Chương 1
MỞ ĐẦU
1.1. ĐẶT VẤN ĐỀ
1.2. MỤC ĐÍCH NGHIÊN CỨU
1.3. NỘI DUNG NGHIÊN CỨU
1.4. PHƯƠNG PHÁP NGHIÊN CỨU
1.5. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU
1.1. ĐẶT VẤN ĐỀ
Việt Nam là một đất nước nông nghiệp và đang không ngừng công nghiệp hóa theo xu thế của toàn cầu. Chính vì lẽ đó mà cả những sản phẩm nông nghiệp cũng được đưa vào ngành công nghiệp, đặc biệt là công nghiệp chế biến.
Khoai mì là một cây nông nghiệp đã được công nghiệp hóa rất thành công. Ở nước ta, khoai mì được trồng từ Nam
83 trang |
Chia sẻ: huyen82 | Lượt xem: 1760 | Lượt tải: 3
Tóm tắt tài liệu Nghiên cứu xử lý nước thải tinh bột khoai mì bằng quá trình lọc sinh học hiếu khí, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ra Bắc. Cùng với việc trồng, từ lâu nhân dân ta đã chế biến thành lương thực cho người, gia súc (sắn lát) hoặc chế biến thành những món ăn dân dã như làm bánh, nấu chè…Nhiều ngành công nghiệp và chế biến thực phẩm có sử dụng tinh bột khoai mì cũng rất phát triển dẫn đến nhu cầu tinh bột khoai mì tăng nhanh chóng.
Việc sản xuất tinh bột khoai mì này đã tạo ra một lượng nước thải rất lớn ảnh hưởng đến môi trường mà chúng ta không thể xem thường được. Nguồn nước thải trên có pH thấp, chứa hàm lượng cặn cao, khó phân hủy, bốc mùi chua nồng ảnh hưởng đến môi trường xung quanh. Nguồn nước thải này thường không được xử lý triệt để, có nơi còn không xử lý mà xả trực tiếp ra môi trường hoặc ra cống thoát nước thải sinh hoạt. Nó gây ảnh hưởng đến đời sống sản xuất và sinh hoạt của người dân.
Chính vì những lý do đó mà việc xây dựng hệ thống xử lý cho loại nước thải này là rất cần thiết. Nước thải tinh bột khoai mì có hàm lượng chất hữu cơ dễ phân hủy sinh học cao nên xử lý bằng phương pháp sinh học là một sự lựa chọn phù hợp. Đề tài: “Nghiên cứu xử lý nước thải tinh bột khoai mì bằng quá trình lọc sinh học hiếu khí” được thực hiện nhằm đánh giá khả năng xử lý nước thải ngành sản xuất tinh bột khoai mì bằng phương pháp lọc sinh học hiếu khí và qua đó đề xuất tải trọng xử lý tối ưu cho loại nước thải này.
1.2. MỤC ĐÍCH NGHIÊN CỨU
Mục tiêu chính của đề tài là nghiên cứu hiệu quả xử lý nước thải tinh bột khoai mì bằng quá trình lọc sinh học hiếu khí để:
- Xác định hiệu quả xử lý tại các tải trọng khác nhau, từ đó xác định được tải trọng tối ưu.
- Xác định các thông số động học của quá trình.
1.3. NỘI DUNG NGHIÊN CỨU
Nội dung nghiên cứu của đề tài bao gồm các phần như sau:
- Tổng quan về nước thải tinh bột khoai mì.
- Tìm hiểu về các phương pháp xử lý nước thải tinh bột khoai mì hiện nay.
- Tổng quan về quá trình lọc sinh học hiếu khí.
- Xây dựng mô hình và vận hành mô hình thí nghiệm với nhiều tải trọng khác nhau.
- Xử lý số liệu thực nghiệm và đưa ra kết luận về tải trọng tối ưu và thông số động học của quá trình.
1.4. PHƯƠNG PHÁP NGHIÊN CỨU
Đề tài được thực hiện dựa trên các phương pháp nghiên cứu như sau:
- Phương pháp thu thập tài liệu: dữ liệu được thu thập từ các kết quả nghiên cứu, các tài liệu và các trang web có liên quan.
- Phương pháp khảo sát thực địa: tiến hành khảo sát về tính chất, thành phần nước thải.
- Phương pháp xây dựng mô hình: vận hành mô hình mô phỏng ở quy mô phòng thí nghiệm để xử lý nước thải.
- Phương pháp phân tích: các thông số đo và phương pháp phân tích tương ứng được trình bày trong bảng sau:
Bảng 1.1: Các thông số và phương pháp phân tích
STT
Thông số
Phương pháp phân tích
1
pH
pH kế
2
COD
Phương pháp đun kín (K2Cr2O7)
3
SS
Phương pháp khối lượng
4
Nitơ tổng
Phương pháp chưng cất Kjeldahl
5
Photpho tổng
Phương pháp so màu
1.5. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU
- Đối tượng nghiên cứu: nước thải ngành chế biến tinh bột khoai mì.
- Phạm vi nghiên cứu: nghiên cứu quá trình lọc sinh học hiếu khí trên mô hình ở qui mô phòng thí nghiệm.
Chương 2
TỔNG QUAN VỀ NƯỚC THẢI
TINH BỘT KHOAI MÌ
2.1. TỔNG QUAN VỀ NGÀNH CHẾ BIẾN TINH BỘT KHOAI MÌ
2.2. GIỚI THIỆU VỀ NƯỚC THẢI NGÀNH CHẾ BIẾN TINH BỘT MÌ
2.3. MỘT SỐ CÔNG NGHỆ XỬ LÝ NƯỚC THẢI TINH BỘT KHOAI MÌ
2.1. TỔNG QUAN VỀ NGÀNH CHẾ BIẾN TINH BỘT KHOAI MÌ
2.1.1. Nguồn gốc lịch sử khoai mì:
Phân loại khoai mì
- Giới (regnum): Plantae
- Ngành (divisio): Magliophyta
- Lớp (class): Magnoliopsida
- Bộ (ordo): Malpighiales
- Họ (familia): Euphorbiaceae
- Phân họ (subfamilia): Crotonoideae
- Tông (tribus): Manihoteae
- Chi (genus): Manihot
- Loài (species): M. esculenta
Cây mì có nguồn gốc ở vùng nhiệt đới của châu Mỹ La tinh (Crantz, 1976) và được trồng cách đây khoảng 5.000 năm (CIAT, 1993). Trung tâm phát sinh cây mì được giả thiết tại vùng đông bắc của nước Brasil thuộc lưu vực sông Amazon, nơi có nhiều chủng loại mì trồng và hoang dại (De Candolle 1886; Rogers, 1965). Trung tâm phân hóa phụ có thể tại Mexico và vùng ven biển phía bắc của Nam Mỹ. Bằng chứng về nguồn gốc mì trồng là những di tích khảo cổ ở Venezuela niên đại 2.700 năm trước Công nguyên, di vật thể hiện củ mì ở cùng ven biển Peru khoảng 2000 năm trước Công nguyên, những lò nướng bánh khoai mì trong phức hệ Malabo ở phía Bắc Colombia niên đại khoảng 1.200 năm trước Công nguyên, những hạt tinh bột trong phân hóa thạch được phát hiện tại Mexico có tuổi từ năm 900 đến năm 200 trước Công nguyên (Rogers 1963, 1965).
Cây mì được người Bồ Đào Nha đưa đến Congo của châu Phi vào thế kỷ 16. Tài liệu nói tới cây mì ở vùng này là của Barre và Thevet viết năm 1558. Ở châu Á, mì được du nhập vào Ấn Độ khoảng thế kỷ 17 (P.G. Rajendran et al, 1995) và Sri Lanka đầu thế kỷ 18 (W.M.S.M Bandara và M.Sikurajapathy, 1992). Sau đó, mì được trồng ở Trung Quốc, Myanma và các nước châu Á khác ở cuối thế kỷ 18, đầu thế kỷ 19 (Fang Baiping 1992. U Thun Than 1992). Cây mì đựơc du nhập vào Việt Nam khoảng giữa thế kỉ 18, (Phạm Văn Biên, Hoàng Kim,1991). Hiện chưa có tài liệu chắc chắn về nơi trồng và năm trồng đầu tiên.
Ở nước ta cây mì được trồng khắp nơi từ Nam ra Bắc, nhiều nhất là ở vùng trung du miền núi. Hiện nay mì là một trong những loại cây hoa màu quan trọng trong cơ cấu lương thực ở nước ta.
Bảng 2.1: Tình hình phát triển cây mì qua các năm ở nước ta
Năm
Diện tích (ha)
Sản lượng (tấn)
1939
19500
97230
1955
26400
152600
1958
16500
154400
1960
35890
320990
1964
121159
896260
1770
85219
635236
1975
84956
681032
1980
447000
3978000
2000
237600
1986300
2001
292300
3509200
2002
337000
4438000
2003
371900
5308900
2004
383600
5572800
2.1.2. Công nghệ chế biến tinh bột khoai mì
2.1.2.1. Nguyên liệu:
Khoai mì tươi: Củ mì thường vuột hai đầu. Kích thước củ tuỳ thuộc tính chất đất và điều kiện trồng mà dao động trong khoảng 0.1 – 1.1 m chiều dài và 2 – 8 cm đường kính.
- Vỏ gỗ: Chiếm 0.5-3% khối lượng củ, có màu trắng, vàng hoặc nâu. Vỏ gỗ cấu tạo từ cellulose và hemicellulose, hầu như không có tinh bột. Nó có tác dụng bảo vệ củ khỏi bị ảnh hưởng cơ học và hóa học của ngoại cảnh.
- Vỏ cùi (vỏ thịt): dày hơn vỏ gỗ nhiều, chiếm khoảng 20% trọng lượng củ. Cấu tạo gồm lớp tế bào thành dày, thành tế bào cấu tạo từ cenluloza, bên trong tế bào là các hạt tinh bột, hợp chất chứa Nitơ và dịch bào (mủ) – trong dịch bào có tannin, sắc tố, độc tố, các enzyme… Vì vỏ cùi có nhiều tinh bột (5 – 8%) nên trong chế biến nếu tách đi thì tổn thất, không tách thì khó khăn trong chế biến vì nhiều chất trong thành phần mủ ảnh hưởng đến màu sắc tinh bột.
- Thịt mì: là thành phần chủ yếu của củ mì, thành phần bao gồm cellulose và pentosan ở vỏ tế bào, hạt tinh bột và nguyên sinh chất bên trong tế bào, gluxit hoà tan và nhiều chất vi lượng khác. Những tế bào ở lớp ngoài thịt mì chứa nhiều tinh bột, càng sâu vào trong hàm lượng tinh bột giảm dần. Ngoài lớp tế bào nhu mô còn có chứa các tế bào thành cứng không chứa tinh bột, cấu tạo từ cenluloza nên cứng như gỗ – gọi là xơ. Loại tế bào này nhiều ở đầu cuống, mì lưu niên và những củ biến dạng trong quá trình phát triển. Mì lưu 2 năm thì có một lớp xơ, mì lưu 3 năm có hai lớp xơ. Theo lượng lớp xơ mà biết mì lưu bao nhiêu năm.
- Lõi: ở trung tâm, dọc suốt từ cuống tới chuôi củ, chiếm 0.3-1% khối lượng toàn củ. Càng sát cuống, lõi càng lớn và nhỏ dần về phía chuôi củ. Lõi cấu tạo chủ yếu từ cellulose vào hemicellulose. Mì có lõi lớn và nhiều xơ thì hiệu suất và năng suất của máy xát giảm vì xơ cứng, phần thì xơ kẹt vào răng máy hạn chế khả năng phá vỡ tế bào giải phóng tinh bột. Mặt khác, xơ nhiều thì răng máy xát chóng mòn.
Ngoài ra còn có các bộ phận khác: cuống, rễ… các phần này cấu tạo chủ yếu là cellulose cho nên mì cuống dài và nhiều rễ thì tỉ lệ tinh bột thấp và chế biến khó khăn.
Thành phần hóa học của củ mì dao động trong khoảng khá rộng tùy thuộc vào loại giống, điều kiện phát triển của cây và thời gian thu hoạch.
Bảng 2.2: Thành phần hóa học của khoai mì
STT
Thành phần
%
1
Nước
70.25
2
Tinh bột
21.45
3
Protein
1.12
4
chất béo
0.4
5
Cellulose
1.1
6
Đường
5.13
7
Tro
0.54
Hàm lượng tinh bột của củ mì cũng phụ thuộc nhiều yếu tố như các yếu tố ảnh hưởng đến các thành phần nói chung, trong đó mức độ già có ý nghĩa rất lớn. Đối với giống mì một năm thì vụ chế biến có thể bắt đầu từ tháng 9 và kết thúc từ tháng 4 năm sau, nhưng đào vào tháng 12 và tháng 1 thì hàm lượng tinh bột cao nhất. Tháng 9, tháng 10 củ ít tinh bột, hàm lượng nước cao, lượng chất hoà tan nhiều, như vậy nếu chế biến mì non không những tỷ lệ thành phẩm thấp mà còn khó bảo quản tươi. Sang tháng 2, tháng 3 lượng tinh bột trong củ lại giảm vì một phần phân huỷ thành đường để nuôi mầm non trong khi cây chưa có khả năng quang hợp.
Đường trong củ mì chủ yếu là glucoza và một lượng mantoza, sacaroza. Củ mì càng già thì hàm lượng đường càng giảm. Trong chế biến đường hoà tan trong nước thải ra theo nước dịch.
Ngoài ra, trong củ mì còn có độc tố, tannin, sắc tố và hệ enzyme phức tạp. Những chất này gây khó khăn cho chế biến và nếu qui trình không thích hợp sẽ cho sản phẩm có chất lượng kém.
Có nhiều loại khác nhau về màu sắc, thân cây, lá, vỏ, thịt củ… Tuy nhiên trong công nghệ sản xuất tinh bột người ta phân thành hai loại: mì đắng và mì ngọt. Hai loại này khác nhau về hàm lượng tinh bột và lượng độc tố. Nhiều tinh bột thì hiệu quả kinh tế trong sản xuất cao và nhiều độc tố thì quy trình công nghệ phức tạp.
- Mì đắng còn gọi là sắn dù. Cây thấp (không cao quá 1.2 m), ít bị đổ khi gió to. Năng suất cao, củ mập, nhiều tinh bột, nhiều mủ và hàm lượng axit xianhydric cao. Ăn tươi dễ bị ngộ độc, chủ yếu để sản xuất tinh bột và mì lát. Đặc điểm của cây sắn dù là đốt ngắn, thân cây khi con màu xanh nhạt. Cuống lá chỗ nối tiếp thân và cây màu đỏ thẫm, kế đó màu trắng nhạt rồi lại hồng dần. Màu vỏ gỗ củ nâu sẫm, vỏ cùi và thịt sắn điều trắng.
- Mì ngọt: có hàm lượng tinh bột thấp, ít độc tố, ăn tươi không ngộ độc, dễ chế biến. Mì ngọt bao gồm tất cả các loại mà hàm lượng axit xianhydric thấp như: mì vàng, mì đỏ, mì trắng…
+ Mì vàng hay còn gọi là sắn nghệ. Khi non thân cây màu xanh thẫm, cuống lá màu đỏ, có sọc nhạt, vỏ gỗ của củ màu nâu, vỏ cùi màu trắng, thịt củ màu vàng nhạt, khi luột màu vàng rõ rệt hơn.
+ Mì đỏ thân cây cao, khi non màu xanh thẫm, cuống và gân lá màu đỏ thẫm. Củ dài to, vỏ gỗ màu nâu đậm, vỏ cùi dày, màu hơi đỏ, thịt mì trắng.
+ Mì trắng thân cây cao, khi non màu xanh nhạt, cuống lá đỏ. Củ ngắn mà mập, vỏ gỗ màu sám nhạt, thịt và vỏ cùi màu trắng.
2.1.2.2. Công nghệ chế biến tinh bột khoai mì
Khoai mì là một trong những loại hoa màu có hàm lượng tinh bột trong củ tương đối cao (62-65% lượng chất khô). Mục đích chủ yếu của công nghệ là lấy tinh bột đến mức tối đa có thể bằng cách phá vỡ cấu trúc thực vật, giải phóng tinh bột, do tinh bột không hoà tan trong nước, kích thước hạt nhỏ, tỷ trọng hạt tinh bột chênh lệch nhiều so với nước nên phương pháp chủ yếu trong sản xuất là nghiền, rây, rửa và lắng hoặc ly tâm. Do đó có thể rút ra những kết luận về công nghệ sản xuất tinh bột khoai mì như sau:
- Phương pháp sử dụng trong sản xuất chủ yếu là cơ học, thiết bị đơn giản, vận hành bảo quản và sửa chữa dễ dàng.
- Quy trình sản xuất sử dụng nước là trong những tác nhân chính của công nghệ tách tinh bột. Chi phí vận hành và nguyên liệu thấp, các nguyên liệu phụ rẻ tiền và có khả năng đáp ứng dễ dàng đo đó hiệu quả kinh tế cao.
- Hiệu suất thu hồi sản phẩm cao , từ 80-90%.
Quá trình sản xuất tinh bột khoai mì về cơ bản gồm các khâu sau:
- Chuẩn bị nguyên liệu: công đoạn này bao gồm thao tác rửa, cắt khúc, loại bỏ phần rễ, lớp vỏ gỗ và đất cát bám trước khi đưa vào nghiền. Nguyên liệu được đưa vào thùng rửa bằng tay hay bằng băng chuyền. Tại thùng rửa củ, đất cát và phần vỏ gỗ được chà xát bằng lô cuốn có gắn các sợi kim loại trên bề mặt kết hợp với nước rửa được bơm vào liên tục. Kết thúc công đoạn này, củ được tách ra khỏi lớp vỏ gỗ. Các tạp chất theo nước thải ra ngoài và được thu gom ở lưới chắn rác.
- Nghiền nguyên liệu và tách bã: nguyên liệu sau khi rửa và cắt khúc qua máy mài chuyển thành dạng bột nhão, sau đó vào máy rây tách bã. Ở máy rây, nước sạch cũng được bơm vào liên tục với mục đích rửa sạch lớp bột bám trên bã. Nước dịch sữa bột sau khi qua máy rây được đưa về thùng chứa và trộn với dung dịch H2SO3 để tẩy trắng bột.
- Tách tinh bột
+ Từ thùng chứa sữa bột được bơm vào máy bơm ly tâm hoặc, sau đó lại được trộn với dung dịch tẩy H2SO3 và bơm vào máy ly tâm tách dịch lần 2. Máy ly tâm hoạt động liên tục, tinh bột được tháo ra liên tục. Nước sau khi qua ly tâm tách dịch ra ngoài.
+ Lượng nước sạch được phun vào trong khi ly tâm dưới dạng tia nước áp lực cao để rửa bột. Bể lắng cũng được dùng lắng bột nhưng hiệu suất kém hơn chỉ phù hợp với quy mô sản xuất nhỏ. Qua giai đoạn ly tâm tách dịch đồng thời rửa sạch tinh bột, sản phẩm sau khi qua ly tâm có độ trắng đạt yêu cầu. Hiệu suất thu hồi bột đạt xấp xỉ 90%. Tinh bột ướt có độ ẩm khoảng 40% sau đó được ly tâm một lần nữa để tách bớt nước sau đó được sấy khô, làm nguội, đóng bao.
Khoai mì
TINH BỘT
Rữa sơ bộ
Cắt khúc
Lóc vỏ
Ly tâm tách bã
Làm nguội
Bao gói
Rữa tinh bột
Sấy
Ly tâm tách dịch
Nghiền
Rữa ướt
Nước
Các loại đất đá
Vỏ
Bã
Ép
Phơi khô
SO2
Dịch
Lắng
Tinh bột loại 2
Hình 2.1: Qui trình công nghệ chế biến tinh bột khoai mì
Thức ăn gia xúc
Khoai mì
Sàng, tách vỏ
Tinh bột ướt
Nghiền, tách bã
Tẩy chua, tẩy trắng
Đóng gói
Sấy khô
Làm nguội
Ly tâm
Quậy, pha loãng
Rữa, cắt khúc
Nước
Nước, dịch thải
Nhiệt thừa
Hóa chất
Nước, vỏ gỗ, cát
Nước thải, vụn mì
Bã, nước thải
Nước
Nước
Hình 2.2: Công nghệ chế biến tinh bột khoai mì kiểu Thái Lan
Khoai mì
Sàng, tách vỏ
Tinh bột ướt
Nghiền, tách bả
Lắng 2
Hoàn thiện tại công ty khác
Vô bao
Lắng 1
Rữa, cắt khúc
Nước
Nước, vỏ gỗ, cát
Nước thải, vụn mì
Bã, nước thải
Nước
Nước
Hình 2.3: Công nghệ chế biến tinh bột khoai mì thủ công của một số hộ gia đình ở Thủ Đức
Nước
2.1.2.3. Sản phẩm tinh bột khoai mì
a) Giới thiệu về tinh bột khoai mì
Trong thiên nhiên, tinh bột có rất nhiều và tồn tại dưới dạng hydrat - carbon hữu cơ tự nhiên. Nó có trong rễ, nhánh và hạt của cây xanh. Là một loại thức ăn nuôi dưỡng, tinh bột cung cấp năng lượng cho cây xanh trong lúc chúng ngủ yên hoặc nảy mầm. Tinh bột cũng là một nguồn năng lượng quan trọng nhất đối với động vật và con người. Chính vì thế, nó có vai trò quyết định trong đời sống chúng ta. Các thống kê ngày nay cho thấy tinh bột có hơn bốn ngàn ứng dụng.
Các loại tinh bột chính có mặt trên thị trường hiện nay gồm có: tinh bột khoai mì, tinh bột khoai tây, bột bắp và bột mì. So sánh những loại tinh bột này, ta thấy rằng thành phần và tính chất của tinh bột khoai mì gần với tinh bột khoai tây hơn và tốt hơn bột bắp và bột mì. Tuy nhiên, về mặt giá thành, tinh bột khoai tây cao hơn nhiều so với tinh bột khoai mì. Với các ưu thế hấp dẫn về mặt tính chất và giá thành, nhu cầu dùng tinh bột khoai mì dường như đang tăng lên ở mọi nơi trên thế giới. Ðồng thời, một định hướng chung cho việc giữ gìn sức khỏe đã góp phần tạo ra sự quan tâm và ưa chuộng những loại thực phẩm không chứa GMO.
b) Những ứng dụng của tinh bột khoai mì trong tinh bột thực phẩm và ngành công nghiệp khác:
Chất độn: làm tăng độ đặc trong súp và trái đóng hộp, kem và dược phẩm.
Chất kết nối: làm quánh các sản phẩm, giúp thực phẩm không bị khô khi nấu, như xúc xích, thịt hộp.
Chất ổn định: sử dụng khả năng giữ nước cao, như trong kem, bột nở, ngành dệt – hồ chì để giảm đứt trên khung dệt (tinh bột biến đổi). Tinh bột dùng cho giai đoạn in làm đặc chất nhuộm và giữ màu. Tinh bột dùng cho giai đoạn thành phẩm sẽ tăng độ cứng và trọng lượng (tinh bột thường hoặc tinh bột oxi hóa).
Chất làm đặc: sử dụng đặc tính bột nhão, như trong súp, thức ăn cho trẻ em, nước chấm, nước dùng.
Làm giấy:
- Tăng cường độ chắc, tăng sức chống nếp gấp.
- Làm tăng bề mặt và độ bền, dùng cho giấy gợn sóng, giấy ép và giấy bìa cứng.
- Chất kết nối trong công nghiệp.
- Giấy cứng làm trần nhà
- Giấy thạch cao
Thức ăn (thủy sản, gia súc)
Những công dụng khác trong công nghiệp
- Sản xuất bao plastic tự hoại.
- Sản xuất vỏ xe…
2.2. GIỚI THIỆU VỀ NƯỚC THẢI NGÀNH CHẾ BIẾN TINH BỘT MÌ
Nước thải là lượng nước được sử dụng trong sản xuất và được thải bỏ sau đó. Quy trình sản xuất khoai mì có nhu cầu sử dụng lượng nước rất lớn (15 – 20 m3/tấn sản phẩm). Nước thải tinh bột khoai mì thường không được xử lý hoặc xử lý qua loa rồi thải ra môi trường. Do vậy, các chất hữu cơ còn lại từ khoai mì trong nước thải sẽ phân hủy yếm khí tạo chiều chất độc gây hại cho môi trường và gây mùi hôi thối khó chịu, gây ô nhiễm nguồn nước. Dân cư xung quanh các cơ sở chế biến tinh bột mì này thường phàn nàn về vấn đề này.
Theo số liệu tại nhà máy tinh bột Tapioca Tân Châu – Tây Ninh, lượng nước sử dụng cho một ngày sản suất khoảng 1200 – 1600 m3 và lượng nước thải ra cũng chiếm tương đương vào khoảng 95% lượng nước sử dụng. Lượng nước thải mang theo một phần tinh bột không thu hồi hết trong sản xuất, các protein, các chất béo, các chất khoáng… trong dịch bào của củ và cả thành phần SO32-, SO42- từ công đoạn tẩy trắng sản phẩm. Lưu lượng thải lớn và có nồng độ chất hữu cơ rất cao (16 – 20 kgCOD/m3 nước thải) là một nguồn gây ô nhiểm lớn cho môi trường, đất và không khí xung quanh nhà máy và cần được xử lý thích hợp.
Bảng 2.3: Thành phần nước thải tinh bột khoai mì tại nhà máy tinh bột Tapioca Tân Châu – Tây Ninh
STT
Chỉ tiêu
Đơn vị
Khoảng nồng độ
Nồng độ trung bình
1
2
3
4
5
6
7
8
9
10
11
12
pH
COD
BOD5
TSD
SS
Độ kiềm
Glucose
Protein
Lipit
Tinh bột
CN-
SO42-
-
mg/L
mg/L
mg/L
mg/L
mgCaCO3/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
4,0 – 4,16
26690 - 28655
8858 - 11005
1758 – 2120
1477 – 2585
0
500 – 800
900 – 1900
236 – 360
2400 – 3200
5,8
99
4,0
27000
10000
2000
2200
0
650
1400
298
2800
5,8
99
Ta thấy với thành phần nước thải như trên thì nước thải tinh bột mì có mức ô nhiễm hữu cơ cao với tỉ lệ BOD5/COD đạt khoảng 0.61. Do vậy, xử lý nước thải tinh bột khoai mì bằng phương pháp sinh học là rất khả thi.
2.3. MỘT SỐ CÔNG NGHỆ XỬ LÝ NƯỚC THẢI TINH BỘT KHOAI MÌ
2.3.1. Nhà máy tinh bột khoai mì Phước Long
Hình 2.4: Qui trình công nghệ xử lý nước thải của nhà máy sản xuất tinh bột Phước Long
Bể UASB
Bể điều hòa
Bể lắng 2
Nước đã xử lý
Bể Aerotank
Bể lắng
Bể chứa bùn
Máy ép bùn
Nước chưa xử lý
Song chắn rác
NaOH, Cl2
Bùn
Thuyết minh qui trình:
- Nước sau sản xuất đi qua song chắn rác để loại bỏ các chất thải rắn của khâu gọt vỏ, băm nghiền, cắt khúc, sau đó được đưa vào bể lắng sơ bộ nhằm mục đích lắng bớt cặn có kích thước lớn, và một phần tinh bột không thể thu hồi trong sản xuất (đây là nguyên nhân làm cho nước thải có COD cao). Nước thải luôn có pH rất thấp, cyanua cao và lưu lượng không đều nên được cho vào bể điều hoà và được trung hoà bằng NaOH, khử cyanua bằng chlor.
- COD của nước khá cao nên phải xử lý bằng bể kỵ khí UASB, các bể kỵ khí chỉ giảm COD đến một mức độ nào đó nếu muốn có hiệu suất cao hơn thường phải lưu thời gian rất lâu điều này làm tăng thể tích xử lý của công trình bởi vậy nước trong bể UASB chỉ được lưu ở một thời gian thích hợp rồi đi qua bể hiếu khí.
- Ở bể sục khí nước được trộn với sinh khối và sinh khối dùng chất dinh dưỡng trong nước để phát triển, nước được lưu trong bể sục khí một thời gian rồi chảy qua bể lắng để lắng sinh khối sau đó chảy vào nguồn tiếp nhận.
- Bùn một phần được hoàn lưu lại bể sục khí, một phần đi vào máy ép bùn nhằm tách bớt nước (nước được tuần hoàn trở lại bể sục khí, bùn được thải vào sân phơi bùn).
Đầu ra của hệ thống có các chỉ tiêu cơ bản sau đây:
- pH: 7.85
- COD: 84 mg/l
- N-NH3: 82.4 mg/l
- Cyanua: 4.2 mg/l
Các nhược điểm của công nghệ trên:
- Khử cyanua bằng chlor cho hiệu quả không cao, tốn rất nhiều hoá chất do chlor là chất oxy hoá mạnh nên có thể tác dụng với rất nhiều chất trong nước thải ví dụ với NH3 tạo thành các chloramin. Mặt khác dư lượng của chlor và chloramin là các chất khử trùng trong nước nên khi vào bể sinh học UASB chắc chắn có rất nhiều vi sinh vật bị chết, làm giảm hoạt tính của bùn, giảm hiệu suất công trình. Dư lượng cyanua là tác nhân ức chế hoạt động của vi sinh vật, mặc dù vậy sau khi qua bể UASB lượng cyanua cũng giảm đi đáng kể do được phân huỷ thành NH3 .
- NH3 trong nước thải sau bể UASB rất cao (>200 mg/L) nhưng bể sục khí chỉ dùng N-NH3 làm chất dinh dưỡng và chuyển hoá thành NO3- như vậy N-NH3 trong nước thải vẫn còn rất lớn, muốn khử N-NH3 tốt cần phải lưu ở thời gian lâu hoặc cần cho qua thêm công trình khử N-NH3 vật lý.
2.3.2.Nhà máy tinh bột Tây Ninh
Bể kỵ khí 1
Bể kỵ khí 2
Bể trung hòa
Song chắn rác
Nước chưa xử lý
Lắng cặn sơ bộ
Bể kị khí 3
Bể kỵ khí 4
Bể tùy tiện 1
Bể tùy tiện 2
Nước đã xử lý
NaOH, Cl2
Hình 2.5: Qui trình công nghệ xử lý nước thải của nhà máy sản xuất tinh bột Tây Ninh
Thuyết minh qui trình:
Nước sau sản xuất đi qua song chắn rác để loại bỏ các chất thải rắn của khâu gọt vỏ, băm nghiền, cắt khúc, sau đó được đưa vào bể lắng sơ bộ nhằm mục đích lắng bớt cặn có kích thước lớn, và một phần tinh bột không thể thu hồi trong sản xuất. Sau đó nước được trung hoà và đi vào bể kỵ khí 4 bậc và bể tuỳ nghi 2 bậc rồi được thải ra ngoài.
Các nhược điểm của công nghệ trên:
- Số liệu các chỉ tiêu đầu ra không được biết rõ nhưng có thể chắc chắn rằng nước không thể đạt tiêu chuẩn thải vào nguồn loại B, TCVN 5945-1995 ở các chỉ tiêu COD, N-NH3 vì các lý do: các bể kỵ khí thực chất là các bể tự hoại hiệu quả xử lý không cao, nâng pH chỉ làm cho vi khuẩn metan hoạt động vậy vi khuẩn acid sẽ bị ức chế hiệu quả quá trình acid hoá giảm, hiệu qủa khử cyanua giảm điều đó dẫn đến phải dùng nhiều bể kỵ khí làm tốn diện tích.
- Các bể tuỳ nghi thường khó giảm COD xuống dưới 100 mg/l và N-NH3 chỉ giảm chút ít ở vùng hiếu khí và cuối cùng không có công trình khử N-NH3 để N-NH3 còn gần như trọn vẹn với COD đầu vào khoảng 10000mg/l thì N-NH3 thường lớn hơn >100 mg/l.
Chương 3
TỔNG QUAN VỀ QUÁ TRÌNH
LỌC SINH HỌC HIẾU KHÍ
3.1. TỔNG QUAN VỀ QUÁ TRÌNH XỬ LÝ SINH HỌC HIẾU KHÍ
3.2. TỔNG QUAN VỀ QUÁ TRÌNH LỌC SINH HỌC
3.3. VI SINH VẬT TRONG HỆ THỐNG XỬ LÝ NƯỚC THẢI
3.4. ĐỘNG HỌC CỦA QUÁ TRÌNH LỌC SINH HỌC HIẾU KHÍ
3.1. TỔNG QUAN VỀ QUÁ TRÌNH XỬ LÝ SINH HỌC HIẾU KHÍ
3.1.1. Giới thiệu
Quá trình xử lý sinh học hiếu khí là quá trình sử dụng các vi sinh vật để oxy hoá các chất hữu cơ trong điều kiện có sự tồn tại của oxy.
3.1.2. Phân loại
Đĩa quay sinh học
Sinh trưởng
lơ lửng
Sinh trưởng bám dính
Hồ sinh học
hiếu khí
Xử lý sinh học hiếu khí
Aerotank
Hiếu khí tiếp xúc
Xử lý sinh học theo mẻ
Lọc
hiếu khí
Lọc sinh học nhỏ giọt
Hình 3.1: Phân loại các quá trình xử lý sinh học hiếu khí
3.1.3. Các bể sinh học hiếu khí
3.1.3.1. Quá trình sinh trưởng lơ lửng
a. Bể aerotank:
Vi sinh trong hệ thống này được duy trì ở trạng thái lơ lửng nhờ hệ thống cung cấp oxy phía dưới. Nước sau đó chảy ra bể lắng tại đó các vi sinh sẽ kết cụm tạo bông và lắng xuống. Bùn lắng một phần được tuần hoàn lại bể để tiếp tục xử lý. Hàm lượng bùn trong bể thường giữ trong khoảng từ 1000-3000 mg MLSS/l.
b. Bể xử lý sinh học từng mẻ:
Hệ thống bùn hoạt tính “làm đầy và tháo bỏ”. Quá trình thổi khí và quá trình lắng được thực hiện trong cùng bể phản ứng do đó có thể bỏ qua bể lắng II. Thông thường các quá trình đều diễn ra trong cùng một bể. Quá trình hoạt động gồm 5 giai đoạn:
- Pha làm đầy: Có thể vận hành với 3 chế độ: làm đầy tĩnh, làm đầy hoà trộn và làm đầy sục khí nhằm tạo môi trường khác nhau cho các mục đích khác nhau. Thời gian pha làm đầy có thể chiếm từ 25-30%.
- Pha phản ứng (sục khí): Ngừng đưa nước thải vào. Tiến hành sục khí. Hoàn thành các phản ứng sinh hoá có thể được bắt đầu từ pha làm đầy. Thời gian phản ứng chiếm khoảng 30 % chu kỳ hoạt động.
- Pha lắng: điều kiện tĩnh hoàn toàn được thực hiện (không cho nước thải vào, không rút nước ra, các thiết bị khác đều tắt) nhằm tạo điều kiện cho quá trình lắng. Thời gian chiếm khoảng từ 5-30% chu kỳ hoạt động.
- Pha tháo nước sạch.
- Pha chờ: áp dụng trong hệ thống có nhiều bể phản ứng, có thể bỏ qua trong một số thiết kế.
Thời gian hoạt động có thể tính sao cho phù hợp với từng loại nước thải khác nhau và mục tiêu xử lý. Nồng độ bùn trong bể thường khoảng từ 1500-2500 mg/l.
3.1.3.2. Quá trình sinh trưởng dính bám
a. Bể lọc hiếu khí:
Hoạt động nhờ quá trình dính bám của vi khuẩn hiếu khí lên lớp vật liệu làm giá thể. Do quá trình dính bám tốt, lượng sinh khối tăng lên và thời gian lưu bùn kéo dài nên có thể xử lý ở tải trọng cao. Tuy nhiên hệ thống dễ bị tắc do quá trình phát triển nhanh chóng của vi sinh, chính vì vậy, thời gian hoạt động có thể bị hạn chế. Để khắc phục tình trạng này ta có thể bố trí lớp vật liệu lọc cho phù hợp.
b. Tháp lọc sinh học nhỏ giọt:
Tháp lọc sinh học nhỏ giọt có kết cấu giống như tháp lọc sinh học. Tháp lọc sinh học được xây dựng với hệ thống quạt gió cưỡng bức từ dưới lên, nước thải được phân phối từ phía trên, chảy qua lớp màng vi sinh bám trên các giá thể và xuống bể thu ở phía dưới. Tuy nhiên, đối với tháp lọc sinh học nhỏ giọt vận tốc của nước thải đi qua giá thể nhỏ hơn nhiều, cấu trúc của giá thể cũng được thay đổi sao cho có thể lưu nước được trên giá thể lâu hơn.
c) Đĩa quay sinh học:
Bao gồm các đĩa tròn polystyren hoặc polyvinyl chloride đặt gần sát nhau. Đĩa nhúng chìm một phần trong nước thải và quay ở tốc độ chậm, màng vi sinh hình thành và bám trên trên bề mặt đĩa. Khi đĩa quay, mang sinh khối trên đĩa tiếp xúc với chất hữu cơ trong nước thải và sau đó tiếp xúc với oxy. Đĩa quay tạo điều kiện chuyển hóa oxy và luôn giữ sinh khối trong điều kiện hiếu khí.
3.2.TỔNG QUAN VỀ QUÁ TRÌNH LỌC SINH HỌC
3.2.1 Định nghĩa
Quá trình màng sinh học là một trong các quá trình xử lý nước thải bằng phương pháp sinh học sử dụng các vi sinh vật không di động và bám dính lên trên bề mặt các vật liệu rắn để tiếp xúc thường liên tục hay gián đoạn với nước thải. Phương pháp dùng vi sinh vật cố định để xử lý nước thải được phân làm 3 phương pháp: là phương pháp vận chuyển kết gắn, phương pháp bẫy và phương pháp liên kết chéo trong đó quá trình xử lý bằng màng sinh học được xem như phương pháp vận chuyển kết gắn. Tuy nhiên, quá trình xử lý sinh học sử dụng sinh khối cố định với hai phương pháp còn lại có thể được xem như quá trình xử lý bằng màng sinh học bởi vì chúng có cùng cơ chế làm sạch và đặc tính xử lý. Trong phần này, chỉ thảo luận trong phạm vi hẹp về quá trình xử lý bằng màng sinh học hiếu khí.
3.2.2. Phân loại
Dựa vào nguyên tắc hoạt động, quá trình lọc sinh học được chia thành 3 loại:
- Lọc sinh học ngập nước (submerged filter): phương pháp này dựa trên nguyên tắc vật liệu lọc được đặt ngập chìm trong nước. Phương pháp này còn được chia thành nhiều loại dựa trên cách hoạt động của giá thể:nền cố định (fixed bed), nền mở rộng (expanded bed) và nền giả lỏng (fluidized bed).
- Thiết bị sinh học tiếp xúc quay (rotating contactor). Đĩa quay sinh học sử dụng một lượng lớn các đĩa quay ngập một phần hoặc hoàn toàn trong nước, và nước thải được làm sạch thông qua hoạt động của màng vi sinh vật trên các bề mặt của đĩa.
- Thiết bị lọc nhỏ giọt (trickling filter): ở phương pháp này dòng nước được chảy từ trên xuống qua tầng vật liệu lọc. Lọc sinh học nhỏ giọt gồm một bể tròn hay chữ nhật có chứa lớp vật liệu lọc (đá, ống nhựa, nhựa miếng…), nước thải được tưới liên tục hay gián đoạn từ một ống phân phối thích hợp đặt bên trên bể. Khi nước thải chảy vào liên tục và đi qua lớp vật liệu lọc, lớp màng vi sinh vật tiếp xúc với nước thải và phát triển trên vật liệu lọc nên nước thải được làm sạch.
Quá trình lọc sinh học cũng được phân loại vào quá trình hiếu khí và kỵ khí. Khi áp dụng lọc sinh học ngập nước vào quá trình xử lý hiếu khí, oxy được cung cấp thông qua máy thổi khí. Quá trình lọc sinh học ngập nước với bể ổn định đôi khi được gọi là quá trình oxy hóa tiếp xúc, quá trình lọc tiếp xúc, hiếu khí tiếp xúc hay quá trình lọc sinh học tiếp xúc. Tuy nhiên, ngay trong quá trình xử lý hiếu khí, không chỉ có vi sinh vật hiếu khí mà vi sinh vật kỵ khí cũng cùng tồn tại.
3.2.3. Cấu tạo và hoạt động của màng vi sinh vật
3.2.3.1. Cấu tạo màng vi sinh vật
Từ khi phương pháp màng vi sinh vật được chú ý tới là một trong các biện pháp sinh học để xử lý nước thải, đã có rất nhiều những nghiên cứu về cấu trúc của màng vi sinh vật. Theo thời gian và sự phát triển của các công cụ nghiên cứu, cấu trúc của màng vi sinh vật ngày càng được sáng tỏ và là cơ sở để mô hình hóa những quá trình sinh học xảy ra bên trong màng.
Cấu tạo của lớp màng vi sinh vật bao gồm những đám vi sinh vật và một số vật chất khác liên kết trong ma trận cấu tạo bởi các polymer ngoại tế bào (gelatin) do vi sinh vật (cả protozoa và vi khuẩn) sản sinh ra trong quá trình trao đổi chất và quá trình tiêu hủy tế bào và do có sẵn trong nước thải. Thành phần chủ yếu của các polymer ngoại bào này là polysaccharide, protein.
Màng vi sinh vật có cấu trúc phức tạp cả về cấu trúc vật lý và vi sinh. Cấu trúc cơ bản của một hệ thống màng vi sinh vật hình 3.2, bao gồm:
Hình 3.2:Cấu tạo màng vi sinh vật
- Vật liệu đệm (đá, sỏi, chất dẻo, than… với nhiều loại kích thước và hình dạng khác nhau) có bề mặt rắn làm môi trường dính bám cho vi sinh vật. Lớp màng vi sinh vật phát triển dính bám trên bề mặt vật liệu đệm. Lớp màng vi sinh được chia thành hai lớp: lớp màng nền và lớp màng bề mặt.
- Hầu hết các mô hình toán về hệ thống màng vi sinh vật không quan tâm đúng tới vai trò của lớp màng bề mặt, và hầu như chỉ chú ý tới lớp màng nền.
- Nhờ sự phát triển của các công cụ mới nhằm nghiên cứu màng vi sinh, những hình ảnh mới về cấu trúc nội tại của lớp màng nền dần dần được đưa ra. Phát hiện mới cho thấy màng vi sinh vật là một cấu trúc không đồng nhất bao gồm những cụm tế bào rời rạc bám dính với nhau trên bề mặt đệm, bên trong ma trận polymer ngoại tế bào; tồn tại những khoảng trống giữa những cụm tế bào theo chiều ngang và chiều đứng. Những khoảng trống này có vai trò như những lỗ rỗng ._.theo chiều đứng và như những kênh vận chuyển theo chiều ngang. Kết quả là sự phân bố sinh khối trong màng vi sinh vật không đồng nhất. Và quan trọng hơn là sự vận chuyển cơ chất từ chất lỏng ngoài vào màng và giữa các vùng bên trong màng không chỉ bị chi phối bởi sự khuếch tán đơn thuần như những quan điểm cũ. Chất lỏng có thể lưu chuyển qua những lỗ rỗng bởi cả quá trình khuếch tán và thẩm thấu; quá trình thẩm thấu và khuếch tán đem vật chất tới cụm sinh khối và quá trình khuếch tán có thể xảy ra theo mọi hướng trong đó. Do đó, hệ số khuếch tán hiệu quả mô tả quá trình vận chuyển cơ chất, chất nhận điện tử (chất oxy hóa)… giữa pha lỏng và màng vi sinh thay đổi theo chiều sâu của màng, và quan điểm cho rằng chỉ tồn tại một hằng số hệ số khuếch tán hiệu quả là không hợp lý.
- Phân tích theo chủng loại vi sinh vật, lớp màng vi sinh vật còn có thể chia thành hai lớp (chỉ đúng trong trường hợp quá trình màng vi sinh vật hiếu khí): lớp màng kỵ khí ở bên trong và lớp màng hiếu khí ở bên ngoài (hình 3.1). Trong màng vi sinh luôn tồn tại đồng thời vi sinh vật kỵ khí và vi sinh vật hiếu khí; bởi vì chiều sâu của lớp màng lớn hơn nhiều so với đường kính của khối vi sinh vật, oxy hòa tan trong nước chỉ khuếch tán vào gần bề mặt màng và làm cho lớp màng phía ngoài trở thành lớp hiếu khí, còn lớp màng bên trong không tiếp xúc được với oxy trở thành lớp màng kỵ khí.
3.2.3.2. Quá trình tiêu thụ cơ chất làm sạch nước
Lớp màng vi sinh vật phát triển trên bề mặt đệm tiêu thụ cơ chất như chất hữu cơ, oxy, nguyên tố vết (các chất vi lượng)… cần thiết cho hoạt động của vi sinh vật từ nước thải tiếp xúc với màng.
Quá trình tiêu thụ cơ chất như sau: đầu tiên cơ chất từ chất lỏng tiếp xúc với bề mặt màng và tiếp đó chuyển vận vào màng vi sinh theo cơ chế khuếch tán phân tử.
Trong màng vi sinh vật diễn ra quá trình tiêu thụ cơ chất và quá trình trao đổi chất của vi sinh vật trong màng. Đối với những loại cơ chất ở thể rắn, dạng lơ lửng hoặc có phân tử khối lớn không thể khuếch tán vào màng được, chúng sẽ bị phân hủy thành dạng có phân tử khối nhỏ hơn tại bề mặt màng và sau đó mới tiếp tục quá trình vận chuyển và tiêu thụ trong màng vi sinh như trên. Sản phẩm cuối của quá trình trao đổi được vận chuyển ra khỏi màng vào trong chất lỏng. Quá trình tiêu thụ cơ chất được mô tả bởi công thức chung như sau:
Màng hiếu khí:
Chất hữu cơ + 02 + nguyên tố vết è sinh khối của vi khuẩn + sản phẩm cuối
Màng kị khí:
Chất hữu cơ + nguyên tố vết è sinh khối của vi khuẩn + sản phẩm cuối
Các phương trình trên miêu tả chung quá trình tiêu thụ cơ chất bởi vi sinh vật, không chỉ riêng đối với quá trình màng vi sinh vật.
Khi một trong những thành phần cần thiết cho vi sinh vật tiêu thụ bị thiếu, những phản ứng sinh học sẽ xảy ra không đều. Chẳng hạn, nếu một trong những cơ chất bị hết ở một chiều sâu nào đấy của màng vi sinh vật, tại đó những phản ứng sinh học sẽ không tiếp tục xảy ra, và cơ chất đó được gọi là cơ chất giới hạn của quá trình, đồng thời chiều sâu hiệu quả của màng vi sinh vật cũng được xác định từ vị trí đó.
Các nguyên tố vết như nitơ, photphat, và kim loại vi lượng nếu không có đủ trong nước thải theo tỉ lệ của phản ứng sinh học sẽ trở thành yếu tố giới hạn của phản ứng. Tương tự, chất hữu cơ hoặc oxy cũng có thể trở thành yếu tố giới hạn trong màng hiếu khí. Thông thường, nếu nồng độ oxy hoà tan trong nước thải tiếp xúc với màng thấp hơn nồng độ chất hữu cơ, oxy hòa tan sẽ trở thành yếu tố giới hạn. Do đó, ngay cả trong trường hợp màng hiếu khí, lớp màng ở bên trong vị trí tiêu thụ hết oxy trở thành thiếu khí (anoxic) hoặc kỵ khí (anaerobic). Lớp màng kỵ khí không đóng vai trò trực tiếp trong việc làm sạch nước thải. Tuy nhiên, trong lớp màng kỵ khí có thể diễn ra các quá trình hóa lỏng, lên men acid chất hữu cơ dạng hạt rắn, oxy hóa chất hữu cơ và hình thành sulfide bởi sự khử sulfate, hoặc khử nitrat, nitrit tạo ra từ lớp màng hiếu khí. Vì vậy, sự đồng tồn tại của hoạt động hiếu khí và kỵ khí trong lớp màng vi sinh vật là một yếu tố rất quan trọng trong quá trình màng vi sinh vật. 3.2.3.3. Quá trình sinh trưởng, phát triển và suy thoái của màng vi sinh vật
Quy luật chung trong sự phát triển của màng vi sinh vật bởi quá trình tiêu thụ cơ chất có trong nước thải và làm sạch nước thải như sau: quá trình vi sinh vật phát triển bám dính trên bề mặt đệm được chia thành 3 giai đoạn:
- Giai đoạn thứ nhất, có dạng logarithm, khi màng vi sinh vật còn mỏng và chưa bao phủ hết bề mặt rắn. Trong điều kiện này, tất cả vi sinh vật phát triển như nhau, cùng điều kiện, sự phát triển giống như quá trình vi sinh vật lơ lửng.
- Giai đoạn thứ hai, độ dày màng trở nên lớn hơn bề dày hiệu quả. Trong giai đoạn hai, tốc độ phát triển là hằng số, bởi vì bề dày lớp màng hiệu quả không thay đổi bất chấp sự thay đổi của toàn bộ lớp màng, và tổng lượng vi sinh đang phát triển cũng không đổi trong suốt quá trình này. Lượng cơ chất tiêu thụ chỉ dùng để duy trì sự trao đổi chất của vi sinh vật, và không có sự gia tăng sinh khối. Lượng cơ chất đưa vào phải đủ cho quá trình trao đổi chất, nếu không sẽ có sự suy giảm sinh khối và lớp màng sẽ bị mỏng dần đi nhằm đạt tới cân bằng mới giữa cơ chất và sinh khối.
- Giai đoạn thứ ba, bề dày lớp màng trở nên ổn định, khi đó tốc độ phát triển màng cân bằng với tốc độ suy giảm bởi sự phân hủy nội bào, phân hủy theo dây chuyền thực phẩm, hoặc bị rửa trôi bởi lực cắt của dòng chảy.
Hình 3.3: Chuỗi các vi sinh vật tạo thành màng vi sinh
Hình 3.3 cho thấy sự tích lũy của lớp màng vi sinh vật. Trong quá trình phát triển của màng vi sinh, vi sinh vật thay đổi cả về chủng loại và số lượng. Lúc đầu, hầu hết sinh khối là vi khuẩn, sau đó protozoas và tiếp đến là metazoas phát triển hình thành nên một hệ sinh thái. Protozoas và metazoas ăn màng vi sinh lượng bùn dư.Tuy nhiên, trong một điều kiện môi trường nào đó, chẳng hạn điều kiện nhiệt độ nước hay chất lượng nước, metazoas phát triển quá mạnh và ăn quá nhiều màng vi sinh làm ảnh hưởng tới khả năng làm sạch nước. Nghiên cứu của Inamori cho thấy có hai loài thực dưỡng sống trong màng vi sinh vật. Một loài ăn vi khuẩn lơ lửng và thải ra chất kết dính. Kết quả là làm tăng tốc độ làm sạch nước. Loài kia ăn vi khuẩn trong màng vi sinh và do đó thúc đẩy sự phân tán sinh khối. Và nếu hai loài này có sự cân bằng hợp lý thì hiệu quả khoáng hóa chất hữu cơ và làm sạch nước sẽ cao.
3.3. VI SINH VẬT TRONG HỆ THỐNG XỬ LÝ NƯỚC THẢI
3.3.1. Khái niệm
Vi sinh vật là những tổ chức sinh vật nhỏ bé, có thể tập hợp lại thành một nhóm lớn hơn gồm nhiều loại khác nhau dưới những hình dạng không xác định, chúng có thể tồn tại dưới dạng đơn bào. Có thể nói, phần lớn vi sinh vật đóng vai trò rất quan trọng trong các quá trình chuyển hóa sinh hóa, chúng có tác dụng làm giảm lượng chất hữu cơ trong nước thải, đồng thời giúp ổn định nồng độ chất hữu cơ trong các dòng chảy. Các loài vi sinh vật chiếm ưu thế trong từng quá trình xử lý sinh hóa phụ thuộc vào nhiều yếu tố: tính chất dòng vào, điều kiện môi trường, quá trình thiết kế và cách thức vận hành hệ thống. Do đó, để tăng cường vai trò hệ vi sinh vật hoạt động trong xử lý nước thải phải thiết kế điều kiện môi trường phù hợp, ví dụ với đa số quá trình xử lý hiếu khí, cần có điều kiện thích hợp như: môi trường phải đủ thông thoáng để cung cấp oxy, đủ các chất hữu cơ (làm thức ăn), đủ nước, đủ N và P (chất dinh dưỡng) để thúc đẩy sự oxy hóa, có pH phù hợp (6.5-9) và không có các chất gây độc.
Tuy nhiên không phải các vi sinh vật đều có lợi cho các quá trình chuyển hóa trong xử lý nước thải. Nếu như điều kiện môi trường không còn phù hợp của các loài sinh vật, hoặc số lượng các loài vi sinh vật trong hệ thống tăng đột biến, điều này sẽ gây cản trở cho quá trình chuyển hóa và làm giảm hiệu suất xử lý nước thải.
3.3.2. Sinh thái, sinh lý, phân loại vi sinh vật
3.3.2.1. Sinh thái, sinh lý vi sinh vật
Vi sinh vật không phải là một nhóm phân loại trong sinh giới mà là bao gồm tất cả các sinh vật có kích thước hiển vi, không thấy rỏ bằng mắt thường, do đó phải sử dụng kính hiển vi thường hoặc kính hiển vi điện tử để quan sát. Ngoài ra, muốn nghiên cứu vi sinh vật người ta phải sử dụng tới các phương pháp nuôi cấy vô khuẩn. Vi sinh vật có các đặc điểm chung sau đây:
a) Kích thước nhỏ bé:
Vi sinh vật thường đo kích thước bằng đơn vị micromet. Virut được đo kích thước đơn vị bằng nanomet. Kích thước càng bé thì diện tích bề mặt của vi sinh vật trong một đơn vị thể tích càng lớn.
b) Hấp thu nhiều chuyển hóa nhanh:
Tuy vi sinh vật có kích thước rất nhỏ bé nhưng chúng lại có năng lực hấp thụ và chuyển hóa vượt xa các sinh vật khác. Chẳng hạn một vi khuẩn lactic (Lactobacillus) trong một giờ có thể phân giải được một lượng đường lactose lớn hơn 100-10.000 lần so với khối lượng của chúng. Tốc độ tổng hợp protein của nấm men cao gấp 10.000 lần so với đậu tương và 100.000 lần so với trâu bò.
c) Sinh trưởng nhanh phát triển mạnh:
Chẳng hạn một trực khuẩn đại tràng (Escherichia coli) trong các điều kiện thích hợp chỉ sau 12-20 phút lại phân cắt một lần. Nếu lấy thời gian thế hệ là 20 phút thì mỗi giờ phân cắt 3 lần, sau 24 giờ phân cắt 72 lần và tạo ra 4.722.633 ×1018 tế bào, tương đương với một khối lượng là 4.722 tấn. Tất nhiên, trong tự nhiên không có được các điều kiện tối ưu như vậy (vì thiếu thức ăn, thiếu oxy, dư thừa các sản phẩm trao đổi chất có hại…). Trong loài lên men với các điều kiện nuôi cấy thích hợp, từ một tế bào có thể tạo ra sau 24 giờ khoảng 100.000.000 – 1.000.000.000 tế bào. Thời gian thế hệ của nấm men dài hơn, ví dụ với men rượu (Saccharomyces cerecisiae) là 120 phút. Với nhiều vi sinh vật khác còn dài hơn nữa, ví dụ tảo tiểu cầu (Cholorella) là 7 giờ, với vi khuẩn lam Nosoc là 23 giờ… Có thể nói không có sinh vật nào có tốc độ sinh sôi nảy nở nhanh như vi sinh vật
Nấm men Saccharomyces cerevisiae
Vi khuẩn Escherichia coli
Tảo tiểu cầu
Nấm sợi Alternaria
Hình 3.4: Sự sinh sôi của các vi sinh vật
d) Có năng lục thích ứng mạnh và dễ dàng phát sinh biến dị:
Trong quá trình tiến hóa lâu dài vi sinh vật đã tạo cho mình những cơ chế điều hòa trao đổi chất để thích ứng được với những điều kiện trao đổi chất khác nhau, kể cả những điều kiện hết sức bất lợi mà các sinh vật khác thường không thể tồn tại được. Có vi sinh vật sống ở môi trường nóng đến 130oC, lạnh đến 0 - 5oC, mặn đến nồng độ muối 32%, ngọt đến nồng độ mật ong, pH thấp đến 0.5 hoặc cao đến 10.7; áp suất cao đến trên 1,3 at, hay có độ phóng xạ cao đến 750,000 rad. Nhiều vi sinh vật có thể sống tốt trong điều kiện tuyệt đối kỵ khí, có loài nấm sợi có thể phát triển dày đặc trong bể ngâm tử thi với nồng độ foocmol rất cao…
Vi sinh vật đa số là đơn bào, đơn bội, sinh sản nhanh, số lượng nhiều, tiếp xúc trực tiếp với môi trường sống… do đó rất dễ dàng phát sinh biến dị. Tần suất biến dị thường ở mức 10-5 – 10-10. Chỉ sau một thời gian ngắn đã tạo ra một số lượng rất lớn các cá thể biến dị ở các thế hệ sau. Những biến dị có ích sẽ đưa lại hiệu quả rất lớn trong sản xuất. Nếu như mới phát hiện ra penicillin hoạt tính chỉ đạt 20 đơn vị/ml dịch lên men (1943) thì ngày nay có thể đạt trên 100,000 đơn vị/ml.
e) Phân bố rộng chủng loại phong phú:
Vi sinh vật có mặt ở khắp mọi nơi trên Trái đất, trong không khí, trong đất, trên núi cao, dưới biển sâu, trên cơ thể người, động vật, thực vật, trong thực phẩm, trên mọi đồ vật…
Vi sinh vật tham gia tích cưc vào việc thực hiện các vòng tuần hoàn sinh-địa- hóa học như vòng tuần hoàn C, vòng tuần hoàn N, vòng tuần hoàn P, S ,Fe…
Trong nước vi sinh vật có nhiều ở vùng duyên hải (littora zone), vùng nước nông (limnetic zone) và ngay cả ở vùng nước sâu (profundal zone), vùng đáy ao hồ (benthic zone).
Trong không khí thì càng lên cao số lượng vi sinh vật càng ít. Số lượng vi sinh vật ở các khu dân cư đông đúc cao hơn rất nhiều so với không khí trên mặt biển và nhất là không khí ở Bắc cực, nam cực…
Hầu như không có hợp chất Cacbon nào (trừ kim cương, đá graphit…) mà không là thức ăn của những nhóm vi sinh vật nào đó (kể cả dầu mỏ, khí thiên nhiên, foocmol, dioxin…). Vi sinh vật rất phong phú các kiểu dinh dưỡng khác nhau: quang tự dưỡng, quang dị dưỡng, hóa tự dưỡng, hóa dị dưỡng, tự dưỡng chất sinh trưởng, dị dưỡng chất sinh trưởng…
f) Là sinh vật xuất hiện đầu tiên trên trái đất:
Trái đất hình thành cách đây 4.6 tỷ năm nhưng cho đến nay mới chỉ tìm thấy dấu vết của sự sống cách đây 3.5 tỷ năm. Đó là các vi sinh vật hóa thạch còn để lại vết tích trong các tầng đá cổ. Vi sinh vật hóa thạch cổ xưa nhất đã được phát hiện từ những dạng rất giống vi khuẩn lam ngày nay. Chúng được J. William Schopf tìm thấy tại các tầng đá cổ ở miền Tây Australia. Chúng có dạng đa bào đơn giản, nối thành sợi dài đến vài chục mm với đường kính khoảng 1 -2 mm và có thành tế bào khá dày. Trước đó các nhà khoa học đã tìm thấy vết tích của chi Gloeodiniopsis có niên đại cách đây 1.5 tỷ năm và vết tích của chi Palaeolyngbya có niên đại cách đây 950 triệu năm.
Vết tích của vi khuẩn lam cách đây 3.5 tỉ năm
Vết tích Gloeodiniops cách đây 3.5 tỉ năm
Vết tích Palaeolyngbya cách đây 950 triệu năm
Hình 3.5: Vết tích một số loài vi khuẩn
3.3.2.2. Phân loại vi sinh vật
Hiện nay có hai cách phân loại vi sinh vật. Cách thứ nhất theo hệ thống, và cách thứ hai hai dựa theo cấu tạo của nhân vi sinh vật:
- Cách phân loại thứ nhất: theo cách phân loại của P.N.Bergey vi sinh vật được xếp trong ngành protophia. Chúng gồm 3 lớp:
+ Schizomycetes (lớp vi khuẩn)
+ Schizophiceae (lớp thanh tảo)
+ Microtatobiotes (lớp rickettsia và virut)
- Cách phân loại thứ hai: theo cấu trúc của nhân vi sinh vật, người ta chia làm 2 nhóm lớn:
+ Nhóm nhân nguyên thủy hay nhóm có nhân phân hóa (prokaryotic): bao gồm tất cả vi sinh vật chưa có nhân thực thụ mà chỉ là một vùng sẫm gồm protein và ADN.
+ Nhóm nhân thật hay nhóm có nhân thực thụ (eukaryotic): bao gồm tất cả các vi sinh vật có nhân thực. Nhân này được cấu tạo bởi màng nhân, protein và DNA.
3.3.2.3. Hình thái, cấu tạo của vi sinh vật
a) Vi khuẩn
Theo quan điểm hiện đại (NCBI – National Center for Biotechnology Information, 2005) thì vi khuẩn bao gồm các ngành sau đây: Aquificae – Thermotogae – Thermodesulfobacteria- Deinococcus – Thermus – Chrysiogenetes- Chloroflexi – Nitrospirae – Deferribacteres – Cyanobacteria – Proteobacteria – Firmicutes – Actinobacteria – Planctomycetes – Chlamydiae/Nhóm Chlorobia – Fusobacteria – Dictyoglomi. Việc phân ngành dựa trên các đặc điểm hình thái, sinh lý, sinh hóa, sinh thái… Căn cứ vào tỷ lệ G + C trong ADN người ta xây dựng được cây phát sinh chủng loại (Phylogenetic tree) và chia vi khuẩn thành các nhóm sau đây:
- Nhóm oxy hóa hydrogen
- Nhóm chịu nhiệt
- Nhóm vi khuẩn không lưu huỳnh màu lục
- Nhóm Deinococcus
- Nhóm vi khuẩn lam
- Nhóm Proteobacteria
- Nhóm Chlamydia
- Nhóm Planctomyces
- Nhóm Spirochaetes (xoắn thế)
- Nhóm vi khuẩn lưu huỳnh màu lục
- Nhóm Cytophaga
- Nhóm vi khuẩn Gram dương
Vi khuẩn là một tổ chức nguyên thủy, đơn bào, cơ thể chứa khoảng 85% là nước và 15% là các khoáng chất hay chất nguyên sinh. Chất nguyên sinh phần lớn là S, K, Na, Ca, Cl và một lượng nhỏ Fe, Si, Mg. Chúng sinh sôi và nẩy nở nhờ hình thức tự phân đôi. Vi khuẩn có thể xem là một trong những sinh vật sống nhỏ bé nhất, có đường kính 0.5 -2µm và chiều dài từ 1 -10 µm.
Các vi khuẩn được phân làm 3 nhóm chính dựa vào hình dạng tự nhiên hay trạng thái tồn tại của chúng. Dạng đơn giản nhất là vi khuẩn cầu, còn gọi là Cocci. Dạng thứ hai là các vi khuẩn hình que, gọi là Bacillus. Dạng cuối cùng là các vi khuẩn hình xoắn hoặc cong, gọi là Spirilla. Đại đa số vi khuẩn đóng vai trò quan trọng trong việc phân hủy chất hữu cơ, biến chất hữu cơ thành chất ổn định tạo thành bông cặn dễ lắng.
Vi khuẩn ký sinh (paracitic bacteria) là vi khuẩn sống bám vào vật chủ, thức ăn của nó là thức ăn đã được vật chủ đồng hóa, chúng thường sống trong đường ruột của người và động vật đi vào nước thải theo phân và nước tiểu.
Vi khuẩn hoại sinh (saprophytic bacteria) dùng chất hữu cơ không hoạt động làm thức ăn, nó phân hủy cặn hữu cơ làm chất dinh dưỡng để sống và sinh sản, và thải ra các chất gồm cặn hữu cơ có cấu tạo đơn giản và cặn vô cơ . Bằng quá trình hoạt động như vậy, vi khuẩn hoại sinh đóng vai trò tích cực quan trọng trong việc làm sạch nước thải. Nếu không có hoạt động sống và sinh sản của vi khuẩn, quá trình phân hủy sẽ không xảy ra. Có rất nhiều loài vi khuẩn hoại sinh, mỗi loài đóng một vai trò đặc biệt trong mỗi công đoạn của quá trình phân hủy hoàn toàn cặn hữu cơ có trong nước thải và mỗi loài sẽ tự chết khi hoàn thành qui trình sống và sinh sản ở giai đoại đó.
Tất cả các vi khuẩn ký sinh và hoại sinh cần có thức ăn và oxy để đồng hóa. Một số loài trong số vi khuẩn này chỉ có thể hô hấp bằng oxy hòa tan trong nước gọi là vi khuẩn hiếu khí, còn quá trình phân hủy chất hữu cơ của chúng gọi là quá trình hiếu khí hay quá trình oxy hóa. Một số loài khác trong số các vi khuẩn này không thể tồn tại được khi có oxy hòa tan trong nước. Những vi khẩn này gọi là vi khuẩn kỵ khí và quá trình phân hủy gọi là quá trình kỵ khí, quá trình này tạo ra các chất có mùi khó chịu. Còn một số loài vi khuẩn hiếu khí trong quá trình phân hủy chất hữu cơ, nếu thiếu hoàn toàn oxy hòa tan, chúng có thể tự điều chỉnh để thích nghi với môi trường gọi là vi khuẩn hiếu khí lưỡng nghi. Sự tự điều chỉnh để thích nghi với môi trường có sự thay đổi của oxy hòa tan của vi khuẩn hoại sinh là rất quan trọng trong qui trình phân hủy chất hữu cơ của nước thải trong các công trình xử lý.
Pseudomonas
(phân hủy dratcacbon, nitrat hóa)
Desulfovibrio
(khử sunfat, khử nitrat)
Bacillus
(phân hủy hydratcacbon, protein)
Nitrosomonas (nitrat hóa)
Microthrix parvicella
Zoogloea
Hình 3.6: Một số vi sinh vật trong xử lý nước thải
Nhiệt độ nước thải có ảnh hưởng rất lớn đến quá trình hoạt động và sinh sản của vi khuẩn, phần lớn vi khuẩn hoại sinh hoạt động có hiệu quả cao và phát triển mạnh mẻ ở nhiệt độ từ 20 – 40oC. Một số loài vi khuẩn trong quá trình xử lý cặn phát triển ở nhiệt độ 50 – 60oC. Khi duy trì các điều kiện môi trường: thức ăn, nhiệt độ, pH, oxy, độ ẩm thích hợp để vi khuẩn phát triển thì hiệu quả xử lý sinh học trong công trình sẽ đạt hiêu quả cao nhất.
Tuy nhiên, tất cả các vi khuẩn đều có lợi cho quá trình sinh hóa, một vài trong số chúng là loài gây hại. Có hai loài vi khuẩn có hại có thể phát triển trong hệ thống hiếu khí/ thiếu khí. Một là các dạng vi khuẩn dạng sợi (filamentous) là các dạng phân tử trung gian, thường kết với nhau thành lớp lưới nhẹ nổi lên mặt nước và gây cản trở quá trình lắng đọng trầm tích; làm cho lớp bùn đáy không có hiệu quả, sinh khối sẽ không gắn kết lại và theo các dòng chảy sạch đã xử lý ra ngoài. Một dạng vi khuẩn có hại khác tồn tại trong lượng bọt dư trong các bể phản ứng sinh hóa, phát sinh từ các hệ thống thông gió để tuần hoàn oxy trong hệ thống.
Các vi sinh vật có hại thường xuất hiện trong hệ thống xử lý kỵ khí là các vi khuẩn khử sunfat. Nhìn chung, lợi ích thu được từ thiết kế vận hành hệ thống xử lý kỵ khí là tạo ra sản phẩm khí metan có giá trị kinh tế. Tuy nhiên, nếu trong nước thải chứa sunfat ở nồng độ quá cao, lúc đó các vi khuẩn khử sunfat sẽ cạnh tranh với các chất nhường điện tử, kết quả là tạo ra sản phẩm sunfit. Điều này không những sẽ ảnh hưởng đến sản lượng khí metan tạo thành, mà còn tạo các sản phẩm không có lợi cho quá trình vận hành hệ thống.
b) Nấm men
Nấm men thuộc cơ thể đơn bào, có hình dạng khác nhau và hầu như không ổn định, nó phụ thuộc vào tuổi của nấm men và điều kiện nuôi cấy. Thường chúng có hình cầu, hình ellip, hình bầu dục và cả hình dài. Một số loài nấm men có tế bào hình dài nối với nhau tạo thành những sợi nấm gọi là khuẩn ty (mycelium) hay khuẩn ty giả (pseudomycelium).
Tế bào nấm men thường có kích thước lớn gấp từ 5 -10 lần tế bào vi khuẩn. Kích thước trung bình của nầm men là: chiều dài 9 – 10 μm, chiều rộng 2 – 7 μm Kích thước của tế bào nấm men thay đổi theo điều kiện nuôi cấy, tuổi sinh lý.
Hình thức sinh sản của nấm men có 3 hình thức chủ yếu:
- Sinh sản bằng cách nảy chồi.
- Sinh sản bằng cách phân đôi.
- Sinh sản bằng bào tử và sự hình thành bào tử.
c) Nấm mốc (nấm sợi)
Nấm mốc (molds hay mounds) là tên chung chỉ tất cả các vi sinh vật không phải là nấm men cũng không phải là các nấm mũ lớn, được phân bố rộng rải trong tự nhiên. Chúng không phải là loài thuộc thực vật, cũng không phải là động vật. Do vậy, nấm mốc hoàn toàn khác với vi khuẩn và nấm men.
Dựa vào cấu tạo của chúng mà người ta chia nấm mốc thành 2 loại: loại nấm mốc có vách ngăn và loại nấm mốc không có vách ngăn.
Hình 3.7: Naám moác
- Nấm mốc có vách ngăn: đây là trường hợp mà khuẩn ty được tạo thành do một chuỗi tế bào nối tiếp nhau, ngăn cách hai tế bào và một màng ngăn. Trong mỗi tế bào nấm hầu như có đủ cơ quan của một tế bào, thường thấy ở Aspergillus và penicillium.
- Nấm mốc không có vách ngăn: đây là những loại nấm mốc đa hạch, trong đó giữa các hạch không có màng ngăn.
Sinh sản ở nấm mốc: nấm mốc là một trong những vi sinh vật có nhiều kiểu sinh sản khác nhau: sinh sản sinh dưỡng, sinh sản vô tính, sinh sản hữu tính.
Nói chung, vi sinh dạng nấm có kích thước lớn hơn vi khuẩn và không có vai trò trong giai đoạn phân hủy ban đầu các chất hữu cơ trong quá trình xử lý nước thải.
Mặc dù nấm có thể sử dụng các vật chất hữu cơ tan trong mối quan hệ cạnh tranh với các vi khuẩn, nhưng chúng dường như không cạnh tranh tốt trong quá trình sinh trưởng lơ lửng hay ở điều kiện bám dính, trong môi trường bình thường, vì vậy không tạo thành sự cân đối trong hệ thống vi trùng học. Nói cách khác, khi cung cấp không đủ oxy và N hoặc pH quá thấp, nấm có thể sinh sản nhanh, gây ra các vấn đề ảnh hưởng tương tự như các vi khuẩn dạng sợi.
d)Virut
Virut là dạng sống khá đơn giản, có kích thước vô cùng nhỏ bé, từ 10 – 450 nm. Chúng có các đặc điểm chính như: không có cấu tạo tế bào; thành phần hóa học rất đơn giản, chỉ bao gồm protein và axit nucleic, virut chỉ chứa ADN hoặc ARN; không có khả năng sinh sản trong môi trường dinh dưỡng tổng hợp; một số có khả năng tạo thành ty thể.
Hình 3.8: Một số hình dạng của virus
Hầu như virut có cấu tạo hết sức đơn giản. Toàn bộ tế bào của chúng chỉ được tạo thành từ vỏ protein và lõi là axit nucleic. Chúng sinh trưởng bằng cách tấn công vào tế bào của vật chủ (động vật, thực vật, vi khuẩn,..) và sinh sôi nảy nở trong tế bào các vật chủ này.
Virut có nhiều dạng: Virut của động vật có hình cầu, hình trứng (virut đậu gà), hình hộp vuông hay hình chữ nhật (đậu bò), hay hình gậy,…; virut thực vật có hình quả cầu hay hình que dài (virut đóm lá, thuốc lào). Sự hiện diện của virut trong nước thải sẽ ảnh hưởng không tốt cho quá trình xử lý.
e)Xạ khuẩn
Xạ khuẩn là loài vi sinh vật đơn bào phân bố rộng rãi trong thiên nhiên, cấu tạo tế bào tương tự như tế bào vi khuẩn.
Chúng có một số đặc điểm như: có kích thước nhỏ bé và tương đương với kích thước vi khuẩn, nhưng có chiều dài lớn hơn chiều dài của vi khuẩn; chưa có nhân phân hóa rỏ rệt; phân chia tế bào theo kiểu amitose (phân bào vô ty); xạ khuẩn không có giới tính.
f)Tảo
Tảo là một nhóm vi sinh vật, nhưng chúng khác với vi khuẩn và các nấm khác ở chỗ chúng có diệp lục và có khả năng tổng hợp được các hợp chất hữu cơ từ vô cơ dưới tác dụng của ánh sáng mặt trời
Tảo chia làm 9 ngành:
- Tảo lam (Cyanophyta)
- Tảo lục (Chorophyta)
- Tảo silic (Diatomeae)
- Tảo ánh vàng (Chrysophyta)
- Tảo giáp (Pynophyta)
- Tảo mắt (Euglenophyta)
- Tảo roi lệch (Hererocontac)
- Tảo đỏ (Rhodophyta)
- Tảo nâu (Phaeophyta)
Các loài tảo khác nhau có hình dạng và kích thước rất khác nhau, chủ yếu gồm các dạng sau:
- Dạng đơn bào chuyển động: gồm các cơ thể đơn bào có khả năng chuyển động, thường có hình cầu, hình bầu dục hay hình quả lê. Tế bào thường có tiên mao. Ngoài ra, sự chuyển động amip thường thấy ở một số tảo mất tiên mao. Những tảo này có khả năng hình thành các chân giả rất mảnh và dài
- Dạng tập đoàn chuyển động: gồm những tế bào đồng nhất về hình dạng và chức phận, thường tập hợp trong một tập đoàn chuyển động.
Tảo sinh sản chủ yếu theo 3 cách: sinh sản sinh dưỡng, sinh sản vô tính và sinh sản hữu tính.
Mặt dù không phải là loài sinh vật gây hại, nhưng chúng có thể gây ra một số vấn đề trong quá trình xử lý nước thải. Tảo phát triển làm cho nước có màu sắc, thực chất là màu sắc của tảo.
- Tảo xanh Aphanizomenon blosaquae, Anabaena microcistic… làm cho nước có màu xanh lam.
- Tảo Ascilatoria rubecens làm cho nước ngả màu hồng.
- Khuê tảo (Melosira, Navicula) làm cho nước có màu vàng nâu. Chrisophit làm cho nước có màu vàng nhạt.
Tảo phát triển còn làm cho nước có nhiều mùi khó chịu như mùi cỏ, mùi thối,…
g) Một số nguyên sinh động vật (Protozoa)
Động vật nguyên sinh là một tổ chức lớn nằm trong nhóm Eukaryotic, với hơn 50,000 loài đã được biết đến. Thật ra, động vật nguyên sinh là các sinh vật đơn bào nhưng cấu trúc tế bào phức tập hơn, lớn hơn các vi khuẩn. Kích thước các động vật nguyên sinh thay đổi trong khoảng 4 -500 μm.
Các nhóm động vật nguyên sinh chính được phân chia dựa vào phương thức vận động của chúng. Dạng thứ nhất là Mastigophara, là các động vật nguyên sinh có nhiều roi – flagella, ví dụ như Giardia lamblia. Dạng thứ hai là Ciliophora, có roi ngắn hơn hay còn gọi là lông mao – cilia, ví dụ như Stalked. Dạng thứ ba là Sarcodina, có kiểu chuyển động như amip (lướt đi trong nước, hình dạng của chúng thay đổi theo các động tác di chuyển này).
Giardia lamblia – cá thể dinh dưởng dạng roi
Amip
Peritrichia (chủng có mao)
Carchesium polypinum
Vorticella convallaria
Hình 3.9: Một số động vật nguyên sinh trong xử lý nước thải
Holotrichate
Các động vật nguyên sinh ăn các chất hữu cơ để sống và thức ăn ưu thích của chúng là các vi khuẩn. Các yếu tố như: chất độc, pH, nhiệt độ đều ảnh hưởng đến tốc độ tăng trưởng của chúng
h) Ricketxi
Theo phân loại của Bergey, Ricketxi được chia làm hai giống: Rickettsia và Coxiella.
Về kích thước nói chung, Ricketxi nhỏ hơn vi khuẩn và lớn hơn virut, chúng có dạng hình que ngắn (0.3 – 1.6 μm), hình cầu hay hình sợi. Phần lớn Ricketxi có đời sống ký sinh bắt buộc, một số phát triển trong tế bào chất của vật chủ, còn một số khác lại phát triển trong nhân tế bào, và một số chỉ phát triển nơi tiếp giáp giữa nhân tế bào và nguyên sinh chất.
Cơ thể Ricketxi chứa khoảng 30% protein, ngoài ra còn có nhiều lipit trung tính, photpholipit và hydratcacbon. Hàm lượng ADN thường chiếm 9% so với trọng lượng khô tế bào, còn hàm lượng ARN thì không cố định.
Về hình dáng, kích thước, Ricketxi gần giống với virut, chỉ khác ở cách sinh sản. Ricketxi sinh sản bằng cách phân cách. Ngoài ra trong tế bào của chúng đồng thời có cả ADN và ARN.
i) Archaea (Cổ khuẩn)
Cổ khuẩn là nhóm vi sinh vật có nguồn gốc cổ xưa. Khác với vi khuẩn, lipid của màng tế bào Archaea chứa liên kết ether giữa axit béo và glycerol, trong đó 2 loại lipid chính là glycerol diether và diglycerol tetraether. Archaea còn chứa một lượng lớn axit béo không phân cực.
Archaea có phương thức biến dưỡng đa dạng, tự dưỡng hoặc dị dưỡng cacbon, và có thêm phương thức biến dưỡng mới dẫn đến sự tạo thành methane. Chúng bao gồm các nhóm vi khuẩn có thể phát triển được trong môi trường cực đoan (extra), chẳng hạn như nhóm ưa mặn (Halobacteriales) hiện diện trong các môi trường có nồng độ muối cao, không tăng trưởng được khi nồng độ muối thấp hơn 1.5M, tăng trưởng được ở nồng độ muối bảo hòa; nhóm ưa nhiệt (Thermococcales, Thermoproteus, Thermoplasmatales) thường hiện diện trong những đống thải than đá tự phát nhiệt; nhóm kỵ khí sinh metan (Methanococcales, Methanobacteriales, Methanomicrobiales); và nhóm vi khuẩn lưu huỳnh ưa nhiệt (Sulfobales, Desulfurococcales). Những nghiên cứu gần đây cho thấy Archaea ngày càng có mặt nhiều trong các loại môi trường sống khác nhau, đặc biệt là quá trình kỵ khí trong xử lý nước thải bằng phương pháp sinh hóa, chúng đóng vai trò khá quan trọng trong việc tạo ra CH4.
3.3.2.4. Hoạt động sống của vi sinh vật trong nước thải
Nước thải mới thường ít vi sinh vật, đặc biệt nước thải công nghiệp đã qua công đoạn xử lý nhiệt, có khi lúc đầu hầu như không có vi sinh vật. Nước thải trong hệ thống thoát nước sau một thời gian, dù rất ngắn, cũng đủ điều kiện để vi sinh vật thích nghi, sinh sản và phát triển tăng sinh khối (trừ những nước thải có chất độc, chất ức chế hoặc diệt vi sinh vật, như nước thải có hàm lượng kim loại nặng, các chất hữu cơ và vô cơ có tính độc,…). Sau một thời gian sinh trưởng, chúng tạo thành quần thể vi sinh vật có ở trong nước, đồng thời kéo theo sự phát triển của các giới thủy sinh.
Quần thể vi sinh vật ở các loại nước thải là không giống nhau. Mỗi loại nước thải có hệ vi sinh vật thích ứng. Song, nói chung vi sinh vật trong nước thải đều là vi sinh vật hoại sinh và dị dưỡng. Chúng không thể tổng hợp được các chất hữu cơ làm vật liệu tạo tế bào mới, trong môi trường sống của chúng cần phải có mặt các chất hữu cơ để chúng phân hủy, chuyển hóa thành vật liệu xây dựng tế bào, đồng thời chúng cũng phân hủy các hợp chất nhiễm bẩn trong nước đến sản phẩm cuối cùng là CO2 và nước hoặc tạo thành các loại khí khác (CH4, H2S, indol, mecaptan, scatol, N2…).
Trong nước thải, các chất nhiễm bẩn chủ yếu là các chất hữu cơ hòa tan, ngoài ra còn có các chất hữu cơ ở dạng keo và phân tán nhỏ ở dạng lơ lửng. Các dạng này tiếp xúc với bề mặt tế bào vi khuẩn (trong nước thải vi khuẩn chiếm đa số trong hệ vi sinh vật) bằng cách hấp phụ hay keo tụ sinh học, sau đó sẽ xảy ra quá trình dị hóa và đồng hóa. Quá trình dị hóa là quá trình phân hủy các chất hữu cơ có khối lượng phân tử lớn, có cấu trúc phân tử là mạch dài thành các hợp chất có mạch ngắn, có khối lượng thấp hoặc thành các đơn vị cấu thành, có thể đi qua được màng vào trong tế bào và chuyển vào quá trình phân hủy nội bào (hô hấp hay oxy hóa tiếp) hay chuyển sang quá trình đồng hóa.
Quá trình tự làm sạch trong nước diễn ra rất phức tạp. Có 3 quá trình tự làm sạch trong nước: tự làm sạch vật lý, tự làm sạch hóa học và tự làm sạch sinh học. Quá trình tự làm sạch sinh học diễn ra thường xuyên và mạnh mẽ nhất, quá tình này quyết định mức độ tự làm sạch toàn điện của nước. Quá ._.