Trang62
CHUaNG 3 :M~NG NaRON NHAN T~O
3.1.Md dftu
Trongvai th~pnien qua,m(;lngndronnhant(;lO- mQtmahinhHnhtoannham
ma phongbQ nao ngu'oida du'QCsa d\lngco hit%uqua trongcac nnh vvc tri tut%
nhant(;lO,nh~nd(;lng,xaly anh,xaly tinhit%u,y hQc,di~ukhi~n,...cae10(;libaitoan
chinhdu'Qcgiai quye'tnhom(;lngndronla : phan10(;li,sosanh,tvt6chilcvat6iu'u.
3.2. M~ng ll(jron nhan t~o [1].[5]
3.2.1.Ndron nhan t~o
Me)tndronnhant(;lOphananhcacHnhchfftcdbancuandronsinhhQcvadu'QCma
phongtheoHinh3.1du'oi
11 trang |
Chia sẻ: huyen82 | Lượt xem: 1603 | Lượt tải: 0
Tóm tắt tài liệu Phương pháp Bayes và ứng dụng trong mạng Nơron, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
day:
XI ~
U yXn U-7
I Hamphituye'nI
Hinh 3.1:Ndronnhant(;lO
D~uvaocuandronnhant(;lOg6mn tinhit%uXi(i =1,2,...,n).D~urala tinhit%uy.
tqngthaibelltrongcuandrondu'Qcxacdinhquabe)t6ngcacd~uvaocotrQngso'
Wi (i =1,2, ...,n).d~uray cuandron du'Qcxacdinhquahamphi tuye'nf naodo
Nhu'v~ymahinhdinhlu'Qngcuandronnhant(;lOnhu'sau:
n
yet)=1(2:WiXi(t) - B)
i=1
Trang63
n
(j daynet=I WiXi(t) =I(t) la tinhit%ut6nghQpd~uvao,Wi- cactrQngs6,i =1,2,
i=1
...,n d~ctru'ngchotinhlienke'tcuacackhopsynep,e la ngu'ongkichho~tnaron,
t - thai gian,n - s6tinhit%ud~uvao,f - hamkichho~t.
Ngu'aitathu'angdungky hit%usau:D~ura out=yet)=tenet).
TomI~icoth€ xemndronIahamphituye'nhi~ud~uvao,mQtd~uta.
Cac ndronco th€ lien ke'tI~i voi nhaut~othanhm~ngndronnh~nt~o.Vi dl;l
ndronlien ke'tvOindronj theohai chi~uthu~nnghich(co thongtinphanh6i) nhu'
(j Hlnh 3.2:
~o
?t
W.. "-JI ~
---70
?
~
70
/
WiL
Hlnh 3.2: Lien ke'thai chi~ugiuandroni va ndronj
3.2.2.Suem~nheuamo hlnh m~ngndron
Nhungmohlnhndrondfftrlnhbaycoti~mnangt~onenmQtcuQccachm~ng
trongcongnght%maytinhvacacquatrlnhxii'Iy thongtin.Nhungmongmu6nva
hyvQngdobtitngu6nchuye'utucacd~ctntngsau:
a. Kha nangcuacacquatrlnhxii'Iy songsongva phantan: co th€ du'avao
m~ngmQthiQngIOncacndronlienke'tvoinhautheonhungIu'Qcd6voicac
kie'ntruckhacnhau.
b. Khanangthichnghivatvt6chilc:v~d~ctru'ngnay,ngu'oitad~c~ptoikha
nangxii'Iy thichnghiva di~uchinhb~nvungdvavaocacthu~toanhQc
thichnghivacacquyttictvt6chilc.
Trang64
e. Khi nangdungthil l6i : e6gangbatehu'oekhi nangdungthil l6i euanao
rheanghIah~th6ngcoth€ liSpWelamvi~eva di6uehlnhkhinh~ntinhi~u
vaome)tph~nthongtinbi sail~ehho~ebithiSu.
d. Xli'ly caequatrlnhphituySn: d~etru'ngnayra'tquailtrQng,vi d1,ltrongxa'p
Xlm~ng,mi~nnhi~u(eha'pnh~n hi~u)vacokhi nangphanlOp.
3.3.Ca'utruem~ngndron
ca'utrueeuam~ngnc1ronehuySudu'Qed~etru'ngbdi lo~ieuacaenc1ronva
m6ilienh~xli'lythongtingiuachung.
V6 diu trueeuanaron:ehuySungu'oitaquailtamtoicae"t5ng"caetinhi~uvao,
ngu'ongt~im6inaronvacaehamehuy€n- hamkiehho~t.
3.3.1.Hamkiehho~t
Hamkichho~teuatungnarontrongm~ngnarondongvai tro quailtrQng
trongsvlienkStgiuacaenaron.Hamnayd~etru'ngehomilede)lienkStgiuacae
naron,phept5nghQpcaetinhi~ud~uvao vathu'ongdu'Qekyhi~udu'oid~ngsau:
vi d1,ld6ivoinaronj comtinhi~ud~uvaoXi
m
netj=LXiWji;Wji =(Wjp...,Wjm)
i;1
I
d~uraeuanaronj thu'ongdu'Qekyhi~ula outjho~efj . Saudayla me)ts6hamkieh
ho~t.
a.
{
I (net. - B.) ~0, J .I
Ii =out= -l,(netj-Bj)<O
b.D~nghamGauss: Ij =outj=exp(-(netj_Bj)2
c.D~nghamsigmoid(hayhamlogistic): J; =outj =(1+exp(-netj - Bj)))-1
caelo~ihamkichho~tconconhi6ubiSnth€ khaenhau.
Trang65
3.3.2.Lien ke'tm~ng
Sv lienke'ttrongm(;lngmjrontuythuQcvaonguyenly tudnglacgiii'ad~uracua
tungmiron.V~nguyenH1csecora'tnhi~uki€u lienke'tgiii'acacmiron.M6i ndron
lamQtnutcuam(;lng.MQts6ca'utruchayg~ptrongnhii'nglingdl;lngcod(;lngsail:
3.3.2.1.Caem~ngtruy~nth~ng
~
Do la mQtd6thidinhhuonghii'llh(;lnkhongchutrmh(acycIid).M6i nutla
mQtndroncophanbi<%tnutvaovanUtfa.CacndronchiarhealOp,trenm6iclingco
trQngs6Wijn6indronj voindroni tronglOpsail.M6i nutk khongphainutvaoco
gallnguongOk'M(;lngtrlnhbaylIen Hlnh3.3 seminhho(;lchomQtm(;lngndron
truy~nth£ngco3lOp.
Lopvao Lop fin Lopra
7 ~o
°/0
"-
7
7
Hlnh 3.3:Ca'utructruy~nth£ngphanlOp
3.3.2.2.M~ngn6i ngliqe:
Cacm(;lngcothongtinvaxli'ly rheahaichi~u(con6ingu<;1ccongQiIam(;lng
h6iquyrecurrentnetworks)
~ 0 4
""""""""'}1°"""""""""""""""""""""""""""""""""""""""'o---r
;;.O ~
Hlnh3.4:M~ngHopfield,dunglienke'tphanh6i
Trang66
A B
H K
Hlnh3.5:M6 hinhm~ngIantruy~ndalOp
3.3.2.3.M~ngIantruy~ndalop [3]
Trongca'utrucnay,lopthunha'tI gQila lOpnh~p,cacndronnh~pnh~ndfi'
lil$uvaotITA vachuy~nchocacndrond lopke-tie-poLop thun,K gQila lOpxua'tva
caclOpHi , i=I,2,...,n,la caclOpgn.
MC;lngIantruy~ncohaitr~ngthaithihanh: tr~ngthaianhx~vatrC;lngthaihQC.
* Trongtqng thaianhXc;l,dfi'lil$uduQcnh~pvaoI va xua'tra d o. giatri cuacac
nutOJduQcxacdinh:
OJ =F(L wijOj- Bj) ;F thuongla hamtruy~n(hamsigmoid)gall chondronj
?
* d trC;lngthai hQC,m~ngIan truy~nslYd1:mgnhi~ul~ntr~ngthai anh Xc;ld~hil$u
chlnhIC;licacgia tri trQngs6wijcuano.
Va'nd~chinhd~trakhixftydt!ngmQtmC;lngndronlavi~cxacdinhcacwijthichhQp
chom6ibai loan.B~giaiquye-tva'nd~ nayconhi~uthu~tloanduQCnghienCUll
va cai tie-noMQttrongnhfi'ngthu~tloanchugnva n6i tie-figdo la Thu~UtminIan
truy~nngtigc[6][12],thu~tloannhusail:
Cho Q ={Vp=(Xp,Tp)IXp =(X1P,...,Xmp),Tp=(~p,...,Tmp))
bi~udi€n dfi'lil$unh~ptrongm§:uco duQcdunglamdfi'lil$uhQcchom~ngndron,
trongdo:
Xpla vectorbi~udi€n dfi'lil$unh~ptrongm§:u.
Trang67
Xip,i=1,2,...,mla cacbie'nthanhphfincuadfi'li~unh~p.
Tpla vectorbi<€udi~ndfi'li~uxua"ttrongm~u.
Tjp,j =1,2,...,nla cacbie'nthanhphfincuadfi'li~uxua"t
£)~tE =~I~(Tjp -Ojp)2; E du'QcgQi1aham16i.p J
Ojpla bie'nthanhphfincuake'txua"tm~ngva dfi'li~unh~pXp
Thui;itoanhQeIantruy~nnguqeg6mcaehuoe:
Buoe1:Khdit~otrQngs6
CactrQngs6lienke'tgifi'acaendroncaclOpvangu'ongeuam6indrondu'Qcgallcac
giatring~unhienxE[- r,r], thu'ongr du'Qc1a"y giatri 1.
Buoe2 :Tinhcacke'txua"t
1. Cacgiatrike'txua"tcuandrond lOpnh~pdu'Qcquydinhbdi cacbie'nthanh
phfincuadfi'li~unh~p.
2. Giatrixua"tracuacacndronlOpgnvalOpxua"txacdinhbdi.
O. =F ("w..O. -8. )J L".yz J
thu'ongF 1ahamsigmoidco d~ngF(x) =1 l_Dx;trongdo D 1ah~s6bi<€udi~n+e
tinhphituye'neuaF.
Buoe3 :SU'atrQngs6
QuatrinhsU'atrQngs6du'Qetie'nhanhl~pnhi~u1finquanhi~ulOp,b~tdfiutitcac
ndronlOpxua"t,saudode'ncaendronthuQclOpgn.
TrQngs6lien ke'thi~uchinhtheoeongthuc:
w..(t+l) =w..(t)+~w..y y y
Trang68
Wij(I) la gia tr~trQngs61ienke'ttu ll(jroni toi ndronj t~ibuocl~pthut
l1ijla gia tr~bie'nthientrQngs6t~ibuocl~pthu(t+l)
1. Bie'nthientrQngs6duQcxacd~nhnhusau:
8E
l1w..=8-=88.0.
1J bW.. ] ]
1J
8 la thams6t6cdQhQc(0<8<1,8j la gradient16it~indronj
2. Gradient16iduQcxacdinhtheocangthuc:
* D6ivoicacndronthuQclOpxua't:
8. =O.(l-O. )(T. -0. )] ] ] ] ]
Tj lagiatqbie'nthanhphffncuaduli~uxua'trongm§:utudnglingvoindronxua'tj
OJ lagiatr~ke'txua'tcuandronxua'tj
* D6i voi cacndronthuQclop ffnHi
bj =OJ(1-Oj)L8kwkj
k
bkIa gia tr~gradient16it'.lindronk thuQclOpke'tie'pHi co lien ke'tvoi ndronffnj
L~pl~iquatrinhtubuoc1chode'nkhim~ngndronhQitl,1.Vi trihQitl,1lamQtmuc
chuffn16iduQcchQntnl'oc.MQtbuocl~pg6m:bi€u di~nbie'n,tinhcacke'txua'tva
hi~uchlnhcactrQngs6trongm~ng.
M(~lllgndronnhi~ulOpIantruy~n guQcla mQtghHphaphUllhi~uchocangvi~c
mahinhboa,d~cbi~tvoi quatrinhphuct~pho~ccdche'chuaro rang.No khang
doihoiphiiibie'truocd'.lnghams6ho~c acthams6.
3.4. Di~uki~ndunghQc[3]
Trang69
Cac di~uki<%ndungla ye'uto'khongth€ thie'ukhi xay dl,tngthu~ttoanhQc
ehom(;lngndron.Thu~ttoanhQcse dungkhi di~uki<%ndungduQcthoaman.f)i~u
ki~ndungxacdinhtrenmQtso'tieuchuftnsau:
* Dl,tatrendQ16igiUake'txufitcua m(;lngva ke'txufitm~utren cungmQtdii'li~u
m~uduavao. Thu~ttoandunghQekhi 16iE<Go,Gola nguong16iho~ekhi khong
con16i.Tuy nhientieuehuftnnaykhongdambaatinht6ngquatd6ivoi dii'li~u
maio
* Dl,tatrengradient16i:thu~toandungkhi gradient16idu nho(gradientb~ng
khongt(;livi triclfeti€u)
3.5.Kiim tra tinhdungdiinvatinht6ngquatcuam~ngndron[3]
MQth~dl,tdoanla mQth~th6ngbaag6mmQtm(;lngnaronva caetri thue
xacdinhmQtanhX(;ltrendii'li~u.Cach~dl,tdoand~ucomQtdQtine~y,tinhdung
d~nnhfitdinh.Voi m(;lngnarontinhdungd~ncuanoth€ hi~nquahaiye'uto':
- KhananghQCvahinhthanhtrithuctucacdii'li~um~u
- Kha nangt6ngquatboachocacdii'li~umoikhongduQchQc.
QuatrinhhQchinhthanhtri thucxacdinhnhii'ngm6ilienh~rangbuQc,gQila cac
anhX(;l,giii'acaeye'uto'diiuvaovadiiuratrongt~pdiYli~um~u.
AnhX(;lthuduQcco th€ rfitdungtrencacdii'li~uhQc.Tuynhienne'uchidungcac
dii'li~uduQchQcd€ danhgiatrithuchinhthanhthichiphananhduQcmucdQphu
hQpgiii'atri thucva dii'li~uhQcmakhongdunoilenduQcdQtinc~yciinthie'tcua
trithucnayd6ivoicacdiYli~ukhongduQchQc.
Dodo,bellc(;lnhcacphepki€m chungv~khananghQccuam(;lngnaron,taciinco
cacki€m chungv~khanangt6ngquatboacuam(;lngnarond6i voi cacdii'li~u
khongduQchQc.
Trang70
M,;mgncJronchidu'QcxemlamQtht$hoanchinhne'ucotinht6ngquaboa.
3.5.1.Xac dfnhtinht6ngquatboa.
Vit$cxac dinhtinht6ngquatboa du'Qctie'nhanhtrenmQtt~pdli lit$uki@m
ITaphanbit$tvoi t~pdli lit$uhQc.Phu'dngphapnayd1!atrenmQtphu'dngphapth6ng
kegQilaphu'dngphapthamchie'ucheo.
3.5.2.Phlidngphapthamchie'ucheo
Trongphu'dngphapnay,t~pm~udu'Qcphanthanh2 t~priengbit$t: t~p
luyt$nvat~pki@mtra.
Saudaylaytu'dngcuaphu'dngphapthamchie'ucheo- k fold crossvalidatation:
Chiang~unhient~pdli lit$uthanhk t~pconphanbit$t
- L~pl~ik l~n,m6i l~nchuara mQtt~pcond@ki€m ITa,ph~nconl~id@
luy~n.
- Tinhgiatfi crossvalidatationQ2chom6il~nl~pl~id trenk=1,2,...,n
n
L(Y; _yJ2
Q2 =1- ;=1n
L(Y; - yJ2;=1
Yi la ho~ttinhdoannh~nduQcungvdi ho~ttinhYi
-
Y lagiatriho~tinhtrungblnh
GiatriQ2cangg~n1thlkhanangdoannh~nho~tinhdli li~ucangchinhxachay
n6icachkhacm~ngcokhanangt6ngquatboa.
3.6.Hi~n tlitjng overfitting [3],[4]
; MQttrongnhlingnhu'Qcdi@mIoncuaphu'dngphapm~ngndronla hi~ntu'QngI
l overfitting.
Trang71
Hi~ntuQngoverfittingla truanghQpmam~ngsaukhihQcKongchok€t quahQitv
trent~pm§:unhungkhidungm~ngvoi trithliccoduQcdod€ dVdoank€t quacua
dli li~umoi thll~i hoantoankh6ngchinhxac.
Nhuda:noi, m~ngnc5ronduQcKaydvngnh~mxac dinhmQtanhx~gilia cacy€u to'
d~uvaovad~uratuanglingcuadli li~u.Anhx~xacdinhc~ncodQchinhxaccao.
~
Thlfct€ voit~pdli li~um§:uchotruoc,chIcoth€ dambaam~ng iaiquy€tbaitoan
cimQtgioih~nnao\1o.Cacthaotaclamgiaml6i trongquatrlnhhQc'chlnh~mml;lc
dichxacdinhmQtanhx~phuhQpvoim~uduavaomakh6nglamgiamcacl6i sinh
rakhis1l'dl;lnganhx~trencacdli li~umoic~ndvdoancuabaitoan.
Vi~cchok€t quahQitv trent~pm~uda:lambi€n d~ngcacanhx~c~nKaydvng
d~nd€n hi~ntuQngoverfitting.
Hi~ntuQngoverfittingcothSh~nch€ trongcaccachsau: tangkichthuoct~p m§:u,
thayd6iso'nUtffn,ki€m soatthaidi€m dunghQc,...
3.7.Anhhtidngcuas6ndrontrentinhi~ucuam~ng[3],[4]
M~ngIantruy~nguQcoth€ xftpXlmN anhx~codQphlict~ptuyyn€uno
cocftut~othichhQp.Cftuhlnhcuam~ngnaronIantruy~nguQcduQcquydinhbCii
86naronlOpnh~p,so'naronlOpxuftt,so'lOpffnva s6narontrongtunglOpffn.
S6luQngnarontunglOpnh~p,lOpxufttduQcquydinhtheoyeti c~uva bai toansa
dl;lngm~ng.Vi~c xac dinhcftuhlnhm~ngthichhQpse ti€n hanhquavi~cthayd6i
trenso'lOpffnva so'naroncualOpffn.
M(~mgnaronco th€ co nhi~ulOpffn,tuynhientrongdas6 cactruanghQpm~ng
ndronmQtlOpffncoth€ xftpXlmQtanhX~bfttky.Vi~cb6sungthems6lOpffnlam
phlict~pquatrlnhtinhtoanvachuangtrlnhch~ych~mbon.
Trang72
Ne'us6 ndronfin nho, mC;!ngkhongth€ xac dinhduQcanh xc;!phu hQpvdi dfi'li<$u
hQc.Tangs6naronfincoth€ lamanhxc;!x~pXlcacdfi'li<$uhQct6thall.d mQtmilc
naodo, anh xc;!hinhthanhr~tphuhQpvdi dfi'li<$uhQcnhungkhii nangoverfitting
xayra clingr~tIOnvi the'clingcfinxac dinhmQttieu chufindungd6i vdi vi<$ctang
s6luQngnaron.
._.