrưdinger cho phương pháp nhiễu loạn dừng Xét phương trình Schrưdinger dừng: ˆ ( ) ( )H x E xΨ = Ψ , (1.1) ta tách tốn tử Hamilton của bài tốn thành hai thành phần: 0ˆ ˆ ˆH H Vβ= + ; (1.2) trong đĩ thành phần 0Hˆ là tốn tử Hamilton cĩ nghiệm riêng chính xác: 0ˆ n n nH ψ ε ψ= , (1.3) thành phần Vˆ cịn lại được gọi là thế nhiễu loạn, điều kiện áp dụng lý thuyết nhiễu loạn là thành phần nhiễu loạn Vˆ phải “nhỏ” so với 0Hˆ , 0ˆ ˆV H<< , tham số nhiễu loạnβ ( 1β  )được thêm vào để chỉ thành phần Vˆ là nhỏ . Khi đĩ, nghiệm của phương trình (1.3) sẽ gần với nghiệm của phương trình (1.1). Lúc này chúng ta xem nε và nψ là nghiệm gần đúng bậc khơng của (1.1), các nghiệm gần đúng bậc cao hơn sẽ được tính bằng cách xét đến ảnh hưởng của Vˆ thơng qua các bổ chính năng lượng và hàm sĩng. Ở đây ta đưa vào tham số nhiễu loạn β để coi thành phần nhiễu loạn là nhỏ và dễ dàng nhìn thấy các bậc nhiễu loạn trong sơ đồ tính tốn qua số mũ của β . Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 7 Ta giả thiết rằng các trị riêng của Hˆ là khơng suy biến và cĩ phổ gián đoạn, hệ hàm riêng nψ của 0Hˆ là đầy đủ và trực giao ứng với năng lượng nε , với 0,1,2,...n = . Khi đĩ, chúng ta tìm nghiệm của (1.1) dưới dạng khai triển theo các hàm riêng của 0Hˆ như sau: 0 ( ) ( )k k k x C xψ+∞ = Ψ =∑ . Khơng mất tính tổng quát ta cĩ thể giả thiết hàm sĩng cho trạng thái n như sau: 0 ( ) ( ) ( ) ( )n n k k k k n x x C xψ ψ+∞ =≠ Ψ = + ∑ . (1.4) Thế(1.4) vào phương trình (1.1) ta cĩ: 0 0, 0, ˆ ˆ( ) ( ) ( ) ( ) ( )n k k n n k k k k n k k n H V x C x E x C xβ ψ ψ ψ ψ+∞ +∞ = ≠ = ≠ ⎛ ⎞ ⎛ ⎞+ + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑ . (1.5) Nhân hai vế của (1.5) với *( )n xψ rồi tích phân theo tồn miền biến số x ta được: * * 0 0, 0, ˆ ˆ( )( ) ( ) ( ) ( ) ( ) ( )n n k k n n n k k k k n k k n x H V x C x x E x C xψ β ψ ψ ψ ψ ψ+∞ +∞ = ≠ = ≠ ⎛ ⎞ ⎛ ⎞+ + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑ , suy ra: 0 ( ) nn nn k nk n k k n H V C V Eβ β +∞ = ≠ + + =∑ . (1.6) Bây giờ làm tương tự như trên cho *( ),j x j nψ ≠ ta được: * * 0 0, 0, ˆ ˆ( )( ) ( ) ( ) ( ) ( ) ( )j n k k j n n k k k k n k k n x H V x C x x E x C xψ β ψ ψ ψ ψ ψ+∞ +∞ = ≠ = ≠ ⎛ ⎞ ⎛ ⎞+ + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑ , suy ra: 0 ( )n jj j jn k jk k k n E H C V C Vβ β +∞ =≠ − = + ∑ , ( )j n≠ (1.7) Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 8 với ký hiệu các yếu tố ma trận: * 0ˆ( ) ( )kk k kH x H x dxψ ψ+∞−∞= ∫ , * ˆ( ) ( )jk j kV x V x dxψ ψ+∞−∞= ∫ . (1.8) Hệ phương trình đại số (1.6) - (1.7) cĩ thể xem tương đương với phương trình Schrưdinger (1.1). Giải hệ phương trình này ta thu được năng lượng nE và các hệ số jC , nghĩa là tìm được hàm sĩng ( )n xΨ qua cơng thức (1.4). Ta cĩ thể sử dụng lý thuyết nhiễu loạn cho hệ phương trình này bằng cách phân tích theo tham số nhiễu loạn như sau: (0) ( ) 1 s s n n s E E Eβ+∞ = = + Δ∑ , (1.9) (0) ( ) 1 ,s sj j j s C C C j nβ+∞ = = + Δ ≠∑ . (1.10) Ở đây ta ký hiệu (0) (0),n jE C là năng lượng và hệ số gần đúng bậc khơng, cịn ( ) ( ), , 1s sn jE C sΔ Δ ≥ là các bổ chính vào năng lượng và hệ số hàm sĩng. Đem (1.9) và (1.10) thế vào (1.7), (1.8) sau đĩ đồng nhất hai vế theo lũy thừa của tham số β ta được: (0) (0), 0n nn jE H C= = , (1) (1) (0), ( ) jn n nn j n jj V E V C j n E H Δ = Δ = ≠− ; 2 :s ≥ ( ) ( 1) 0 s s n nk k k k n E V C +∞ − =≠ Δ = Δ∑ , 1 ( ) ( 1) ( ) ( ) (0) 0 1 1 ( ) s s s s t t j jk k n j k tn jj k n C V C E C j n E H +∞ −− − = =≠ ⎛ ⎞⎜ ⎟Δ = Δ − Δ Δ ≠⎜ ⎟− ⎜ ⎟⎝ ⎠ ∑ ∑ . (1.11) Đây là sơ đồ lý thuyết nhiễu loạn mà ta sẽ sử dụng trong các phần sau. 1.2. Phương pháp nhiễu loạn và dao động tử phi điều hịa Ta xét bài tốn dao động phi điều hịa với tốn tử Hamilton cĩ dạng sau: Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 9 2 2 4 2 1 1ˆ 2 2 dH x x dx λ= − + + , (1.12) với hệ số phi điều hịa 0λ > . Bài tốn này cĩ dạng chuyển động trong hố thế và cĩ các mức năng lượng gián đoạn. Ta sẽ sử dụng phương pháp nhiễu loạn đã đề cập ở trên để giải quyết bài tốn này. Trước hết ta chia tốn tử Hamilton thành hai phần như sau: 0ˆ ˆ ˆH H V= + , với : 2 2 0 2 1 1ˆ 2 2 dH x dx = − + , 4Vˆ xλ= . (1.13) Tốn tử Hamilton gần đúng 0Hˆ cĩ nghiệm riêng chính xác là các hàm sĩng của dao động tử điều hịa: ( )2exp 2n n n xA H xψ ⎛ ⎞= −⎜ ⎟⎝ ⎠ , (1.14) với ( )nH x là đa thức Hermit: ( ) 2 2( 1) n n x x n n dH x e e dx −= − . Hàm sĩng này ứng với trị riêng là năng lượng gần đúng bậc khơng 1 2n nε = + . Các yếu tố ma trận của các tốn tử 0Hˆ và Vˆ ứng với các hàm số (1.14) cĩ thể tính được như sau: 1 2nn H n= + , 4 ( 4)( 3)( 2)( 1)4n n V n n n nλ+ = + + + + , , 2 (2 3) ( 2)( 1)2n n V n n nλ+ = + + + , Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 10 2(6 6 3) 4nn V n nλ= + + . (1.15) Các yếu tố ma trận khác khơng khác thu được từ tính đối xứng: km mkV V= . Kết quả: Trong các bảng sau chúng ta sẽ đưa ra các số liệu thu được cho trường hợp trạng thái cơ bản 0n = và một trạng thái kích thích 4n = . Điều kiện áp dụng lý thuyết nhiễu loạn 0ˆ ˆn n n nV Hψ ψ ≤ ψ ψ lúc này trở thành: 2 1 2 (6 6 3) 4 nn nλ ++ + ≤ ( ) 2 2 2 1 6 6 3 n n n λ +→ ≤ + + . (1.16) Với trạng thái cơ bản: 0n = thì 0.67λ→ ≤ , ta sẽ xét các trường hợp ứng với các giá trị 0.01,λ = 0.05λ = , 0.1λ = , 0.3λ = và thu được các mức năng lượng tương ứng trong bảng 1.1. Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 11 Bảng 1:1 Trạng thái cơ bản 0n = thu được bằng lý thuyết nhiễu loạn. 0.01λ = 0.05λ = 0.1λ = 0.3λ = ( )0 0E 0.5000000000 0.5000000000 0.5000000000 0.5000000000 ( )1 0E 0.5075000000 0.5375000000 0.5750000000 0.7250000000 (2) 0E 0.5072375000 0.5309375002 0.5487500013 4.8875000929 ( )3 0E 0.5072583125 0.5335390626 0.5695624993 1.0506874797 ( )4 0E 0.5072558996 0.5320310060 0.5454335949 -0.9037538228 ( )5 0E 0.5072562577 0.5331500624 0.5812433983 7.7980283886 ( )6 0E 0.5072561937 0.5321503309 0.5172605857 -38.8454419856 ( )7 0E 0.5072562070 0.5331891854 0.6502339597 251.9673269259 ( )8 0E 0.5072562038 0.5319607395 0.3357518043 -1811.3500941848 ( )9 0E 0.5072562047 0.5335887505 1.1692934364 14595.2498498883 ( )10 0E 0.5072562044 0.5311982288 -1.2786007173 -129950.4520395805 Với trạng thái kích thích: 4n = điều kiện ta thu được là 0.146λ→ ≤ . Ta sẽ xét các trường hợp ứng với các giá trị 0.01,λ = 0.03λ = , 0.06λ = , 0.1λ = . Khi đĩ ta cĩ các mức năng lượng tương ứng ở bảng 1.2. Bảng 1.2: Trạng thái kích thích 4n = thu được bằng lý thuyết nhiễu loạn. 0.01λ = 0.03λ = 0.06λ = 0.1λ = ( )0 4E 4.5000000000 4.5000000000 4.5000000000 4.5000000000 ( )1 4E 4.8075000000 5.4225000000 6.3450000000 7.5750000000 (2) 4E 4.7668874959 5.0569874638 4.8829498552 3.5137495980 ( )3 4E 4.7775845596 5.3458081837 7.1935156144 14.2108132978 ( )4 4E 4.7738544635 5.0436703988 2.3593110572 -23.0901477918 ( )5 4E 4.7753851516 5.4156275988 14.2619414562 129.9786587800 ( )6 4E 4.7746833968 4.9040483689 -18.4791292566 -571.7761147298 ( )7 4E 4.7750329077 5.6684285196 79.3615300321 2923.3320274444 Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 12 ( )8 4E 4.7748469756 4.4448528730 -232.9328160495 -15669.8670185477 ( )9 4E 4.7749514618 6.5051300165 820.0470425212 888816.3030916408 ( )10 4E 4.7748899061 2.8703274765 -2901.9907584706 -526740.6987256789 Nhận xét: Ta thấy đối với trạng thái cơ bản (bảng 1.1) trong trường hợp 0.01,λ = khá nhỏ so với giới hạn của điều kiện nhiễu loạn, kết quả bổ chính bậc sáu cho chính xác tới sáu chữ số sau dấu phẩy. Với trường hợp 0.05λ = , mặc dù vẫn nhỏ so với điều kiện nhiễu loạn xong đã thấy cĩ dấu hiệu phân kì, chỉ cịn chính xác đến hai chữ số sau dấu phẩy. Cụ thể đến giá trị 0.1λ = ta thấy kết quả phân kì, các bổ chính bậc ba đã cho kết quả khơng phù hợp, và với 0.03λ ≥ lý thuyết nhiễu loạn khơng cịn đúng nữa. Ta cũng nhận thấy kết quả tương tự ở trạng thái kích thích 4n = (bảng 1.2) Như vậy khi sử dụng sơ đồ lý thuyết nhiễu loạn chỉ sử dụng được một số bổ chính đầu tiên. Các bổ chính bậc cao khơng cĩ ý nghĩa, bên cạnh đĩ tốc độ hội tụ của năng lượng khơng cao và chỉ áp dụng cho miền λ nhỏ. 1.3 Phương pháp tốn tử cho bài tốn dao động tử phi điều hịa Những ý tưởng về OM đã xuất hiện vào những năm 1979. Tuy nhiên, OM được đưa ra đầu tiên vào năm 1982 bởi một nhĩm các giáo sư ở trường Đại học Belarus và được ứng dụng thành cơng cho một nhĩm rộng rãi các bài tốn như các polaron, bipolaron trong trường điện từ, bài tốn tương tác chùm điện tử với cấu trúc tinh thể,... trong vật lý chất rắn; bài tốn tương tác hệ các boson trong trong lý thuyết trường. Phương pháp này được phát triển bởi Fernandez, Meson và Castro, Gerryva Silverman, Wistchel và nhiều tác giả khác [7]. Ta sẽ trình bày các điểm chính của phương pháp OM trên cơ sở ví dụ bài tốn dao động tử phi điều hịa một chiều. Kết quả thu được sẽ so sánh với phương pháp nhiễu loạn ở trên. Xét phương trình Schrưdinger (1.1) cho dao động tử phi điều hịa với tốn tử Hamilton khơng thứ nguyên (1.14). Ta sẽ giải phương trình này bằng OM với bốn bước cơ bản như sau: Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 13 Bước một: Chuyển tốn tử Hamilton về biểu diễn của các tốn tử sinh - hủy bằng cách đặt biến số động lực (tọa độ và tốn tử đạo hàm) thơng qua các tốn tử sau: 1ˆ ˆ ˆ ; 2 2 1ˆ ˆ ˆ . 2 2 i da x p x dx i da x p x dx ω ω ω ω ω ω ω ω + ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ = + = + = − = − (1.17) Ở đây tốn tử aˆ được gọi là “tốn tử hủy” và aˆ+ được gọi là “tốn tử sinh” (xem [1],[2]); ω là tham số thực dương được đưa thêm vào để tối ưu quá trình tính tốn, ta sẽ nĩi rõ hơn về tham số này trong bước ba. Ta dễ dàng thu được hệ thức giao hốn: ˆ ˆ, 1a a+⎡ ⎤⎣ ⎦ = . (1.18) Hệ thức này sẽ giúp ta đưa các tốn tử sinh hủy về dạng chuẩn, nghĩa là các tốn tử sinh nằm ở phía bên trái và các tốn tử hủy nằm về phía bên phải, thuận lợi cho các tính tốn đại số sau này. Từ đây về sau ta gọi nĩ là dạng chuẩn (normal) của tốn tử Thế (1.17) vào (1.12) và sử dụng (1.18), ta được biểu thức dạng chuẩn của tốn tử Hamilton như sau: ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 22 4 4 3 24 3 2 2 1 1 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 1 2 2 1 4 4 4 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4 4 6 6 . 4 H a a a a a a a a a a a a a a a a ω ω λ ω ω ω λ ω + + + + + + + + ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎡ ⎤⎢ ⎥⎣ ⎦ + −= + + + + + + + + + + + + (1.19) Bước hai: Tách Hamiltonian ở (1.19) thành hai thành phần như sau: - Phần thứ nhất là ( )0ˆ ˆ ˆ, ,OMH a a λ ω+ chỉ chứa các tốn tử“trung hịa” ˆ ˆ ˆn a a+= , nghĩa là bao gồm các tốn tử cĩ số tốn tử sinh và số tốn tử hủy bằng nhau: ( ) ( )2 20 21 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 1 2 2 14 4OMH a a a a a aω λω ω+ + +⎡ ⎤⎢ ⎥⎣ ⎦+= + + + + . (1.20) - Phần cịn lại ta kí hiệu là ( ) ( )0ˆ ˆ ˆ ˆ, ,ˆ ˆ ˆ, , , OMOM H H a aV a a λ ωλ ω ++ = − . Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 14 Như vậy, tương tự như trong lý thuyết nhiễu loạn, ở đây ta tách tốn tử Hamilton thành hai thành phần: thành phần ( )0ˆ ˆ ˆ, ,OMH a a λ ω+ cĩ nghiệm chính xác mà chúng ta sẽ dễ dàng xây dựng dưới đây; riêng thành phần ( )ˆ ˆ ˆ, , ,OMV a a λ ω+ được xem như thành phần “nhiễu loạn” sẽ được điều chỉnh “đủ nhỏ” để thỏa điều kiện của lý thuyết nhiễu loạn thơng qua việc chọn tham số ω . Bước ba: Tìm nghiệm chính xác bậc khơng bằng cách giải phương trình: ( ) ( ) ( ) ( )0 0 00ˆ ˆ ˆ, ,OMH a a Eλ ω ψ ψ+ = . (1.21) Ta thấy ( )0ˆ ˆ ˆ, ,OMH a a λ ω+ giao hốn với tốn tử ˆ ˆ ˆn a a+= và nghiệm của nĩ dễ dàng xây dựng như sau [2]: ( )1 ˆ( ) 0 ! n n a n ω += , (1.22) ở đây ta đã sử dụng kí hiệu Dirac để định nghĩa, khi đĩ nghiệm (1.22) ta gọi là vector trạng thái; và trạng thái “chân khơng” (Vacuum) 0 được xác định bằng phương trình: ˆ( ) 0 0; 0 0 0a ω = = . (1.23) Khi cần thiết chúng ta cĩ thể sử dụng phương trình này để xác định dạng tường minh của hàm sĩng biểu diễn trạng thái chân khơng. Từ các tính chất của tốn tử sinh – hủy (1.18), ta dễ dàng kiểm chứng: ˆ ˆ ;a a n n n+ = (1.24) điều này cĩ nghĩa là trạng thái (1.23) là nghiệm riêng của tốn tử ˆ ˆ ˆn a a+= , nghĩa là nĩ cũng là nghiệm riêng của tốn tử ( )0ˆ ˆ ˆ, ,H a a λ ω+ . Ta cĩ: ( ) ( ) ( ) ( ) ( ) 2 20 0 2 2 2 2 , 1 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 1 2 2 1 4 4 1 32 1 2 2 1 4 4 OM n n n n nE H a a a a a a n n n ω λ ω ω ω λ ω ω + + +⎧ ⎫⎡ ⎤= ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭ = += + + + + + + + + + (1.25) Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 15 là năng lượng gần đúng bậc khơng, phụ thuộc vào tham số ω . Như đã nĩi, đây là tham số được đưa vào để tối ưu hĩa quá trình tính tốn, ta xác định ω từ điều kiện: ( )0 0.nEω ∂ =∂ (1.26) Tiêu chí để chọn giá trị ω theo OM đã được thảo luận trong một số cơng trình [7] và đã chỉ ra rằng điều kiện (1.26) cho ta kết quả tương đối chính xác ở gần đúng bậc khơng đối với nhiều bài tốn khác nhau. Điều kiện (1.26) cũng phù hợp với điều kiện 0 ˆ ˆH V>> . Với bài tốn chúng ta đang xét, điều kiện (1.26) dẫn tới phương trình để xác định ω như sau: ( ) ( ) ( )3 22 1 2 1 6 2 2 1 0n n n nω ω λ+ − + − + + = . (1.27) Bước bốn: Phương pháp tốn tử (OM) tìm nghiệm bằng số: Đến đây chúng ta cĩ thể sử dụng sơ đồ của lý thuyết nhiễu loạn (1.9)-(1.11) để tính các bổ chính bậc cao. Ngồi ra, do tính hội tụ của OM rất cao và chúng ta cĩ tham số tự do ω để điều khiển tốc độ hội tụ, ta cĩ thể sử dụng sơ đồ vịng lặp để giải trực tiếp hệ phương trình (1.6)-(1.7). Hàm sĩng cĩ thể viết dưới dạng chuỗi của các vector trạng thái như sau: ( ) ( ) 0 ( ) n s s s n k k k n n C k + =≠ Ψ = + ∑ . (1.28) Thế (1.28) vào phương trình (1.1) ta cĩ: ( ) ( )0 0 0 ( ) ( ) ˆ ˆ( ) n s n s s s k n k k k k n k n H V n C k E n C kβ + + = =≠ ≠ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟+ + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ∑ ∑ . (1.29) Nhân hai vế của (1.29) với n ta được: ( ) ( ) 0 0 0 ( ) ( ) ˆ ˆ( ) n s n s s s k n k k k k n k n n H V n C k n E n C kβ + + = =≠ ≠ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟+ + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ∑ ∑ , suy ra: Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 16 ( )( ) 0, n s ss n nn nn k nk k k n E H V C V + = ≠ = + + ∑ . (1.30) Bây giờ làm tương tự như trên cho ,j j n≠ ta được: ( ) ( )0 0 0 ( ) ( ) ˆ ˆ( ) n s n s s s k n k k k k n k n j H V n C k j E n C kβ + + = =≠ ≠ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟+ + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ∑ ∑ , suy ra: ( ) ( 1) ( ) 0 ( ) n s s s s n jj j jn k jk k k n E H C V C V ++ =≠ − = +∑ , ( )j n≠ (1.31) Vì ( )skC và ( )1skC − cũng như ( )n sε và ( )1n sε − sai khác nhau rất ít. Nên ta cĩ được sơ đồ vịng vịng lặp như sau: ( )( ) 0, n s ss n nn nn k nk k k n E H V C V + = ≠ = + + ∑ , ( ) ( 1) ( ) 0 ( ) n s s s s n jj j jn k jk k k n E H C V C V ++ =≠ − = +∑ , (1.32) với điều kiện ban đầu là ( ) ( )0 0,jC j n= ≠ . Chú ý rằng ở đây chúng ta khơng cần sử dụng tham số nhiễu loạn cho nên đã cho 1β = . Ngồi ra các giá trị ( )( ) , ssn jE C tương ứng với các bước lặp khác nhau chứ khơng phải là bổ chính. Các yếu tố ma trận trong sơ đồ trên cũng như trong sơ đồ lý thuyết nhiễu loạn được định nghĩa như (1.6), viết lại như sau: 0ˆ OM kkH k H k= , ˆjkV j V k= ; (1.33) các phần tử ma trận này cĩ thể tính một cách dễ dàng bằng các biến đổi thuần đại số dựa vào các tính chất (1.18), (1.23). Cụ thể là hai cơng thức sau : ˆ ˆ1 1 ; 1 .a n n n a n n n+ = + + = − (1.34) Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 17 Việc tính các phần tử ma trận bằng các phép tính thuần đại số là một trong những ưu điểm của OM. Thật vậy, thay vì định nghĩa các phần tử ma trận như (1.6) và tính các tích phân tương ứng với các hàm sĩng ở dạng tường minh, ở đây ta chỉ dựa vào các biến đổi đại số nhờ các hệ thức (1.18) và (1.23) và cụ thể là sử dụng (1.26) và (1.34). Kết quả ta cĩ các phần tử ma trận khác khơng như sau : ( ) ( ) ( ) ( ) ( ) 2 2 0 2 2 2 2 1 3ˆ ˆ ˆ ˆ ˆ ˆ2 1 2 2 1 4 4 1 32 1 2 2 1 , 4 4 nn nnH H n a a a a a a n n n n ω λ ω ω ω λ ω ω + + +⎡ ⎤⎢ ⎥⎣ ⎦ += = + + + + += + + + + ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) 2 2 3 2 , 2 2 2 2 2 2 2 2 1 ˆ ˆ ˆ ˆ4 6 2 4 4 2 !1 1 4 6 2 1 2 3 4 4 4 2 ! 1 = 2 3 2 1 , 4 2 n nV n a a a a n n n n n n n n n n ω λ ω ω ω λ ω λ ω ω ω ω ω λ ω ω + + −= + + + +⎡ ⎤ ⎡ ⎤− −= + + + + = + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎡ ⎤− + + + +⎢ ⎥⎣ ⎦ ( ) ( )( )( )( )4, 4 2 2 24 !ˆ 4 4 3 2 1 ;4 4 ! 4n n n V n a n n n n n n λ λ λ ω ω ω+ += + = = + + + + (1.35) các phần tử ma trận khác thu được dựa vào tính đối xứng nm mnV V= . Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 18 Bảng 1.3: Năng lượng trạng thái cơ bản 0n = thu được bằng OM. 0.01λ = 0.05λ = 0.1λ = 0.3λ = 1.5λ = ( )0 0E 0.5072875410 0.5477040816 0.574999999 0.6689058171 0.9727107180 ( )1 0E 0.5072875410 0.5477040816 0.574999999 0.6689058171 0.9727107180 (2) 0E 0.5072563014 0.5323777399 0.558838596 0.6373408787 0.8817884333 ( )3 0E 0.5072562707 0.5326638127 0.559112766 0.6378326682 0.8840817664 ( )4 0E 0.5072562023 0.5326424521 0.559151382 0.6380153133 0.8849480705 ( )5 0E 0.5072620492 0.5326424823 0.559146495 0.6379948737 0.8848112845 ( )6 0E 0.5072620448 0.5326427790 0.559146278 0.6379914404 0.8847892918 ( )7 0E 0.5072620453 0.5326427553 0.559146329 0.6379917786 0.8847943659 ( )8 0E 0.5072620452 0.5326427551 0.559146328 0.6379918013 0.8847946861 ( )9 0E 0.5072620452 0.5326427553 0.559146327 0.6379917866 0.8847944336 ( )10 0E 0.5072620452 0.5326427552 0.559146327 0.6379917844 0.8847944198 ( ) 0 TE 0.5072620452 0.5326427552 0.559146327 0.6379917842 0.8847944251 Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 19 Bảng 1.4: Năng lượng trạng thái kích thích 4n = thu được bằng OM 0.01λ = 0.03λ = 0.06λ = 0.1λ = 1.5λ = ( )0 4E 4.8092999999 5.2078603252 5.8694444444 6.2490740740 12.4453125000 ( )1 4E 4.8092999999 5.2078603252 5.8694444444 6.2490740740 12.4453125000 (2) 4E 4.7736995554 5.2060800093 5.6861199877 6.2223820797 12.3776059956 ( )3 4E 4.7747285026 5.2051664217 5.6967910549 6.2199718947 12.3574329062 ( )4 4E 4.7749316376 5.2051386595 5.7021291564 6.2202679913 12.3556586805 ( )5 4E 4.7749139015 5.2051516636 5.7011304336 6.2203200633 12.3576222919 ( )6 4E 4.7749129456 5.2051514395 5.7009480693 6.2203017742 12.3577769104 ( )7 4E 4.7749131151 5.2051511291 5.7010151586 6.2202996521 12.3574810758 ( )8 4E 4.7749131114 5.2051511437 5.7010178067 6.2203009392 12.3574842521 ( )9 4E 4.7749131114 5.2051511499 5.7010146470 6.2203009652 12.3575265919 ( )10 4E 4.7749131115 5.2051511492 5.7010148920 6.2203008706 12.3575216732 ( ) 4 TE 4.7749131114 5.2051511491 5.7010149485 6.2203008813 12.3575176582 Ta thấy khi sử dụng OM, với trường hợp mức năng lượng cơ bản n=0 (bảng 1.3) và trường hợp kích thích ứng với n = 4 (bảng 1.4) ứng với các giá trị λ khác nhau, sau bổ chính bậc sáu cũng cĩ kết quả chính xác tới sáu chữ số sau dấu phẩy. Ta cĩ thể thấy tính hiệu quả của OM so với phương pháp nhiễu loạn đã thu được ở bảng 1.1 và bảng 1.2 bằng việc xét thêm trường hợp 1.5λ = đối với hai trường hợp 0n = và 4n = . Ta thấy kết quả vẫn hội tụ như các trường hợp λ cĩ giá trị nhỏ. Như vậy OM cho phép tìm giá trị năng lượng ứng với các giá trị tham số nhiễu loạnλ khác nhau. Các bổ chính bậc cao hội tụ tốt. Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 20 CHƯƠNG 2 EXCITON – BÀI TỐN EXCITON HAI CHIỀU Trong chương này tác giả giới thiệu các kiến thức cơ bản về exciton như khái niệm, phân loại, tính chất. Sau đĩ thiết lập phương trình Schrưdinger cho bài tốn và đưa ra lời giải giải tích làm cơ sở để so sánh với kết quả thu được bằng OM ở chương sau. 2.1 Exciton 2.1.1 Khái niệm Trong chất bán dẫn thơng thường, độ sai khác năng lượng gE giữa dải dẫn và giải hĩa trị ở khoảng năng lượng kéo dài từ vùng hồng ngoại tới vùng ánh sáng khả kiến. Một photon năng lượng gh Eω > cĩ thể kích thích một điện tử trong dải hĩa trị nhảy lên dải dẫn và để lại trong dải hĩa trị một lỗ trống thể hiện như một điện tích dương. Một điện tử liên kết với một lỗ trống bởi tương tác Coulomb sẽ cho ra một hệ tương tự như nguyên tử hydro. Ở giới hạn mật độ thấp, khi đĩ ta bỏ qua hiệu ứng nhiều hạt, cặp điện tử - lỗ trống được coi như mơt giả hạt tự do gọi là exciton. Hình 2.1- Các mức năng lượng của exciton [7] 2.1.2 Phân loại Exciton được phân làm hai loại tùy thuộc vào tính chất và vật liệu đang xét: - Trong chất bán dẫn: điện tử và lỗ trống tương tác với nhau ở khoảng cách lớn hơn nhiều lần hằng số mạng, cộng thêm thế màn chắn của mơi trường mạng nên năng Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 21 lượ._.ng liên kết của exciton thường nhỏ hơn nhiều so với năng lượng của hydro, loại này gọi là: exciton Mott-Wannier ( hình 2.2), thường xảy ra trong tinh thể đồng hĩa trị. Hình 2.2 - Exciton Mott Wannier - Trong chất cách điện: hằng số điện mơi lớn nên điện tử và lỗ trống tương tác với nhau ở khoảng cách phân tử, loại exciton này được gọi là exciton Frenkel (hình 2.3), do kích thước nhỏ nên tương tác Coulomb lớn ít ảnh hưởng trường mạng nên năng lượng liên kết của nĩ lớn (cỡ 1,5eV) Hình 2.3 – Exciton Frenkel 2.1.3 Tính chất của exciton Exciton cĩ các tính chất chính như sau: - Chỉ cĩ mặt trong bán dẫn hoặc điện mơi. - Về mặt cấu trúc exciton trung hịa giống như nguyên tử Hydro, tuy nhiên nĩ cĩ bán kính lớn hơn và năng lượng liên kết nhỏ hơn. Tương tự, các exciton dương hay âm cho ta hình ảnh ion phân tử 2H + hay nguyên tử He. Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 22 - Việc tạo ra các mức exciton trong vùng cấm (exciton Mott-Wannier) rất giống với việc tạo ra các mức tạp trong bán dẫn. Ở mức cơ bản năng lượng liên kết exciton trùng với mức năng lượng tạp chất donor nhĩm V hoặc các bán dẫn nguyên tố nhĩm IV như Si, Ge (cỡ 0.005eV). - Khơng phải chỉ cĩ một mức exciton mà cĩ cả một dải các mức exciton gián đoạn. Phổ hấp thụ exciton là phổ gián đoạn, gồm một dải các vạch như phổ hấp thụ của hydro. - Sự tồn tại của exciton được chứng tỏ trong thực nghiệm qua việc phát hiện một vùng phổ hấp thụ gần bờ hấp thụ cơ bản về phía bước sĩng dài với các mũi nhọn (peak) hấp thụ (ở nhiệt độ thấp) mà khơng làm thay đổi nồng độ hạt dẫn. Phổ vạch dạng giống như nguyên tử Hydro đã được phát hiện trong các bán dẫn cĩ vùng cấm rộng như CdS, HgI2, PbI2, CdI2, CuO2,...[7]. 2.2 Bài tốn exciton hai chiều 2.2.1 Phương trình Schrưdinger cho exciton hai chiều Theo cơ học cổ điển, năng lượng của hệ gồm electron và lỗ trống tương tác ( )2 21 2 1 22 2 p pE U r m m = + + , (2.1) trong đĩ + r là khoảng cách giữa hai hạt. + 1p là xung lượng của lỗ trống (h). + 2p là xung lượng của electron (e). + ( )U r là thế tương tác e-h. Một cách tương ứng Hamiltonian của hệ bằng: ( )2 22 21 2 1 2 ˆ 2 2 H U r m m = − ∇ − ∇ += = . Viết lại (2.2) trong hệ tọa độ chuyển động khối tâm và chuyển động tương đối của hai hạt (xem phụ lục 4): Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 23 ( )2 22 2 2 1 ˆ 2 2( )r G H U r m mμ ⎛ ⎞= − ∇ − ∇ Ψ +⎜ ⎟+⎝ ⎠ = = . (2.3) Trong đĩ: + 2r∇ xung lượng ứng với chuyển động tương đối của hai hạt + 2G∇ là xung lượng của chuyển động khối tâm. Tách Hˆ thành hai thành phần: ˆ ˆ ˆ G rH H H= + , trong đĩ: + ( ) 2 2 1 2 ˆ 2G G H m m = − ∇+ = : chuyển động khối tâm của hệ cĩ khối lượng m=m1+m2, + ( )2 2ˆ 2r r H U rμ= ∇ + = : chuyển động tương đối của hạt trong trường thế Coulomb với khối lượng rút gọn 1 2 1 2 .m m m m μ = + . Khi đĩ phương trình Schrưdinger cĩ dạng: ( )2 22 2 2 12( ) 2 G r U r Em m μ ⎛ ⎞− ∇ Ψ − ∇ Ψ − Ψ = Ψ⎜ ⎟+⎝ ⎠ = = , (2.5) Dễ nhận thấy ˆ ˆ, 0G rH H⎡ ⎤ =⎣ ⎦ , do đĩ ˆ ˆ,G rH H giao hốn với Hˆ , khi đĩ phương trình trị riêng được tách thành hai phương trình trị riêng của ˆ ˆ,G rH H . ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 1 2.6 2 2.7 2( ) r r r r G G G G U r r E r R E R m m ψ ψμ ψ ψ ⎧⎧ ⎫− ∇ + =⎨ ⎬⎪⎪⎩ ⎭⎨⎪− ∇ =⎪ +⎩ = = Khi đĩ: r GE E E= + , ( ) ( ).r Gr Rψ ψΨ = . Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 24 Phương trình (2.7) là phương trình Schrưdinger của hạt tự do cĩ m=m1+m2, ta cĩ thể dễ dàng tìm được năng lượng và hàm sĩng của nĩ như sau [5]: 2 2 2 2 1 2 2 ( )G r E n L m m π= + = , ( ) ( ) 1 2 ikr G r eψ π= . (2.8) Như vậy, ta chỉ cần xác định nghiệm của phương trình chuyển động tương đối (2.6). viết dưới dạng khơng thứ nguyên sau ( xem phụ lục 4): 2 2 2 2 2 2 1 2 Z E x y x y ψ ψ⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪− + − =⎨ ⎬⎜ ⎟∂ ∂ +⎝ ⎠⎪ ⎪⎩ ⎭ (2.9) với 2 2 ( , ) ZU x y x y = + là thế Coulomb. 2.2.2 Phương pháp giải tích cho bài tốn exciton hai chiều. Trong phần này ta sẽ tiến hành giải (2.9) theo phương pháp giải tích để đối chiếu với phương pháp tốn tử ở phần sau. * Phương trình Schrưdinger của exciton hai chiều trong tọa độ cực: Chuyển tốn tử Hamiton trong phương trình (2.9) qua biểu diễn trong tọa độ cực ta được 2 2 2 1 1ˆ 2 2 ZH r r r r r rϕ ∂ ∂ ∂⎛ ⎞= − − −⎜ ⎟∂ ∂ ∂⎝ ⎠ . (2.10) Với tốn tử cĩ dạng như trên, khi thay vào phương trình Schrưdinger để tìm nghiệm sẽ khĩ vì trong phương trình chứa hai biến số. Ta sẽ sử dụng một nguyên lý trong cơ học lượng tử: “Nếu hai tốn tử giao hốn với nhau thì chúng cĩ chung hệ hàm riêng”, vì vậy ta đi tìm các tốn tử giao hốn với tốn tử Hˆ , ta biết đối với bài tốn hệ nguyên tử hai chiều hình chiếu moment xung lượng trên Oz bảo tồn.Thực vậy ta cĩ: ˆZL i ϕ ∂= − ∂ ; (2.11) Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 25 Thay vào (2.10) ta được: 2 2 ˆ1ˆ 2 2 zL ZH r r r r r r ∂ ∂⎛ ⎞= − + −⎜ ⎟∂ ∂⎝ ⎠ . (2.12) Dựa vào biểu thức tốn tử này, ta thấy hai tốn tử ˆ ˆvà LzH giao hốn với nhau vì ˆ zL giao hốn với hàm vơ hướng ( ) ZU r r= − và chính nĩ, và ˆzL chỉ phụ thuộc vào biến số gĩc nên giao hốn với thành phần phụ thuộc vào r của Hˆ . Như vậy hai tốn tử ˆ ˆ và LzH cĩ chung hệ hàm riêng. Do đĩ để tìm hệ hàm riêng của tốn tử Hˆ phụ thuộc theo hai biến số khơng gian, ta cần lần lượt tìm hàm riêng của ˆzL phụ thuộc theo biến số ϕ , và cuối cùng thay vào trong phương trình Schrưdinger tìm hàm sĩng của electron phụ thuộc theo hai biến số r và ϕ . Phương trình hàm riêng- trị riêng của tốn tử ˆzL là ( xem phụ lục 5): ˆ ( ) ( )zL u muϕ ϕ= , (2.13) trong đĩ 1( ) 2 imu e ϕϕ π= và 0, 1, 2...m = ± ± * Năng lượng – hàm sĩng của exciton hai chiều Phương trình Schrưdinger: ˆ ( , ) ( , )H r E rϕ ϕΨ = Ψ , hay: 2 2 ˆ1 1 ( , ) ( , ) 2 zL Zr r E r r r r r r ϕ ϕ⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪⎛ ⎞− − − Ψ = Ψ⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭ . (2.14) Tìm nghiệm của phương trình (2.14) dưới dạng: ( , ) ( ) ( )r R r uϕ ϕΨ = . (2.15) trong đĩ ( )u ϕ là thành phần phụ thuộc vào biến số ϕ , ( )R r là thành phần phụ thuộc vào biến số r. Thay (2.13) vào (2.14), sau khi đơn giản số hạng ( )u ϕ ta được: Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 26 ( ) ( ) ( )221 12 d d m Zr R r R r ER r r dr dr r r ⎡ ⎤⎛ ⎞− − − =⎢ ⎜ ⎟ ⎥⎝ ⎠⎣ ⎦ , hay: ( ) ( ) ( )2 2 1/2 1/2 1/22 21 1/ 42 d m Zr R r R E r Rdr r r⎡ ⎤−− − − =⎢ ⎥⎣ ⎦ . (2.16) Ta sẽ rút ra nghiệm của phương trình (2.16) bằng phép khai triển chuỗi. Trước hết với r →∞ ta cĩ thể bỏ qua các số hạng vơ cùng bé bậc cao hơn ( 21 1;r r ) trong phương trình trên. ( ) ( )2 1/ 2 1/ 22 2 0d r R E r Rdr + = , (2.17) đặt 22E α= − do năng lượng E < 0. Khi đĩ ta cĩ dạng nghiệm ở trạng thái liên kết là: ( )1/ 2 ~ rr R e G rα− . (2.18) Thay vào trong phương trình trên ta thu được: 2 2 2 2 1 / 4 22 0d dG m ZG dr dr r r α −− − + = , (2.19) Ta giải (2.19) bằng cách đặt G(r) dưới dạng chuỗi lũy thừa của r: ( ) ( )SG r r H r= . (2.20) Sau khi thay (2.20) vào (2.19) ta thu được phương trình đối với H: ( ) ( )22 2 22 12 2 2 2 1 04d H dHr r Sr Sr Zr m S S Hdr drα α⎡ ⎤+ − + + + − + + − =⎢ ⎥⎣ ⎦ . (2.21) Nếu đặt r = 0 ta cĩ: ( )2 1 11 4 2 m S S m S− = − → + = . (2.22) Thay (2.14) vào (2.13) ta thu được: Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 27 2 2 2 2 1 12 2 2 2 0 2 2 d dHr H r m r m r Zr H dr dr α α⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ − + + + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ , hay: 2 2 2 1 2 1 22 0 2 2 d H dH Zm m H dr r dr r r αα⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ − + + + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ . (2.23) Thay ( ) kk k H r a r=∑ vào (2.23) ta được: ( ) 1 0 1 11 2 2 2 2 2 2 2kk k k m a Z m kα α α∞ + = ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + + − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦∑ . Suy ra: 12 2 2 0 2 Z m kα α⎛ ⎞− + − =⎜ ⎟⎝ ⎠ . Ta tính được: 1 2 Z m k α→ = + + , hay 2 212 2 ZE m k → = − ⎛ ⎞+ +⎜ ⎟⎝ ⎠ ; với k = 0,1,2,…. Đặt: 1n k m= + + , ta thu được biểu thức tính năng lượng: 2 212 2 ZE n → = − ⎛ ⎞−⎜ ⎟⎝ ⎠ với n = 1,2,3… (2.24) n là số lượng tử chính của năng lượng Khi đĩ hàm bán kính cĩ dạng: 1/ 21/ 2 . . ( ;2 1;2 )mr R A r F k m α+= − − , (2.25) trong đĩ ( ;2 1;2 )F k m α− − hàm siêu bội [7] được định nghĩa: Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 28 0 !( )!( )!( , , ) !( )!( )!( )! n m k s k s n m n mF n m x x k k s n m k n m k − = − += + − − + −∑ với , ,n m s là các số nguyên sao cho , 0m n s≤ ≥ . Từ (2.25) suy ra: ( ) . . ( ;2 1;2 )mR r A r F k m α= − − . (2.26) Hàm sĩng cĩ dạng như sau: ( , ) ( ) ( ) . . ( ;2 1;2 )mimr R r u A e r F k mϕϕ ϕ αΨ = = − − . (2.27) Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 29 CHƯƠNG 3 BÀI TỐN EXCITON HAI CHIỀU Trong chương này tác giả áp dụng OM để giải bài tốn exciton hai chiều bằng cách sử dụng phép biến đổi Laplace, tìm ra nghiệm số cho bài tốn, so sánh với kết quả thu được bằng lời giải giải tích. Sau đĩ, khảo sát tính hội tụ của bài tốn khi giải bằng OM cho trường hợp năng lượng cơ bản theo tham số ω . 3.1 Phương trình Schrưdinger cho exciton hai chiều biểu diễn qua tốn tử sinh hủy Phương trình Schrưdinger: ˆ ( , ) ( , )n n nH x y x yεΨ = Ψ , (3.1) với 2 2 2 2 1ˆ 2 ZH x y r ⎛ ⎞∂ ∂= − + −⎜ ⎟∂ ∂⎝ ⎠ . (3.2) Trong biểu thức (3.2) cĩ số hạng chứa biến động lực ở mẫu số sẽ gây khĩ khăn khi sử dụng OM. Để loại trừ khĩ khăn đĩ ta sử dụng phép biến đổi Laplace như sau: 2 1 0 1 1ˆ treU dt r tπ +∞ − = = ∫ , (3.3) từ đĩ thu được Hamiltonian dưới dạng: 2 22 2 ( ) 2 2 0 1ˆ 2 t x yZ eH dt x y tπ +∞ − +⎛ ⎞∂ ∂= − + −⎜ ⎟∂ ∂⎝ ⎠ ∫ . (3.4) 3.2 Phương pháp tốn tử giải bài tốn exciton hai chiều Ta sẽ giải phương trình Schrưdinger (2.9) bằng OM với bốn bước cơ bản như sau: Bước một: Chuyển tốn tử Hamilton về biểu diễn của các tốn tử sinh - hủy hai chiều bằng cách đặt biến số động lực (tọa độ và tốn tử đạo hàm) thơng qua các tốn tử sau: Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 30 ˆ ˆ( ) , ( ) , 2 2 ˆ ˆ( ) , ( ) ; 2 2 x x x x x x y y y y y y 1 1a x a x x x 1 1b y b y y y ω ωω ωω ω ω ωω ωω ω + + ⎛ ⎞ ⎛ ⎞∂ ∂= + = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎛ ⎞ ⎛ ⎞∂ ∂= + = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ (3.5) ở đây các tốn tử ˆˆ,a b được gọi là “tốn tử hủy” và ˆ,ˆ ba ++ được gọi là “tốn tử sinh” [2]; ,x yωω là các tham số thực dương được đưa thêm vào để tối ưu quá trình tính tốn, ta sẽ nĩi rõ hơn về các tham số này trong bước ba. Dễ dàng kiểm chứng các tốn tử sinh hủy (3.5) thỏa mãn hệ thức giao hốn: ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ 1, 1;a a a a bb b b+ + + +− = − = (3.6) các giao hốn tử khác bằng khơng. Hệ thức này sẽ giúp ta đưa các tốn tử sinh hủy về dạng chuẩn, nghĩa là các tốn tử sinh nằm ở phía bên trái và các tốn tử hủy nằm về phía bên phải, thuận lợi cho các tính tốn đại số sau này. Mặt khác, để thuận tiện trong tính tốn ta sử dụng các tốn tử: ( ) ( ) ( )222 2ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ2 1 , , ,N a a b b M a b M a b+ + + + += + + = + = + (3.7) trong đĩ ba tốn tử ˆ ˆ ˆ, ,N M M + tạo thành một đại số kín, thỏa mãn các hệ thức giao hốn: ˆ ˆ ˆ, 2M M N+⎡ ⎤ =⎣ ⎦ , ˆ ˆ ˆ, 4M N M⎡ ⎤ =⎣ ⎦ , ˆ ˆ ˆ, 4 ,N M M+ +⎡ ⎤ =⎣ ⎦ (3.8) đồng thời do tính đối xứng nên ta chọn x yω ω ω= = , từ đĩ ta viết lại Hamiltonian (3.4) như sau: ( ) ( ) 0 2ˆ ˆ ˆ ˆ ˆ ˆ ˆexp 4 dH M M N Z M N Mω ω τ τπ τ +∞ + +⎡ ⎤= − + − − − + +⎣ ⎦∫ . (3.9) Thành phần cĩ dạng hàm mũ ( ) ( )ˆ ˆ ˆ ˆexpS N M Mτ τ +⎡ ⎤= − + +⎣ ⎦ cĩ thể đưa về dạng chuẩn như sau: ( ) 1ˆ ˆ ˆ ˆexp exp ln 2 1 ( ) exp 2 1 2 2 1 S M N Mτ ττ ττ τ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ , Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 31 điều này cho phép ta dễ dàng sử dụng tính tốn đại số dựa vào các tính chất (3.6) và (3.8) (xem phụ lục 7). Bước hai: Tách Hamiltonian ở phương trình (3.9) thành hai thành phần như sau: Phần thứ nhất là ( )0ˆ ˆ ˆˆ ˆ, ,H a a b b ω+ + chỉ chứa các số hạng giao hốn với các tốn tử ˆ ˆa a+ và ˆ ˆb b+ , chứa các tốn tử “trung hịa”: ( ) ( ) ( ) 2 0 ˆ2 / 2 00 2 1 1ˆ ˆ ˆ ˆ 4 1 2! 1 2 i i i N i dH N Z M M i ω ω τ τ π ττ τ +∞ ∞ + = ⎛ ⎞= − ⎜ ⎟+⎝ ⎠ +∑∫ , (3.10) ở đây ta khai triển tốn tử Sˆ theo chuỗi Taylor để tách các thành phần trung hịa. Cịn 0ˆ ˆ ˆV H H= − cĩ thể xem như thành phần “nhiễu loạn”. Nghiệm gần đúng bậc khơng của phương trình Schrưdinger chính là nghiệm riêng chính xác của tốn tử 0H , cịn các bổ chính bậc cao hơn ta cĩ thể tính tốn theo sơ đồ thích hợp. Bước ba: Tìm nghiệm chính xác bậc khơng bằng cách giải phương trình: ( ) ( )0 0(0)0ˆ n n nH ψ ε ψ= . (3.11) Trước hết ta chọn bộ hàm sĩng cơ sở cho bài tốn theo bộ hàm cơ sở của dao động tử điều hồ: ( ) ( ) ( )1 ˆˆ, 0! ! yx nnx y x yn n a bn n ω+ += . Như đã nĩi, hàm riêng của tốn tử Hamilton cũng đồng thời là nghiệm riêng của tốn tử ˆzL , ta viết lại bộ hàm cơ sở cho exciton hai chiều theo trị riêng m của tốn tử ˆzL : ( ) ( )2 2ˆ ˆˆ ˆ( ) [( ) ( ) ] 0mkkmk m C a b a ib ω+ + + += + ± . Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 32 Suy ra: ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 ˆ ˆˆ ˆ[( ) ( ) ] 0 khi m>0 3.12 ( ) ˆ ˆˆ ˆ[( ) ( ) ] 0 khi m<0 3.13 m k km m k km C a b a ib k m C a b a ib ω ω + + + + + + + + ⎧ + +⎪= ⎨⎪ + −⎩ , với k = 0, 1, 2, 3..., 0, 1, 2...m = ± ± và ( )0 ω là trạng thái chân khơng được định nghĩa: ( ) ( )ˆˆ 0 0, 0 0a bω ω= = ; và điều kiện chuẩn hĩa là ( ) ( )0 0 1ω ω = , cho phép ta tìm được hàm sĩng đã chuẩn hĩa (xem phụ lục 9): ( ) ( )2 21 ˆ ˆˆ ˆ( ) [( ) ( ) ] 0 2 2 !( )! m k mk k m a b a ib k m k ω+ + + += + ± + , (3.13) với 0,1,2,...; 0, 1, 2,....k m= = ± ± . Với hàm sĩng như trên, ta cĩ các biểu thức thường dùng ( xem phụ lục 9): ( ) ( ) ( )( ) ˆ , 2 2 1 , ; ˆ , 2 1, ; ˆ , 2 1 1 1, , N k m k m k m M k m k k m k m M k m k k m k m+ = + + = + − = + + + + (3.14) giúp ta xác định được nghiệm của phương trình (3.11): ( ) ( ) ( ) ( ) ( )0 22 120 ( )! !1 2 1 2 ( )! !! i k k k k k m i k k m H k m Z I k i k m ii ωε ω + + = += = + + − − + −∑ , (3.15) với ( ) ( ) ( ) ( )2 2 1 00 , 1 (2 2 3)!! 2 1 !!2 (1 ) 2 ( 1)! q q p p p q p q Z t p q qq dtp t pI π π +∞ − > ≥∈ − − − − −= =+ −∫ , với , 1,2,3...p q = (xem phụ lục 11). Biểu thức trên chính là năng lượng gần đúng bậc khơng tìm được phụ thuộc vào tham số ω . Như đã nĩi, đây là tham số được đưa vào để tối ưu hĩa quá trình tính tốn, ta xác định ω từ điều kiện (1.28) như sau: Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 33 ( ) ( ) ( ) ( ) 2 2 2 12 0 !!1 . (2 1) ( )! !! i k k m i m kkZ I k m k i m k ii ω + + = ⎡ ⎤+= ⎢ ⎥+ + − + −⎢ ⎥⎣ ⎦ ∑ (3.17) Tuy nhiên việc chọn ω theo điều kiện này cho tốc độ hội tụ chưa cao, việc chọn ω để tăng tốc độ hội tụ sẽ khảo sát thêm ở phần sau. Bước bốn: Phương pháp tốn tử (OM) tìm nghiệm bằng số: Vì các vector trạng thái (3.13) tạo thành một bộ cơ sở đầy đủ nên lời giải chính xác của hàm sĩng cĩ thể viết dưới dạng chuỗi của các vector trạng thái đĩ như sau: 0 ( ) ( )km l l l k k m C l m ∞ =≠ Ψ = +∑ , (3.18) Trong phần này, ta sẽ sử dụng sơ đồ vịng lặp đã đề cập ở mục 1.3 để tìm nghiệm số chính xác. Khi đĩ hàm sĩng chính xác ở bậc (s) ứng với năng lượng ( )skmE cĩ dạng: ( ) 0 ( ) ( )Skm k s l l l k k m C l m + =≠ Ψ = +∑ , (3.19) Hệ phương trình truy tốn để xác định năng lượng chính xác ở gần đúng bậc s là: ( ) ( ) 0 k s s s kk l lk km l l k H C H ε+ =≠ =+∑ , (3.21) ( ) ( ) ( )1 1 0 , jk jl s j s k jj k s s l l l k j H C H C H ε − + − =≠= − + ∑ , ( )j k≠ , (3.22) với điều kiện ban đầu là ( ) ( )00 0, km kkk HC ε == . Các yếu tố ma trận trong sơ đồ trên cĩ thể tính một cách dễ dàng bằng các biến đổi thuần đại số nhờ các hệ thức (3.8), (3.14) . Kết quả ta cĩ các phần tử ma trận khác khơng như sau (xem phụ lục 10): ( ) ( ) ( ) ( ) 2, 2 120 ( )! !1 2 1 2 ( )! !! i k k k m k i k k m H k m Z I k i k m ii ω ω + + = += + + − − + −∑ , Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 34 , ˆ( ) ( ) ,k k sH k m V k s m+ = + ( )( ) ( ) ( ) ( ) ( ) ( ) 1 2 1 , 1 2 2 1 ( )! ! 1 ! 1 !11 1 2 ! 1 ! ( 1 )! 1 ! k i k k k m i k k m k k m H k k m Z I i i k i k m i ω ω + −+ + + = + + + += − + + + − − + − + + −∑ ( ) ( ) ( ) ( ) ( ) ( )1 2, 2 1 ( )! ! ! !1 ! ! ( )! !s k s i s k k s k m s i s k k m k s k m s H Z I i i s k s i k m s i ω > + − + + + + = + + + += − − + − + + −∑ (3.23) các phần tử ma trận khác thu được dựa vào tính đối xứng kl lkH H= . Kết quả: Năng lượng cơ bản (trạng thái 1s)tính theo lời giải giải tích : ( )1 2.00000000aE = − Bảng 3.1: Kết quả năng lượng của exciton ở trạng thái cơ bản ở bước lặp thứ 800. ω E (s=800) 1.00000 -1.9951755105 2.00000 -1.9975618222 3.00000 -1.9983674421 3.14159 -1.9984403712 4.00000 -1.9987727201 5.00000 -1.9990168707 6.00000 -1.9991801485 7.00000 -1.9992970683 8.00000 -1.9993848479 9.00000 -1.9994528350 10.00000 -1.9995061730 10.44444 -1.9995433599 10.55555 -1.9995304823 10.66666 -1.9995349157 10.77777 -1.9995392082 10.88888 -1.9995433599 10.99999 -1.9995473709 11.00000 -1.9995473709 11.11111 -1.9995512411 Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 35 11.44444 -1.9995620012 11.88888 -1.9995743257 Theo điều kiện (1.28) ứng trường hợp mức năng lượng cơ bản ta cĩ được tham số ω =3.14. Tuy nhiên, với số liệu thu được ở bảng 3.1 cho thấy vớiω =3.14 thì năng lượng trạng thái cơ bản tiến về giá trị chính xác khơng nhanh. Trong bảng 3.1 chúng tơi tiến hành khảo sát ω trong khoảng từ 1 tới 12, thì nhận thấy khoảng giá trị ω từ 11 đến 12 cho giá trị năng lượng cơ bản tiến nhanh về giá trị chính xác. (Lưu ý với giá trị tham sốω > 12 thì năng lượng cũng tiến về giá trị chính xác rất chậm). Chúng tơi tiếp tục tiến hành khảo sát giá trị năng lượng theo tham số ω . Bằng việc giảm bước nhảy giữa các giá trị ω trong khoảng 11 tới 12 và tăng số vịng lặp từ 800 lên 1200. Giá trị năng lượng hội tụ tốt hơn, được 7 chữ số sau dấu phẩy (với số vịng lặp 1200) và chính xác hơn. Giá trị tốt nhất mà chúng tơi chọn đượcω = 11.999999 (xem bảng 3.2). Bảng 3.2: Khảo sát năng lựơng cơ bản của exciton với vịng lặp 1200 ω E (s=800) E(1200) 10.999999 -1.9995473710 -1.9997002885 11.222222 -1.9995549709 -1.9997060578 11.555555 -1.9995653016 -1.9997156791 11.666666 -1.9995684569 -1.9997167969 11.777777 -1.9995714655 -1.9997193197 11.888888 -1.9995743258 -1.9997217789 11.888899 -1.9995743262 -1.9997217791 11.999999 -1.9995770359 -1.9997241749 Bằng việc khảo sát trên, chúng tơi thấy sự hội tụ của bài tốn phụ thuộc vào việc chọn tham số ω , tuy nhiên để cĩ được quy trình chonh ω một cách tổng quát cần sự khảo sát chi tiết hơn nữa. Với các mức năng lượng kích thích, khi mức kích thích càng lớn thì tốc độ hội tụ càng nhanh. Cụ thể ứng với mức năng lượng ở trạng thái kích thích thứ 6 trở đi thì số vịng lặp nhỏ hơn 100 và giá trị năng lượng thu được hồn tồn phù hợp với kết quả giải tích (bảng 3.3). điều này cần được khảo sát thêm để cĩ thể tìm ta nguyên nhân. Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 36 Bảng 3.3: Năng lượng của exciton ở một số trạng thái kích thích n n ω E(s=100) E(s=400) E(giải tích) 2 0.323888888 -0.2222059773 -0.2222212928 - 0.2222222222 3 0.077777777 -0.0799995280 -0.0799999991 - 0.0800000000 4 0.024455555 -0.0408163144 -0.0408163276 - 0.0408163276 5 0.111111111 -0.0246913578 -0.0246913587 - 0.0246913587 6 0.005555555 -0.0165289259 - 0.0165289259 7 0.002100000 -0.0118343195 - 0.0118343195 8 0.001122222 - 0.0088888888 - 0.0088888888 9 0.000713000 -0.0069204152 - 0.0069204152 Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 37 Kết luận và hướng phát triển đề tài Các kết quả mà luận văn đã đạt đựơc - Thiết lập phương trình Schodinger cho exciton hai chiều, đưa ra lời giải giải tích cho bài tốn - Xây dựng đựơc bộ hàm sĩng cơ sở cho bài tốn exciton hai chiều theo OM. - Tìm nghiệm số chính xác cho năng lựơng của exciton hai chiều ở trường hợp mức năng lựơng cơ bản và một vài trường hợp kích thích. - Tiến hành khảo sát sự hội tụ của bài tốn khi giải bằng OM theo giá trị của của ω cho trừơng hợp năng lượng cơ bản. Hướng phát triển đề tài Hướng phát triển tiếp của đề tài là: tiếp tục khảo sát ω để tìm ra quy luật tối ưu hĩa tốc độ tính tốn, sử dụng các sơ đồ khác nhau để tính tốn nghiệm chính xác. Từ đĩ ứng dụng OM cho bài tốn exciton âm và exciton dương trong từ trường… Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 38 PHỤ LỤC Phụ lục 1: Các tốn tử sinh – hủy một chiều A. Một số cơng thức tốn tử thơng dụng: 1. ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,AB C ABC CAB ABC ACB ACB CAB A B C A C B⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − + − = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 2. ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,A BC ABC BCA ABC BAC BAC BCA A B C B A C⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − + − = +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . 3. ˆ ˆ 1 1 2! 3! ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆA Ae B e = B+ A,B + A, A,B + A, A, A,B +...− ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ . Chứng minh: Xét hàm ( ) ˆ ˆˆtA tAf t e Be−= , đạo hàm theo t ta được: ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ,tA tA tA tA tA tAdf Ae Be e BAe e A B e dt − − −⎡ ⎤= − = ⎣ ⎦ . Tiếp tục tính tương tự ta cĩ đạo hàm bậc k của ( )f t như sau: ˆ ˆˆ ˆ ˆ ˆ ˆ, ,... , , k tA tA k d f e A A A A B e dt −⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ , trong đĩ giao hốn tử lấy k lần. Mặt khác, khai triển Taylor hàm ( )f t tại điểm 0 0t = ta cĩ: ( ) 0 0 00 ˆ ˆ ˆ ˆ ˆ, ,... , , ! ! k k k k k kt t d f tf t A A A A B k kdt ∞ ∞ = == ⎛ ⎞ ⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤= =⎜ ⎟ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦⎝ ⎠∑ ∑ . Cho giá trị 1t = ta cĩ cơng thức cần chứng minh. B. Các giao hốn tử thơng dụng ˆ ˆ1. , 1a a+⎡ ⎤ =⎣ ⎦ 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2. , , , 2a a a a a a a a a+ + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ( )2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3. , , , 2a a a a a a a a a+ + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 39 [ ]ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4. , , ,a a a a a a a a a a+ + +⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ5. , , ,a a a a a a a a a a+ + + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ( )22 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ6. ( ) , ( ) , ( ) , 2a a a a a a a a a a+ + + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ7. , , , 2a a a a a a a a a a+ + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ( ) ( ) ( )2 2 22ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ8. , , , 2 2 2(2 1)a a a a a a a a a a a aa a a+ + + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + = − − = − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ C. Tốn tử sinh-hủy Tốn tử sinh, hủy một chiều được định nghĩa như sau: 1 1ˆ ˆ; 2 2 d da x a x dx dx +⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ω ω ω ω . 1. Giao hốn tử ˆ ˆ, 1a a+⎡ ⎤ =⎣ ⎦ Ta cĩ 2 2 2 2 1 1 1 1ˆ ˆ , 2 2 d d daa x x x dx dx dx ω ω ω ω ω ω + ⎛ ⎞⎛ ⎞ ⎛ ⎞= + − = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ và 2 2 2 2 1 1 1 1ˆ ˆ , 2 2 d d da a x x x dx dx dx ω ω ω ω ω ω + ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ từ đây suy ra 2ˆ ˆ ˆ ˆ ˆ ˆ, 1 2 a a aa a a+ + +⎡ ⎤ = − = =⎣ ⎦ ω ω . 2. Chứng minh ˆ ˆa a n n n+ = Từ định nghĩa ( )1 ˆ 0 ! n n a n += ta suy ra với trường hợp 0n = cơng thức trên đúng: ˆ ˆ 0 0 0 0a a+ = = . Giả sử ta cĩ ˆ ˆ 1 ( 1) 1a a n n n+ − = − − ta sẽ chứng minh ˆ ˆa a n n n+ = . Thật vậy: Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 40 ( ) ( )( ) ( ) 11 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 ! ! 1 ˆ ˆ ˆ 1 1 . n n a a n a a a a aa a n n a a a n n −+ + + + + + + + = = = + − Từ đây ta cĩ ( ) ( ) 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1 1ˆ ˆ 0 . ( 1)! n a a n a a a n n a n n n n a a n n n n + + + + −+ + = + − = − = =− 3. Chứng minh ˆ 1a n n n= − ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 1 0 ! ! ! 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ0 0 1 1 ! ! 1 11 ( 1) 1 1 . n n n n n a n a a aa a a a a n n n a a a a n a a n n n n n n n n n n n n − −+ + + + + − −+ + + + = = = + = + = − + − = − + − − = − Ta thấy rằng mỗi tốn tử hủy cĩ tác dụng “hủy” (giảm) đi một bậc của vector trạng thái. Như vậy cứ cĩ bao nhiêu tốn tử hủy tác dụng lên vector trạng thái thì sẽ hủy đi bấy nhiêu bậc của nĩ. 4. Chứng minh ˆ 1 1a n n n+ = + + ( ) ( ) ( ) 1 11 1ˆ ˆ ˆ0 1 0 1 1 ! 1 ! n n a n a n a n n n n + ++ + + ⎛ ⎞⎜ ⎟= = + = + +⎜ ⎟+⎝ ⎠ . Tương tự, ta cũng thấy rằng mỗi tốn tử sinh cĩ tác dụng “sinh” (tăng) lên một bậc của vector trạng thái. Như vậy cứ cĩ bao nhiêu tốn tử sinh tác dụng lên vector trạng thái thì sẽ sinh thêm bấy nhiêu bậc của nĩ. 5. Chứng minh sự liên hợp của ˆ ˆ+a,a , 1 , 1 ˆ 1 , ˆ 1 , n j n j n a j j n j j j a n j j n j − + − = − = = − = δ δ ˆ ˆn a j j a n+⇒ = . Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 41 Nhận xét: Từ các tính chất (3, 4, 5) ở trên ta thấy rằng: nếu như tác dụng một tốn tử chứa cùng số tốn tử sinh và tốn tử hủy lên một vector trạng thái, thì sẽ khơng làm vector này thay đổi bậc, và ta gọi các tốn tử như thế là tốn tử “trung hịa”; ngược lại nếu tốn tử chứa số tốn tử sinh – hủy khác nhau thì sẽ làm thay đổi bậc của vector trạng thái. Đây là một tính chất rất quan trọng trong các tính tốn đại số khi sử dụng biểu diễn tốn tử và cũng chính là yếu tố để ta tiến hành việc tách tốn tử Hamilton của hệ thành hai thành phần: trung hịa và nhiễu loạn. Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 42 Phụ lục 2. Dạng chuẩn (normal) của một số tốn tử trong luận văn Dạng chuẩn (normal) của một tốn tử được định nghĩa là dạng đã được biến đổi sao cho tốn tử hủy luơn về phía bên phải của biểu thức, tốn tử sinh luơn về phía bên trái của biểu thức. aˆ+ trái aˆ phải. Mục đích của việc đưa các biểu thức tốn tử về dạng chuẩn là giúp cho việc tính tốn trong các bài tốn chứa nhiều loại tốn tử được dễ dàng hơn rất nhiều. Thực vậy, khi biểu biễn tất cả trạng thái qua trạng thái cơ bản 0( )ω thì lợi dụng tính chất ˆ 0( ) 0a =ω và ˆ 0( ) 0b ω = , chúng ta sẽ biểu diễn tất cả trạng thái cịn lại qua biểu thức chỉ cịn một loại tốn tử sinh tác dụng. A. Trường hợp các tốn tử sinh, hủy với số mũ lũy thừa Trường hợp này ta chỉ cần áp dụng các tính chất của giao hốn tử trên là cĩ thể đưa về dạng chuẩn. Ví dụ: Đưa tốn tử ( )22ˆ ˆa a+ về dạng chuẩn ta thực hiện như sau: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 22 2 2 2 2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 2 ˆ ˆ ˆ ˆ ˆ ˆ2 3 1 ˆ ˆ ˆ ˆ ˆ ˆ2 3 ˆ ˆ ˆ ˆ2 4 . a a a aa a a a a a aa aa aa a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a + + + + + + + + + + + + + + + + + + + + + + + = = + = + = + + + + = + + + + = + + + = + + + = + + Các phép biến đổi trên thường được áp dụng khi các biểu thức tốn tử cĩ dạng như các đa thức. Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 43 B. Trường hợp hàm e mũ của các tốn tử sinh, hủy Đối với dạng hàm e mũ thì khi vận dụng phép biến đổi như trên sẽ gặp khĩ khăn. Vì các tốn tử sinh hủy trên mũ khi khai triển để đưa về dạng chuẩn sẽ cĩ bậc lũy thừa rất cao. Nên ta phải áp dụng phương pháp biến đổi khác như dưới đây. Ví dụ: ( )ˆ ˆt a ae ++ Vì ta cĩ hệ thức giao hốn ˆ ˆ, 1a a+⎡ ⎤ =⎣ ⎦ nên từ đây các tốn tử ˆ ˆ,a a+ và số 1 tạo thành một đại số kín. Như vậy ta cĩ thể viết: ( ) ( )ˆ ˆ ˆ ˆ( ) ( ) ( )t a a f t a g t a h te e e e F t+ ++ = = . (A2.1) và tiến hành tìm các hàm số ( ), ( ), ( )f t g t h t theo các bước sau: Bước một: Lấy đạo hàm hai vế của (2.1) theo biến số t ta cĩ: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ' ' 't a aa a e f t a F t g t aF t h t F t+ ++ ++ = + + . (A2.2) Định nghĩa hàm nghịch đảo của ( )F t là ( )1F t− sao cho ( ) ( )1. 1F t F t− = ta cĩ: ( ) ˆ ˆ1 ( ) ( ) ( )h t g t a f t aF t e e e +− − − −= . (A2.3) Nhân hai vế (2.2) cho ( )1F t− và thu gọn các số hạng ta được: ( ) ( ) ( )ˆ ˆ( ) ( )ˆ ˆ ˆ ˆ' ' 'f t a f t aa a f t a g t e ae h t+ ++ + −+ = + + (A2.4) Bước hai: Sử dụng cơng thức quen thuộc (phụ lục 1): ˆ ˆ 1 1 2! 3! ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆA Ae B e = B+ A,B + A, A,B + A, A, A,B +...− ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ cùng với hệ thức giao hốn của ˆ ˆ,a a+ ta cĩ: ( ) ( )ˆ ˆ( ) ( )ˆ ˆ ˆ ˆ ˆ, ...f t a f t ae ae a f t a a a f t+ +− +⎡ ⎤= + + = −⎣ ⎦ . Thay vào (2.4), ta cĩ: ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ˆ ˆ ˆ ˆ' ' ' ˆ ˆ' ' ' ' . a a f t a g t a f t h t f t a g t a h t g t f t + + + + = + − + = + + − (A2.5) Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 44 Bước ba: Đồng nhất hai vế của (2.5) và chọn điều kiện biên Đồng nhất hai vế, ta cĩ hệ phương trình: ( ) ( ) ( ) ( ) ( ) ' 1, ' 1, ' ' 0. f t g t h t g t f t =⎧⎪ =⎨⎪ − =⎩ Giải hệ này ta cĩ: ( )( ) ( ) 1 2 2 1 3 , , . 2 f t t c g t t c th t c t c ⎧⎪⎪⎪⎨⎪⎪⎪⎩ = + = + = + + Dựa vào biểu thức (2.1), ta cĩ điều kiện khi t = 0 thì: f(t) = g(t) = h(t)= 0. Suy ra: c1= c2 = c3 = 0. Như vậy dạng chuẩn của ( )ˆ ˆt a ae ++ là: ( ) 2ˆ ˆ ˆ ˆ / 2t a a ta ta te e e e+ ++ = . (A2.6) Luận văn tốt nghiệp GVHD: Th.S Hồng Đỗ Ngọc Trầm   2010  SVTH: Trương Mạnh Tuấn Trang 45 Phụ lục 3: Yếu tố ma trận cho tốn tử Hamilton của dao động tử phi điều hịa A. Tính các yếu tố ma trận của tốn tử Hamilton (phương pháp giải tích) 3.1 Tính._.

Các file đính kèm theo tài liệu này:

  • pdfLA5432.PDF
Tài liệu liên quan