Nghiên cứu xác định tổng số và tổng dạng Asen trong một sô hải sản bằng phương pháp trắc quang

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM ––––––––––––––––––– PHẠM THỊ THANH HỒNG NGHIÊN CỨU XÁC ĐỊNH TỔNG SỐ VÀ TỔNG DẠNG ASEN TRONG MỘT SỐ HẢI SẢN BẰNG PHƢƠNG PHÁP TRẮC QUANG LUẬN VĂN THẠC SĨ KHOA HỌC HOÁ HỌC THÁI NGUYÊN - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM ––––––––––––––––––– PHẠM THỊ THANH HỒNG NGHIÊN CỨU XÁC ĐỊNH TỔNG SỐ VÀ TỔNG DẠNG ASEN TR

pdf83 trang | Chia sẻ: huyen82 | Lượt xem: 1429 | Lượt tải: 0download
Tóm tắt tài liệu Nghiên cứu xác định tổng số và tổng dạng Asen trong một sô hải sản bằng phương pháp trắc quang, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ONG MỘT SỐ HẢI SẢN BẰNG PHƢƠNG PHÁP TRẮC QUANG Chuyên ngành: HOÁ PHÂN TÍCH Mã số: 60.44.29 LUẬN VĂN THẠC SĨ KHOA HỌC HOÁ HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC: TS LÊ ĐỨC LIÊM THÁI NGUYÊN - 2009 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả của luận văn là trung thực và chƣa từng đƣợc công bố trong bất kỳ tài liệu nào. Thái Nguyên, tháng 11 năm 2009 Tác giả Phạm Thị Thanh Hồng Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên LỜI CẢM ƠN Em xin chân thành cảm ơn TS. Lê Đức Liêm - Đại học Mỏ địa chất đã giao đề tài, hƣớng dẫn khoa học và tạo điều kiện thuận lợi giúp em hoàn thành luận văn này. Với lòng biết ơn sâu sắc, em xin chân thành cảm ơn TS. Vũ Đức Lợi - Phòng Khoa học và Kỹ thuật phân tích, Viện Hóa học đã hƣớng dẫn khoa học, tận tình chỉ bảo, giúp đỡ em trong suốt quá trình làm luận văn. Em cũng xin chân thành cảm ơn PGS.TS. Lê Lan Anh và các anh chị em thuộc phòng Khoa học và Kỹ thuật phân tích, Viện Hóa học đã giúp đỡ và tạo điều kiện thuận lợi cho em trong suốt quá trình thực hiện đề tài. Em xin chân thành cảm ơn Ban chủ nhiệm Khoa Hóa học, các thầy cô giáo trong tổ bộ môn hóa học phân tích - Trƣờng Đại học Sƣ phạm - Đại học Thái Nguyên đã dạy dỗ, tạo mọi điều kiện thuận lợi giúp đỡ em trong suốt quá trình học tập, và hoàn thành luận văn. Tôi cũng xin chân thành cám ơn gia đình, bạn bè, ngƣời thân và đồng nghiệp đã quan tâm, động viên, giúp đỡ tôi trong suốt quá trình nghiên cứu và hoàn thành luận văn. Thái Nguyên, ngày 25 tháng 9 năm 2009 Tác giả Phạm Thị Thanh Hồng Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên MỤC LỤC MỞ ĐẦU .......................................................................................... 1 CHƢƠNG I: TỔNG QUAN .............................................................. 3 1.1.Khái quát về nguyên tố Asen....................................................... 3 1.1.1.Tính chất lí học của Asen ......................................................... 3 1.1.2. Tính chất hóa học của Asen và các hợp chất ............................ 5 1.1.2.1. Các phản ứng hóa học của nguyên tố Asen ........................... 5 1.1.2.2. Tính chất hóa học của các hợp chất của Asen. ...................... 6 1.2. Ứng dụng của Asen[6] ............................................................... 9 1.2. Các dạng Asen trong môi trƣờng biển: .................................... 10 1.2.1. Những dạng Asen trong nƣớc biển và nƣớc mạch bùn biển. .. 11 1.2.2. Các dạng Asen trong động vật biển ....................................... 12 1.2.3. Các dạng Asen trong mẫu trầm tích biển ............................... 13 1.3. Ảnh hƣởng của Asen đến sức khỏe [12]. .................................. 14 1.3.1. Tác động sinh hóa ................................................................. 14 1.3.2. Nhiễm độc cấp tính ............................................................... 15 1.3.3. Nhiễm độc mãn tính [12] ....................................................... 15 1.4. Các phƣơng pháp tách chiết và bảo quản mẫu trong phân tích các dạng Asen. ...................................................................................... 18 1.4.1. Một số phƣơng pháp xử lý mẫu trƣớc khi phân tích [13,14]. . 19 1.4.2. Phƣơng pháp chiết và bảo quản các dạng Asen trong các mẫu hải sản [13]. .................................................................................... 23 1.4.3. Ổn định và duy trì những dạng ban đầu của mẫu. .................. 26 1.5. Các phƣơng pháp phân tích Asen ............................................. 26 1.5.1. Phƣơng pháp đo hiện trƣờng với chất nhuộm thủy ngân Bromua ........................................................................................... 26 1.5.2. Phƣơng pháp phát xạ nguyên tử cảm ứng cộng hƣởng plasma (ICP- ASE) ..................................................................................... 27 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1.5.3. Phƣơng pháp quang phổ hấp tụ nguyên tử kết hợp thiết bị sinh khí Hiđrua ( HVG - ASS) . .............................................................. 27 1.5.4. Phƣơng pháp dùng vi khuẩn phát sáng. ................................. 28 1.5.5. Phƣơng pháp phân tích thể tích ............................................. 28 1.5.6. Phƣơng pháp cực phổ Von- Ampe hòa tan............................. 28 1.5.8. Phƣơng pháp trắc quang [4,5,10] ........................................... 29 CHƢƠNG II. THỰC NGHIỆM VÀ PHƢƠNG PHÁP .................... 33 2.1. Thiết bị, dụng cụ và hóa chất ................................................... 33 2.1.1. Thiết bị và dụng cụ ............................................................... 33 2.1.2. Hóa chất ................................................................................ 33 2.1.3. Chuẩn bị hóa chất và dung dịch chuẩn................................... 34 2.2. Phƣơng pháp nghiên cứu: ......................................................... 35 2.2.1.Phƣơng pháp xác định asen : .................................................. 35 2.2.2. Phƣơng pháp xử lý mẫu: ....................................................... 36 2.3. Đối tƣợng nghiên cứu: ............................................................. 37 2.4. Nội dung nghiên cứu. ............................................................... 37 2.4.1. Nghiên cứu các điều kiện tối ƣu để xác định asen bằng phƣơng pháp đo quang: ............................................................................... 37 2.4.2. Xây dựng qui trình phân tích cho các đối tƣợng mẫu nghiên cứu. ................................................................................................ 37 2.5. Lấy mẫu và bảo quản mẫu. ....................................................... 38 CHƢƠNG III. KẾT QUẢ VÀ THẢO LUẬN .................................. 39 3.1. Khảo sát các điều kiện tối ƣu cho quá trình tạo hợp chất màu... 39 3.1.1. Khảo sát phổ hấp thụ của thuốc thử: ...................................... 39 3.1.2. Khảo sát phổ hấp thụ của hợp chất màu ................................. 39 3.1.3. Khảo sát thời gian tối ƣu cho việc tạo hợp chất màu. ............. 41 3.1.4.Ảnh hƣởng của pH đến quá trình khử Asen ............................ 42 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3.1.5. Ảnh hƣởng của nồng độ chất khử (KI)tới độ hấp thụ quang(A) cúa Asen ......................................................................................... 43 3.1.6. Ảnh hƣởng của nồng độ chất khử (Zn)tới độ hấp thụ quang(A) cúa Asen ......................................................................................... 43 3.2. Ảnh hƣởng của các yếu tố khác tới sự tạo hợp chất màu ........... 45 3.2.1.Khảo sát ảnh hƣởng của thể tích thuốc thử. ............................ 46 3.2.2. Khảo sát ảnh hƣởng của thể tích mẫu. ................................... 47 3.2.3. Khảo sát ảnh hƣởng của các chất đến sự tạo hợp chất màu .... 49 3.2.4. Xây dựng đƣờng chuẩn xác định Asen. ................................. 50 3.2.5. Giới hạn phát hiện của phƣơng pháp ..................................... 51 3.3. Qui trình phân tích Asen tổng số. ............................................. 52 3.3.1 Khảo sát ảnh hƣởng của thành phần và nồng độ axit tới quá trình vô cơ hóa mẫu. ....................................................................... 52 3.3.2 Khảo sát hiệu suất của quá trình vô cơ hóa mẫu. .................... 54 3.3.3. Quy trình phân tích Asen tổng số. ......................................... 56 3.3.4. Đánh giá độ chính xác của phƣơng pháp. .............................. 60 3.4. Phân tích dạng Asen hữu cơ và vô cơ. ...................................... 61 3.4.1 Quy trình phân tích các dạng Asen từ các mẫu hải sản. ......... 61 3.4.2. Kết quả phân tích dạng Asen vô cơ, dạng Asen hữu cơ trong một số mẫu hải sản ………………………………………………………….…..….62 KẾT LUẬN .................................................................................... 67 TÀI LIỆU THAM KHẢO ............................................................... 69 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1 MỞ ĐẦU Asen là nguyên tố độc hại có mặt trong nhiều loài hải sản. Dạng Asen chính trong động vật biển là Asenobetan, một dạng muối Asen bậc bốn. Thực tế Asen dƣờng nhƣ có mặt khắp nơi trong quần thể động vật biển, tác động tới sức khỏe của con ngƣời thông qua con đƣờng ăn uống và đến đa số động vật khác hoặc lên tất cả các sinh vật biển nói chung. Vì thế, việc xác định hàm lƣợng Asen trong hải sản có ý nghĩa cực kỳ quan trọng. Độc tính của Asen phụ thuộc rất nhiều vào dạng hóa học của nó, nhìn chung, Asen ở dạng hợp chất Asen hữu cơ (Asen hữu cơ) ít độc hơn dạng hợp chất Asen vô cơ (Asen vô cơ ). Chính vì vậy, nếu chỉ phân tích hàm lƣợng Asen tổng số trong hải sản thì chƣa cho đƣợc thông tin chính xác về độc tính của Asen, do đó, việc định dạng và xác định chính xác hàm lƣợng các dạng hóa học khác nhau của Asen tạo nên tổng hàm lƣợng Asen trong một mẫu phân tích là rất cần thiết. Nó góp phần tích cực cho ngành xuất nhập khẩu hải sản và chƣơng trình an toàn thực phẩm quốc gia. Hải sản là một nguồn thực phẩm vô cùng phong phú và đa dạng, chính vì vậy, việc nghiên cứu phân tích, đánh giá đƣợc hết các dạng Asen trong tất cả các hải sản là khó khăn, đòi hỏi nhiều thời gian. Trong phạm vi của luận văn này, do thời gian có hạn, với mục tiêu đặt ra là, xác định hàm lƣợng Asen tổng số, hàm lƣợng Asen hữu cơ và Asen vô cơ trong một số loài hải sản bằng phƣơng pháp trắc quang, một phƣơng pháp đơn giản về thiết bị nhƣng lại cho kết quả đáng tin cậy do phép đo có nhiều ƣu điểm cơ bản: -Độ nhạy cao( C  10 -4 -10 -7 mol/l, cỡ 1ppm), độ chọn lọc khá cao, phân tích nhanh, thuận tiện trong phép phân tích nhiều đối tƣợng khác nhau. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2 -Xác dịnh đƣợc định tính, định lƣợng, xác định đƣợc cấu trúc ban đầu của mẫu, dễ tự động hóa, đa năng ,thực thi do thiết bị phổ biến không đắt tiền. Từ những lí do trên, chúng tôi chọn đề tài:" Nghiên cứu xác định tổng số và tổng dạng Asen trong một số hải sản bằng phƣơng pháp trắc quang". Nhiệm vụ đặt ra của đề tài để đạt đƣợc những mục tiêu trên là: -Nghiên cứu các yếu tố ảnh hƣởng để đƣa ra các điều kiện thích hợp xác định hàm lƣợng Asen trong một số hải sản bằng phƣơng pháp trắc quang. -Xây dựng qui trình phân tích Asen với mẫu là hải sản. -ứng dụng vào phân tích một số mẫu hải sản. -Xác định hàm lƣợng tổng số, tổng dạng Asen trong một số hải sản. -Kết luận đƣợc tính độc của Asen trong các mẫu hải sản đã phân tích. Do thời gian có hạn, nên luận văn không tránh khỏi khiếm khuyết, chúng tôi rất mong nhận đƣơc sự góp ý của thầy cô và các bạn đồng nghiệp. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3 CHƢƠNG I: TỔNG QUAN 1.1.Khái quát về nguyên tố Asen 1.1.1.Tính chất lí học của Asen Asen hay còn gọi là thạch tín, là một á kim có màu xám kim loại, rất giòn, kết tinh dạng tinh thể. Asen lần đầu tiên đƣợc Albertus Magnus (Đức) viết về nó vào năm 1250. Asen là một Á kim gây ngộ độc mạnh. Dƣới đây là một số thông số vật lí của Asen [33]: Số hiệu nguyên tử: 33 Khối lƣợng nguyên tử: 74,2916 g.mol-1 Tỉ trọng: 5,7g.cm-3(ở 140C) Điểm nóng chảy: 8140C(36atm) Điểm sôi: 6150C Bán kính vanderwaals: 0,139nm Bán kính: 0,222 nm(-3); 0,047 nm(+5); 0,058 nm(+3) Đồng vị: 8 Lớp vỏ điện tử: [Ar] 3d10 4s2 4p3 Năng lƣợng ion hóa thứ nhất: 947kJ. Mol-1 Năng lƣợng ion hóa thứ hai: 1798kJ. Mol-1 Năng lƣợng ion hóa thứ ba: 2376kJ. Mol-1 Thế tiêu chuẩn: -0,3V(As3+/As) Asen có hai dạng thù hình là dạng kim loại và dạng không kim loại. Dạng không kim loại của Asen khi làm ngƣng tụ dạng hơi, đó là chất rắn màu vàng đuợc gọi là Asen vàng, tan trong CS2 cho dung dịch gồm những Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 4 phân tử As4. Ở nhiệt độ thƣòng, Asen vàng dƣới tác dụng của ánh sáng nó chuyển nhanh sang dạng kim loại. Dạng kim loại của Asen có màu trắng bạc, có cấu trúc giống phốt pho đen, dẫn điện dẫn nhiệt nhƣng giòn, dễ nghiền thành bột, không tan trong CS2. Asen phân bố rộng rãi trên vỏ trái đất với nồng độ trung bình khoảng 2mg/kg. Nó có mặt trong đá đất nƣớc không khí, và một số sinh vật. Asen có thể tồn tại với 4 trạng thái oxi hóa: -3;0;+3;+5 [6]. Asen là nguyên tố cancofil dễ tạo sunfua với lƣu huỳnh, tạo hợp chất với selen, telua và đặc biệt với đồng, niken, sắt, bạc,... . Có khoảng gần 140 khoáng vạt độc lập của Asen, trong đó 60% là Asenat và 35% là sunfua. Các khoáng vật quan trọng nhất của Asen là: Asenopirit(FeAsS), Ocpirmen(As2S3), Rialga(AsS)....Asenconf kết hợp các nguyên tố khác, thay thế lƣu huỳnh trong các hợp chất nhƣ: Lơlingit( FeAs2), Smartina(As2Co), các loại hợp chất này thƣờng tạo thành ở nhiệt độ thấp. Nhờ quá trình chuyển hóa sinh học mà Asen còn tồn tại ở một số dạng hữu cơ nhƣ MMA (Monomethylarsonic axit), DMA (Dimethylarsinous acid), AsB (Asenobetaine), AsC (Asenochline), Asenosugars.....[32]. Asen là nguyên tố trong dãy chuyển tiếp,có tính chất hóa học gần giống với nguyên tố đứng trên nó là phốt pho, có tính chất gần với kim loại hơn tính á kim. Asen có hai đồng vị 75As (đồng vị bền) và 78As (đồng vị phóng xạvới chu kỳ bán rã T1/2 = 26,8 giờ). Asen có bốn dạng biến thể gồm hai biến thể kết tinh và hai biến thể ẩn tinh, trong đó bền vững là các dạng biến thể kết tinh còn gọi là Asen dạng kim loại có màu xám bạc. Asen kim loại khi bị đốt nóng đến 615,50C thì thăng hoa mà không qua giai đoạn nóng chảy, khi gặp lạnh nó ngƣng tụ thành tinh thể tà phƣơng. Tuy nhiên, dƣới áp suất cao 35,8 atm nó nóng chảy ở nhiệt độ 814-8680C. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 5 Trong không khí, Asen kim loại dễ bị oxihóa thành As2O5 dạng bột màu trắng, có mùi tỏi, rất độc đối với cơ thể sống. Asen là một chất bán dẫn, dễ nghiền thành bột.. có thể tạo ra các hợp chất bán dẫn của Asen nhƣ GaAs, có tính chất bán dẫn nhƣ Silic và Gecmani. 1.1.2. Tính chất hóa học của Asen và các hợp chất 1.1.2.1. Các phản ứng hóa học của nguyên tố Asen Asen là nguyên tố bán kim loại, có tính chất hóa học gần với tính chất của á kim, cấu hình lớp vỏ điện tử hóa trị của Asen là 4s24p3, trong cấu hình điện tử của Asen có sự tham gia của ocbital d , vì vậy, có khả năng mở rộng vỏ hóa trị. Trong các hợp chất Asen có ba giá trị số oxi hóa -3, +3, và +5, trong đó số oxi hóa -3 rất đặc trƣng cho Asen. Asen bền trong không khí khô, nhƣng bề mặt bị oxi hóa dần trong không khí ẩm thành lớp xỉn màu đồng cuối cùng thành lớp vỏ màu đen bao quanh nguyên tố. Khi đun nóng trong không khí, Asen bắt cháy tạo thành Asen trioxit- thực tế là tetraasen hexaoxit As4O6, đun nóng trong oxi tạo thành Asen pentoxit- thực tế là tetraasen đecaoxit As4O10 và As4O6. Asen không phản ứng với nƣớc trong điều kiện thiếu không khí hoặc các điều kiện thƣờng. Ở dạng bột nhỏ, Asen bốc cháy trong khí clo tạo thành triclorua: 2As + 3Cl2  2AsCl3 Khi đun nóng Asen cũng tƣơng tác với brom, iot, lƣu huỳnh. Asen đƣợc điều chế nhƣ kim loại, khi khử oxit của chúng bằng cacbon hay hiđro sẽ cho phản ứng Asen kim loại. Khi đun nóng Asen trong không khí Asen cháy tạo thành oxit, ngọn lửa màu xanh là As2O3. Nó không tác dụng Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 6 với axit không có tính oxi hóa, nhƣng dễ dàng phản ứng với các axit HNO3, H2SO4 đặc. 3 As + 5HNO3 + 2 H2O 3 H2SO4 + 5NO Các halogenua đƣợc tạo ra khi Asen phản ứng với halogen, các hợp chất này dễ bị thủy phân tạo axit tƣơng ứng trong môi trƣờng nƣớc. 3As + 5Cl2 + 2H2O 2H3AsO4 + 10HCl Trong thời kỳ đồ đồng, Asen thƣờng đƣợc đƣa vào trong đồng thiếc để làm cho hợp kim trở thành cứng hơn (gọi là " đồng thiếc Asen"). 1.1.2.2. Tính chất hóa học của các hợp chất của Asen. Có rất nhiều dạng khác nhau của dạng Asen vô cơ và Asen hữu cơ. Các dạng quan trọng nhất có liên quan đến sức khỏe đƣợc đƣa ra trong bảng1.1[2]: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 7 Bảng 1.1. Một số dạng Asen vô cơ và Asen hữu cơ Tên Công thức As(III) vô cơ Asen trioxit As2O3 hoặc As2O6 Axit asenơ H3AsO3 Asenit hay muối axit H3AsO3 Asen triclorua AsCl3 Asen(III) sunfua As2S3 As(V) vô cơ Asen pentoxit As2O5 Asen asenic H3AsO4 Asenit, hay muối axit H3AsO4; H3AsO4 Asen (III) hữu cơ Axit monometylasonic CH3AsO(OH)2 Axit dimetylasinic (CH3)2AsO(OH) Trimetylasin oxit (CH3)3AsO Metylasin CH3AsH2 Đimetylasin (CH3)2AsH Trimetylasin (CH3)3As Axit asinilic (axit p- aminobenzen asonic) H2N-C6H4- AsO(OH)2 Cacbazan (axit 4 - [aminocacbonylamino]- phenylasonic (OH)2OAs-C6H4- NH(CO)NH2 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 8 Một số phản ứng đặc trƣng của As+3: Các hợp chất As+3 phổ biến nhƣ As3S4, H3AsO3, AsCl3, As2O3,... đều tan tốt trong axit HNO3 đặc nóng, NaOH, NH4OH, (NH4)2S và (NH4)2CO3. As2O3 + 8HNO3 + 4H2O 2H3AsO3 + 3H2SO4 + 8NO As2O3 + 3(NH4)2S 2(NH4)3AsS3 Cho khí H2S qua dung dịch AsCl3 có kết tủa màu vàng tƣơi là As2S3. AsCl3 là một hợp chất quan trong của Asen, nó dễ bay hơi, dễ bị thủy phân trong môi truờng nƣớc. AsCl3 + 3H2O H3AsO3 + 3HCl Khi khử H3AsO3 ta thu đƣợc khí Asin, có mùi tỏi rất độc. H3AsO3 + 3Zn + 6HCl 3ZnCl2 + AsH3 + 3H2O H3AsO3 + CuSO4 CuHAsO3 + H2SO4 CuHAsO3 có kết tủa màu vàng lục trong môi trƣờng kiềm, nó tan trong dung dịch cho màu xanh. CuHAsO3 + NaOH CuNaAsO3 + H2O Một số phản ứng đặc trƣng của As+5: Một số hợp chất quan trọng của As+5 nhƣ As2S5, H3AsO4, Ag3AsO4... . Trong đó As2S5 không tan trong nƣớc và dung dịch HCl, nó chỉ tan trong NaOH, HNO3 và NH4OH vì vậy dựa vào tính chất này có thể xác định Asen bằng phƣơng pháp khối lƣợng. As2S5 + 3(NH4)2S 2(NH4)3AsS4 Khi cho axit asenic tác dụng molidat amoni (NH4)2MoO4 trong môi trƣờng axit HNO3 sẽ cho kết tủa màu vàng, muối này dùng để định tính và định lƣợng Asen. H3AsO4 + 12(NH4)2 MoO4 + 21HNO3 (NH4)3H4[As(Mo2O7)6] + 21NH4NO3 + 10H2O Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 9 Trong hợp chất này As+5 có vai trò ion trung tâm điển hình tạo phức dị đa axit và phức dị đa axit này cũng có thể bị khử về phức dị đa màu xanh. Một số phản ứng đặc trƣng của AsH3: Trong hợp chất AsH3 , Asen thể hiện số oxi hóa -3, liên kết trong Asin là liên kết cộng hóa trị, đây cũng là đặc điểm do cấu hình điện tử của Asen. Asin là một khí độc, không màu, dễ bị phân hủy thành Asen nguyên tố trong môi trƣờng không khí. Asin có nhiệt độ nóng chảy là - 1170C, nhiệt độ sôi là - 62 0 C. AsH3 thể hiện tính khử mạnh. Tác dụng với H2SO4 loãng: 2AsH3 + 6H2SO4 6SO2 + As2O3 + 9H2O Tác dụng với I2: AsH3 + 4I2 + 4H2O H3AsO4 + 8HI Một số phản ứng đặc trƣng đƣợc dùng trong phƣơng pháp trắc quang là phản ứng tạo phức asin với đietyl đithiocacbamat bạc. 1.2. Ứng dụng của Asen[6] Asen đƣợc biết đến và sử dụng rộng rãi tại Irăc và một vài nơi khác từ thời cổ đại. Trong thời kì đồ đồng, Asen thƣờng đƣợc đƣa vào đồng thiếc để làm cho hợp kim trở nên cứng hơn (gọi là "đồng thiếc Asen"). Albertus Magnus (1193-1280) là ngƣời đầu tiên tách đƣợc Asen nguyên tố vào năm 1250. Năm 1649, Johann Schroder công bố hai cách điều chế Asen. Chì Asenat đã từng đƣợc sử dụng nhiều trong thế kỉ 20 làm thuốc trừ sâu cho các loại cây ăn quả. Lục Scheele hay Asenit đồng, đƣợc sử dụng trong thế kỉ 19 nhƣ là tác nhân tạo màu trong các loại sơn. Ứng dụng có nhiều e ngại nhất đối với cộng đồng trong xử lí chống mối mọt và bào mòn cho gỗ bằng Asenat đồng cromat, còn gọi là CCA hay tanalith. Gỗ xẻ xử lí bằng CCA vẫn còn phổ biến ở nhiều quốc gia, nó đƣợc Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 10 sử dụng nhiều trong nửa cuối thế kỉ 20, mặc dù gỗ xẻ xử lí bằng CCA đã bị cấm ở nhiều khu vực. Việc hấp thụ trực tiếp hay gián tiếp do việc đốt cháy gỗ xử lí bằng CCA có thể gây tử vong ở động vật cũng nhƣ gây ngộ độc nghiêm trọng ở ngƣời, liều gây tử vong ở ngƣời là khoảng 20mg tro. Trong các thế kỉ 18,19 và 20 một lƣợng lớn các hợp chất của Asen đã đƣợc sử dụng làm thuốc chữa bệnh. Arsphenamin và neosalvarsan là những hợp chất của Asen hữu cơ đƣợc chỉ định trong điều trị giang mai, nhƣng đã bị loại bỏ bởi các loại thuốc kháng sinh hiện đại. Asen(III) oxit đã đƣợc sử dụng với nhiều mục đích khác nhau trong suốt 200 năm qua, nhƣng phần lớn là đỉều trị ung thƣ. Cục thực phẩm và dƣợc phẩm Hoa kì (FDA) vào năm 2000 đã cho phép dùng hợp chất này trong điều trị các bệnh nhân bị bạch cầu cấp tính. Đồng axeto asenit(Cu(C2H3O2)2.3Cu(AsO2)2) đƣợc sử dụng làm thuốc nhuộm màu xanh lục dƣới nhiều tên gọi khác nhau, nhƣ "lục pais" hay "lục ngọc bảo". Nó gây ra nhiều ngộ độc Asen. Gali asenua là một vật liệu bán dẫn quan trọng, sử dụng trong công nghệ chế tạo mạch tích hợp (IC), các mạch này có nhiều ƣu điểm hơn so với các mạch dùng silic. Asenat hiđro chì đã từng đƣợc sử dụng nhiều trong thế kỷ 20, làm thuốc trừ sâu cho các loại cây ăn quả. Việc sử dụng nó đôi khi tạo ra các tổn thƣơng não đối với những ngƣời phun thuốc này. 1.2. Các dạng Asen trong môi trƣờng biển: Mặc dù nồng độ Asen cao trong nƣớc biển đã đƣợc biết đến cách đây hơn 100 năm, nhƣng hàm lƣợng và tính đa dạng của các dạng Asen trong mẫu sinh vật biển chỉ đƣợc đề cập vào khoảng gần 30 năm trở lại đây. Asen trong nƣớc biển tồn tại chủ yếu ở dạng vô cơ nhƣ Asenate và Asenite, chính vì vậy Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 11 sinh vật biển cũng không thể tránh khỏi sự phơi nhiễm bởi những dạng Asen vô cơ độc này.[13] Hiện nay, đã phát hiện ra những cơ chế lý thuyết về quá trình dịch chuyển sinh học và quá trình giải độc của các sinh vật biển. Kết quả của các quá trình này làm xuất hiện trong môi trƣờng nƣớc biển hơn 25 dạng Asen. Tuy nhiên sự phân bố những dạng này thay đổi rõ rệt giữa bốn đối tƣợng mẫu khác nhau bao gồm nƣớc biển, trầm tích biển, tảo và động vật. Trong môi trƣờng và các hệ sinh vật, Asen tồn tại ở nhiều dạng (bảng 1.1). Các nghiên cứu cho thấy nếu chỉ biết hàm lƣợng tổng số Asen sẽ thiếu cơ sở để đánh giá độc tính của Asen vì tính độc của Asen tùy thuộc vào các dạng hóa học tồn tại của Asen. Vì vậy, phát hiện ra các dạng Asen sẽ giúp chúng ta trong việc đánh giá chính xác hơn những tác động của nó đến môi trƣờng và sức khỏe con ngƣời. 1.2.1. Những dạng Asen trong nước biển. Asen trong nƣớc biển chủ yếu tồn tại dƣới dạng vô cơ, ở nồng độ khoảng 1  2  g/l. Nồng độ này cao hơn đa số các kim loại và á kim có độc tính tiềm tàng khác. Việc xác định các dạng Asen trong nƣớc biển lần đầu tiên đƣợc thực hiện vào năm 1926 bởi Atkins và Wilson [17], những kết quả của họ cho thấy ngoài thành phần chính là Asenite (As III) còn có sự hiện diện của Asenate (As V) [16]. Tính toán nhiệt động học chỉ ra rằng sự tồn tại gần nhƣ hoàn toàn dạng Asenate do sự khử sinh học, tuy nhiên, cũng có thể sản sinh ra Asenite ở những mức độ phân tích đƣợc. [35]. Nhiều thí nghiệm đã đƣợc tiến hành để xác định các hợp chất Asen trong môi trƣờng biển. Bốn dạng Asen bao gồm Asenat (V), Asenit (III), Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 12 Axitmethylarsonic (MMAA), axit dimethylasinic (DMAA), đã đƣợc phát hiện trong nƣớc biển bằng kỹ thuật HG-AAS[49]. Các nghiên cứu cho rằng, những dạng này là kết quả của quá trình dịch chuyển sinh học liên tục của Asen (V) bởi những thực vật trôi nổi [39]. Ngoài As (III), As (V), methylasonate (MA) và dimethylasinate (DMA), đã đƣợc phát hiện trong nƣớc biển còn có những dạng Asen chƣa đƣợc xác định và đang đƣợc tiếp tục nghiên cứu. 1.2.2. Các dạng Asen trong động vật biển Hầu hết các công bố đều cho rằng, dạng Asen hữu cơ trong động vật biển là Asenobetaine. Hợp chất này đã đƣợc xác định có trong tôm hùm Panulinuscygnus bởi phổ NMR và X-Ray sau khi đã đƣợc phân lập [26]. Sau này, hợp chất trên còn đƣợc tìm thấy trong nhiều loại động vật biển bao gồm cá mập [20], tôm hùm Mỹ [24], cá teloest, cua, tôm [41], hải sâm và vài dạng của loài chân bụng và nhuyễn thể hai vỏ [45]. Thực tế, các dạng hợp chất Asen hữu cơ dƣờng nhƣ có mặt ở khắp nơi trong quần thể động vật biển, tác động tới sức khỏe con ngƣời thông qua con đƣờng ăn uống và ảnh hƣởng đến hầu nhƣ đa số các động vật hoặc lên tất cả sinh vật biển nói chung. Trong nhiều công trình nghiên cứu, ngƣời ta đã chiết đƣợc một vài dạng Asen trong tôm bao gồm Asenocholine cũng nhƣ Asenobetaine [37]. Asenocholine đƣợc thông báo có trong con sò, hến [38], cá trong vùng ô nhiễm [42] và các sản phẩm của cá nhám [18]. Vài dạng trong mẫu cá đƣợc xác định cho thấy chúng chứa một phần nhỏ Asen ở dạng trimethylasine oxit [43]. Dạng trimethylasine oxit đƣợc xác định có trong cá da trơn Cnidoglanis macrocephalus ở cửa sông và loài cá biển Silago basseni [25]. IonTetramethylasonium, một sản phẩm của quá trình metyl sinh học, đƣợc xác định có trong sò Meretrix lusoria bằng phƣơng pháp HPLC-ICP và Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 13 phổ H-NMR sau khi phân lập [40]. Cũng hợp chất này đã đƣợc tìm thấy từ con trai [47], cải biển và cỏ chân ngỗng [46]. Hợp chất này còn đƣợc tìm thấy trong loài nhuyễn thể chân bụng Tectus pyramidis [29]. Trimethylasine đƣợc công bố ở mức rất thấp trong vài loài cua biển ở đại dƣơng. Một phần Asen trong quần thể biển có mặt ở dạng Asen-lipit. Những mô giàu dầu của một vài động vật biển ngoài Asenobetaine còn có Asen-lipit. Hợp chất dạng Asen hữu cơ chính trong động vật biển là Asenobetaie. Từ 21 năm trƣớc đây, Asenobetaie đã đƣợc nhận ra trong tôm hùm [26]. Hợp chất muối Asen bậc bốn ổn định này, qua nhiều nghiên cứu cho thấy có mặt trong tất cả các động vật biển, và trong đa số các loài hải sản đã phân tích thì dạng Asen này chiếm ƣu thế hơn cả [28]. Khả năng tƣơng thích của kỹ thuật phân tích gần đây với giới hạn phát hiện thấp (độ nhạy cao), cũng nhƣ sự quan tâm đối với những dạng Asen phụ khác, thƣờng có trong động vật đã đƣợc tăng lên. Năm 1993, Francesconi và Edmonds [28] cũng đã chứng minh sự có mặtcủa Asenobetaine trong động vật biển. 1.2.3. Các dạng Asen trong mẫu trầm tích biển Một số thông tin [36] về Asen trong bùn đƣợc công bố bằng phƣơng pháp chiết chọn lọc. Tuy nhiên, ít có thông tin về những dạng Asen tồn tại trong bùn, vì phần lớn các phƣơng pháp cần thiết để chiết Asen có vẻ đã làm thay đổi dạng hóa học của Asen. Mặc dù, nồng độ Asen trong trầm tích dƣới biển sâu (trên 450mg/kg) [28] có thể cao hơn so với lớp bùn gần bờ. Ngƣời ta cho rằng, nƣớc mạch bùn có chứa sẵn những dạng sinh học, dạng hóa học của Asen, đó chính là đề tài của một số nghiên cứu [48]. Tƣơng tự nhƣ trong nƣớc biển, trong trầm tích dạng hợp chất Asen vô cơ cũng trội hơn dạng hợp chất Asen hữu cơ. Ngoài ra, chúng còn có chứa hai dạng MMA, DMA và một Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 14 dạng Asen trimetyl,có thể là oxit trimetylasine( TMAO),hợp chất này đã đƣợc tìm thấy trong mẫu nƣớc trầm tích [23]. Nồng độ tổng Asen hòa tan trong nƣớc trầm tích nói chung cao hơn hẳn trong nƣớc biển. Tuy nhiên, cho đến nay, sự hiểu biết về quá trình dịch chuyển sinh học các dạng Asen trong trầm tích biển và nƣớc trong trầm tích còn hạn chế. Đa số các nghiên cứu về Asen trong trầm tích chủ yếu xác định hàm lƣợng tổng Asen mà ít có nghiên cứu về các dạng Asen [21]. 1.3. Ảnh hƣởng của Asen đến sức khỏe [12]. Theo chỉ dẫn 67/548/EEC - Liên minh châu Âu thì Asen nguyên tố và các hợp chất của Asen đƣợc phân loại là "độc" và "nguy hiểm cho môi trƣờng". IARC công nhận Asen nguyên tố và các hợp chất của Asen nhƣ là các chất gây ung thƣ nhóm I, còn EU liệt kê Trioxit Asen, Pentoxit Asen và các muối Asenat nhƣ là các chất gây ung thƣ loại I. 1.3.1. Tác động sinh hóa Asen và hợp chất của Asen có mặt ở khắp mọi nơi nhƣ trong không khí đất thức ăn, nƣớc uống và có thể xâm nhập vào cơ thể theo 3 đƣờng: hô hấp, da và chủ yếu là ăn uống. Các hợp chất dễ tan của Asen hấp thụ qua đƣờng tiêu hóa vào máu tới 90% và ra khỏi máu đến các tổ chức rất nhanh, nửa giờ sau khi tiếp xúc,đã tìm thấy liên kết của Asen với protein trong gan, thận, bàng quang, sau 24 giờ, trong máu chỉ còn lại 0,1%. Asen đƣợc đào thải chủ yếu là qua nƣớc tiểu. Trong số các hợp chất của Asen thì As(III) là độc nhất. Mức độ độc hại của các chất đƣợc sắp xếp theo thứ tự: Asin > As(III)As2O3 > As(V) > Asen hữu cơ. As(III) thể hiện tính độc bằng cách tấn công lên các nhóm -SH của các enzim, làm cản trở hoạt động của enzim. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 15 SH -O S [Enzim] + As - O ƣ  [Enzim] As - Oƣ + 2OHƣ SH -O S Các enzim sản sinh ra năng lƣợng của tế bào trong chu trình của axit nitric bị ảnh hƣởng rất lớn. Bởi các enzim bị ức chế do tạo thành phức với As(III), dẫn đến thuộc tính sản sinh ra các phần tử ATP bị ngăn cản. Do sự tƣơng tự về tính chất hóa học với photpho, Asen can thiệp vào một số quá trình hóa sinh làm rối loạn photpho. Có thể thấy đƣợc hiện tuợng này khi nghiên cứu sự phát triển hóa sinh của chất sản ra năng lƣợng chủ yếu là ATP (ađenozintriphotphat). Asen(III) Ở nồng độ cao làm đông tụ các protein do sự tấn công các liên kết sunfua bảo toàn cấu trúc bậc 2 và 3. Nhƣ vậy Asen có 3 tác dụng sinh hóa là: Làm đông tụ protein, tạo phức với enzim và phá hủy quá trình photpho hóa. 1.3.2. Nhiễm độc cấp tính Nhiễm độc Asen cấp tính xảy ra do ăn uống phải asen với liều lƣợng lớn(1-2g). Các nghiên cứu cho thấy triệu chứng nhiễm độc rất đa dạng, phụ thuộc vào hợp chất Asen đã ăn ._.phải. Có thể gặp các biểu hiện tổn thƣơng thận, rối loạn chức năng tim mạch, đôi khi xuất hiện phù phổi cấp, suy hô hấp, gan to... Nếu đƣợc cứu chữa kịp thời, bệnh nhân có thể sống sót, nhƣng để lại các di chứng nặng nề về não, suy tủy, suy thận, thiếu máu, giảm bạch cầu, tan huyết, xạm da và tổn thƣơng đa dây thần kinh ngoại biên.[13] 1.3.3. Nhiễm độc mãn tính Bệnh nhiễm độc Asen mãn tính do sử dụng nguồn nƣớc bị ô nhiễm Asen (asenicosis) xảy ra ở nhiều nƣớc trên thế giới. Biểu hiện gây ấn tƣợng mạnh nhất là hình ảnh "Bàn chân đen" tìm thấy đầu tiên ở Đài Loan năm 1920. Nguyên nhân gây bệnh là do dân cƣ sử dụng nguồn nƣớc bị nhiễm Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 16 Asen cao (0,35 - 1,10mg/l) từ các giếng khoan để sinh hoạt. Asen còn gây hàng loạt các bệnh nội khoa nhƣ: gây tăng huyết áp, gây tắc ngoại vi, bệnh mạch vành, mạch máu não dẫn đến thiếu máu cục bộ cơ tim và não, là những cơ quan đảm nhận chức năng sống quan trọng. Nguy cơ mắc bệnh và tử vong do nhồi máu cơ tim tăng cao. Nguy cơ mắc bệnh viêm tắc mạch ngoại biên tăng theo thời gian tiếp xúc với Asen ngay ở nồng độ > 0,02mg/l.[13] Biểu hiện lâm sàng của bệnh rất đa dạng, do Asen gây tác hại rộng rãi tới chức năng của nhiều hệ cơ quan: Thần kinh, tim mạch, tiêu hóa, hô hấp... Mức độ tổn thƣơng phụ thuộc vào độ nhạy cảm của từng cá thể, vào liều lƣợng và thời gian tiếp xúc. Quá trình phát triển bệnh âm ỉ, kéo dài. Ở giai đoạn sớm thƣờng tìm thấy các tổn thuơng da, các triệu chứng hay gặp nhƣ: Biến đổi sắc tố da (pigmentation), dày sừng (hyperkeratosis) ở lòng bàn chân, bàn tay, đối xứng hai bên, đôi khi kèm theo các vết nứt nẻ. Các tổn thƣơng có thể phát triển thành ung thƣ da. Nguy cơ mắc bệnh tăng ngay cả khi uống nƣớc có nồng độ Asen < 0,05mg/l. Bệnh thƣờng phát triển sau khi tiếp xúc một thời gian dài ủ bệnh (5 - 10 năm, có thể là lâu hơn). Ngoài ra Asen có thể làm tổn thƣơng thần kinh, ảnh hƣởng đến việc sinh sản ở phụ nữ và tăng nguy cơ mắc bênh xơ gan, thiếu máu, rối loạn chuyển hóa protein và đuờng. Điều đáng lo ngại nhất là Asen có thể gây ung thƣ da, phổi, bàng quang, thận. Nguy cơ mắc bệnh ung thƣ tăng theo thời gian tiếp xúc. Theo thống kê của trung tâm quốc gia ở Đài Loan, tỉ lệ mắc bệnh ung thƣ bàng quang tại 4 khu vực bệnh "Bàn chân đen" năm 1993 là 23,5% so với tỉ lệ toàn quốc là 2,29%. Tỉ lệ ung thƣ da và chết do ung thƣ da từ 14,01 - 32,41%. Cơ chế gây ung thƣ cho tới nay vẫn chƣa rõ. Tuy vậy, các kết quả nghiên cứu thực nghiệm đều cho thấy Asen thúc đẩy quá trình phát triển khối u, làm rối loạn quá trình tổng hợp ADN, đặc biệt là trong các nguyên bào sợi và các tế bào tủy xƣơng bạch cầu, làm giảm số lƣợng bạch cầu lympho ngoại Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 17 vi, thay đổi khả năng miễn dịch và làm giảm sức đề kháng của cơ thể chống lại tế bào ung thƣ. Mặt khác, Asen còn có khả năng làm rối loạn gen, sai lạc nhiễm sắc thể, làm gẫy nhiễm sắc tử và nhiễm sắc thể, gây tăng tần số sinh sản của nhân và gây hiện tƣợng lệch bội. Một số nghiên cứu về các biến đổi sinh học của Asen trong cơ thể và phƣơng pháp điều trị cho thấy, khả năng tích lũy Asen trong cơ thể là rất lớn, đặc biệt là khi tiếp xúc lâu dài với liều lƣợng nhỏ. Mặc dù có tính độc nhƣ trên, song không phải tất cả các dạng Asen đều độc, và kể cả những dạng Asen có tính độc thì ở hàm lƣợng nhỏ Asen lại có khả năng kích thích sự phát triển của sinh vật. Theo các công trình nghiên cứu, thì Asen vô cơ độc hơn Asen hữu cơ. Jeffer P.Koplan cùng các đồng nghiệp cho rằng: Một số dạng hữu cơ có độc tính rất thấp và với một số dạng nó hoàn toàn không có độc tính [13]. Vì vậy biết các dạng Asen là thách thức lớn đối với các nhà khoa học nghiên cứu về môi trƣờng và sức khỏe. Theo nhiều công trình nghiên cứu, hải sản cũng có thể nhiễm kim loại nặng nhƣ: Asen, thủy ngân... do môi trƣờng ô nhiễm. Hải sản có hàm lƣợng Protein cao, các oxit béo omega 3, chất béo bão hòa thấp tốt cho sức khỏe, đặc biệt đối với ngƣời bị bệnh tim mạch, phụ nữ có thai và trẻ em. Tuy nhiên, hải sản là một trong 20 loại thực phẩm dễ gây dị ứng, ngộ độc nhất. Các triệu chứng biểu hiện thƣờng là mẩn ngứa, nổi mề đay, sổ mũi, mắt ngứa đỏ, tụt huyết áp, khó thở, nôn mửa, tiêu chảy....Nhiều ngƣời vẫn nghĩ rằng tiêu chảy do hải sản lạnh, nhƣng thực ra là do trong hải sản có chứa độc tố. Nghiên cứu mới đây của Viện Hải Dƣơng học Nha Trang cho biết, trong hải sản có thể chứa các độc tố gây nguy hiểm cho ngƣời ăn. Độc tố tảo Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 18 Phycotoxins sinh sản trong các rặng san hô ven bờ, là nơi sinh sống của các loài thân mềm nhƣ nghêu, sò, cua, tôm...Các độc tố tảo này không gây nguy hại đến các loài sinh vật biển nhƣng chúng sẽ gây ngộ độc cho ngƣời nếu ăn phải. Độc tố tảo Phycotoxins không bị phân hủy khi đun nấu, có thể gây tiêu chảy, đau bụng, đau đầu, gây liệt cơ, mất trí nhớ... Hải sản cũng có thể nhiễm kim loại nặng nhƣ Asen, Thủy ngân do môi trƣờng ô nhiễm. Chất độc hại thƣờng lắng đọng ở lớp bùn nên các loài sống ở tầng đáy nhƣ ngao, sò, ốc, hến...rất dễ bị nhiễm độc. Các loài cá to cũng thƣờng bị nhiễm độc nặng hơn do quá trình tích lũy thức ăn. Từ những lí do trên, các nhà khoa học khuyến cáo rằng: Hải sản mua phải tƣơi sống, tránh mua hải sản trong vùng đang bị ô nhiễm nặng. Tuyệt đối không ăn hải sản đã chết vì chúng có thể tiết ra chất độc. Đối với cá phải làm ngay khi cá còn tƣơi và bỏ toàn bộ lòng ruột. Không nên mua các hải sản có màu sắc khác thƣờng, vì những loài sống trong vùng ô nhiễm thƣờng có màu sắc khác với các hải sản bình thƣờng. 1.4. Các phƣơng pháp tách chiết và bảo quản mẫu trong phân tích các dạng Asen. Một trong những vấn đề chìa khóa của phân tích dạng là bảo quản toàn vẹn mẫu và các dạng quan tâm trong suốt quá trình lấy mẫu, bảo quản và xử lý mẫu. Do tính chất hóa lý đặc biệt luôn thay đổi hóa trị đặc biệt giữa III và V mà Asen tồn tại trong tự nhiên dƣới nhiều dạng khác nhau [32]. Vì vậy xử lý mẫu để giữ nguyên dạng ban đầu của Asen là nhiệm vụ quan trọng đối với các nhà phân tích. Asen có nhiều dạng tồn tại. Tùy thuộc vào dạng Asen tồn tại trong các đối tƣợng mẫu khác nhau mà cần có các phƣơng pháp xử lý mẫu khác nhau. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 19 Trong phần này chúng tôi trình bày một số phƣơng pháp xử lý mẫu trong phân tích định dạng Asen với đối tƣợng là các mẫu hải sản. 1.4.1. Một số phương pháp xử lý mẫu trước khi phân tích [13,14]. Nguyên tắc chung khi phân tích các mẫu hải sản bao gồm hai giai đoạn: Giai đoạn 1: Xử lý mẫu để đƣa nguyên tố cần xác định về dạng dung dịch theo một kỹ thuật phù hợp để có thể phân tích định dạng theo một phép đo đã chọn. Giai đoạn 2: Phân tích các nguyên tố dựa trên nguyên tắc của phép đo, trong những điều kiện thích hợp đã đƣợc nghiên cứu lựa chọn. Trong đó giai đoạn 1 là rất quan trọng đối với hầu hết các phƣơng pháp khi phân tích kim loại. Nếu xử lý mẫu không tốt có thể dẫn đến mất nguyên tố cần phân tích( gây sai số âm) hoặc làm nhiễm bẩn mẫu (gây sai số dương), làm ảnh hƣởng đến kết quả phân tích, đặc biệt khi phân tích vi lƣợng. Tùy thuộc vào bản chất của phép phân tích, đối tƣợng mẫu, điều kiện trang bị kỹ thuật... mà có các phƣơng pháp sau để xử lý mẫu. Xử lý mẫu vô cơ Phân tích dạng trao đổi (còn gọi là dạng dễ tiêu): Kim lọai ở thể này có thể tan đƣợc trong nƣớc, nhƣ dung dịch muối hoặc axit loãng. Phân tích tổng số: Để phân tích tổng số ngƣời ta phá hủy cấu trúc của mẫu để chuyển kim loại về dạng muối tan. Có thể phá hủy mẫu bằng các loại axit có tính oxihóa mạnh nhƣ axit nitric, axit sunfuaric, axit pecloric.... hoặc hỗn hợp các axit. Xử lý mẫu hữu cơ: Các chất hữu cơ rất phong phú và đa dạng. Trong các mẫu này kim loại ít khi ở dạng dễ tiêu, do đó, để phân tích các kim loại trong mẫu hữu cơ, Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 20 thƣờng phải tiến hành phân tích tổng số. Trƣớc khi phân tích, mẫu thƣờng đƣợc xử lý bằng một trong các phƣơng pháp sau: -Vô cơ hóa khô. -Vô cơ hóa ƣớt. - Xử lý ƣớt bằng lò vi sóng. - Xử lý mẫu bằng kỹ thuật lên men. a. Phương pháp vô cơ hóa khô. Nguyên tắc: Đốt cháy các mẫu hữu cơ có trong mẫu phân tích để giải phóng kim loại ra dƣới dạng oxit hoặc muối, sau đó, tro mẫu này đƣợc hòa tan bằng axit thích hợp. Phƣơng pháp vô cơ hóa khô đơn giản, triệt để, yêu cầu tối thiểu sự chú ý của ngƣời phân tích, nhƣng có nhƣợc điểm làm mất các nguyên tố đễ bay hơi nhƣ: Hg, As, Pb... khi ở nhiệt độ cao. Để khắc phục nhƣợc điểm này, ngƣời ta thƣờng cho thêm các chất bảo vệ nhƣ MgO, Mg(NO3)2 hay KNO3 và chọn nhiệt độ thích hợp. b. Phương pháp vô cơ hóa ướt Nguyên tắc: Oxi hóa chất hữu cơ bằng một axit hoặc hỗn hợp axit có tính oxi hóa mạnh thích hợp. Phƣơng pháp vô cơ hóa ƣớt rút ngắn đƣợc thời gian so với phƣơng pháp vô cơ hóa khô, bảo toàn đƣợc chất phân tích, nhƣng phải dùng lƣợng axit khá nhiều, vì vậy các axit phải đạt yêu cầu có độ tinh khiết cao. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 21 c. Phương pháp lò vi sóng Nguyên tắc: Dùng năng lƣợng của lò vi sóng để đun nống dung môi và mẫu đƣợc đụng trong bình kín. Dƣới nhiệt độ và áp suất cao có thể dễ dàng hòa tan đƣợc mẫu. Đây là phƣơng pháp xử lý mẫu hiện đại, làm giảm đáng kể thời gian xử lý mẫu, không mất mẫu phân tích và vô cơ hóa mẫu đƣợc triệt để, có thể vô cơ hóa cùng lúc nhiều mẫu. Tuy nhiên, phƣơng pháp này đồi hỏi nhiều thiết bị đắt tiền nên nhiều cơ sở phân tích không đủ điều kiện để trang bị. d. Phương pháp lên men Nguyên tắc: Hòa tan mẫu thành dung dịch hay huyền phù. Thêm men xúc tác và lên men ở nhiệt độ 370C - 400C trong thời gian từ 7 - 10 ngày. Trong quá trình lên men, các chất hữu cơ bị phân hủy thành CO2, axit, nƣớc và giải phóngkim loại trong hợp chất hữu cơ dƣới dạng cation trong dung dịch. e. Tác nhân vô cơ hóa Khi xử lý mẫu bằng phƣơng pháp vô cơ hóa ƣớt và lò vi sóng, việc lựa chọn tác nhân oxi hóaphải căn cứ vào khả năng, đặc tính oxi hóa của thuốc thử và đối tƣợng mẫu. Dƣới đây là một số tác nhân vô cơ hóa thƣơng sử dụng khi vô cơ hóa mẫu: Axit nitric (HNO3) [14] Axit nitric (HNO3) là chất đƣợc sử dụng rộng rãi nhất để vô cơ hóa mẫu. Đây là tác nhân vô cơ hóa dùng để giải phóng nhanh vết nguyên tố từ các cốt sinh học và thực vật dƣới dạng các muối nitrit dễ tan. Điểm sôi của axit nitric ở áp suất khí quyển là 1200C, lúc đó chúng sẽ ion hóa toàn bộ các chất hữu cơ có trong mẫu phân tích và giải phóng kim loại dƣới dạng ion. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 22 Loại mẫu đƣợc áp dụng: Chủ yếu là các mẫu hữu cơ nhƣ nƣớc giải khát, protein, chất béo, nguyên liệu thực vật, nƣớc thải, một số sắc tố polỉme và các mẫu trầm tích. Axit sunfuaric (H2SO4) [14] Axit sunfuaric (H2SO4) là chất có tính oxi hóa mạnh, có nhiệt độ sôi là 339 0C. Khi kết hợp với Axit nitric (HNO3) sẽ có khả năng phá hủy hoàn toàn hầu hết các hợp chất hữu cơ. Nếu sử dụng lò vi sóng thì phải vô cơ hóa trƣớc trong cốc thủy tinh hay thạch anh và giám sát quá trình tăng nhiệt độ của lò. Loại mẫu đƣợc áp dụng: mẫu hữu cơ, oxit vô cơ, hiđroxit, hợp kim, kim loại, quặng.... Axit pecloric (HClO4) [14] Axit pecloric (HClO4) có tính oxi hóa mạnh, có thể ăn mòn kim loại, không phản ứng với các axit khác, phá hủy hợp chất hữu cơ. Do axit Pecloric (HClO4) có thể gây nổ mạnh khi tiếp xúc với các nguyên liệu hữu cơ và các chất vô cơ dễ bị oxi hóa nên thƣờng phải oxi hóa mẫu trƣớc bằng axit Nitric (HNO3) sau đó mới sử dụng axit Pecloric (HClO4). Trong trƣờng hợp phá mẫu bằng lò vi sóng phải rất thận trọng vì trong bình kín, ở nhiệt độ và áp suất cao Axit pecloric (HClO4) dễ gây nổ. Loại mẫu được áp dụng: Các mẫu hữu cơ và vô cơ. Trong nhiều trƣờng hợp ta phải sử dụng hỗn hợp các axit mới có thể vô cơ hóa đƣợc hoàn toàn mẫu. Trong phạm vi đề tài này, chúng tôi sử dụng hỗn hợp các axit trên theo một tỉ lệ nhất định để vô cơ hóa các mẫu hải sản, phân hủy hoàn toàn các nền mẫu hữu cơ và đƣa về dạng dung dịch trƣớc khi tiến hành phân tích, xác định hàm lƣợng Asen trong các mẫu hải sản đó. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 23 1.4.2. Phương pháp chiết và bảo quản các dạng Asen trong các mẫu hải sản [13]. Một yêu cầu thiết yếu để thu đƣợc kết quả phân tích dạng đáng tin cậy là việc bảo quản hàm lƣợng những dạng hóa học ban đầu trong mẫu trƣớc khi phân tích. Vấn đề cần xem xét đầu tiên chính là thu thập mẫu, bảo quản và cất giữ mẫu trong điều kiện tốt nhất để ngăn ngừa sự nhiễm bẩn và mất mát nhỏ nhất ở mức độ vết của phép phân tích, sao cho khi phân tích dạng, nồng độ của những dạng riêng lẻ của hỗn hợp không bị thay đổi bởi việc giữ mẫu và xử lý mẫu. Chính vì vậy, cần có sự nghiên cứu, phát triển những phƣơng pháp làm ổn định các dạng Asen trong những mẫu phân tích trong quá trình thu mẫu và cất giữ mẫu. Bên cạnh đó, việc khảo sát các điều kiện tối ƣu để giữ nguyên các dạng Asen trong các mẫu phân tích dƣới những điều kiện khác nhau là cần thiết vì một số dạng của Asen có thể chuyển đổi từ dạng này sang dạng khác hoặc mất đi trong quá trình chuẩn bị mẫu [40], ví dụ nhƣ: Những điều kiện cất giữ tối ƣu, thời gian cất giữ... để sao cho có thể hạn chế đến mức thấp nhất các rủi ro có thể dẫn đến sự biến đổi những dạng cần xác định. Đối với phƣơng pháp chiết, cần phải xem xét xem liệu phƣơng pháp chiết đó có thể sản sinh ra bất kỳ sự biến đổi nào của những dạng hiện có trong dung dịch mà cần phải đƣợc xác định hay không. Nhìn chung, nếu lấy mẫu ở cùng một địa điểm thì quá trình chiết Asen từ những mẫu rắn là hầu nhƣ không khác nhau khi mẫu đƣợc bảo quản tốt. Chuẩn bị mẫu cho những mẫu rắn nói chung có thể bao gồm những quá trình nhƣ: xắt nhỏ, đông khô, nghiền, trộn đều và rây để dùng cho quá trình chiết. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 24 Một phép chiết đạt yêu cầu cần phải chiết hoàn toàn tất cả các dạng Asen mà không làm thay đổi dạng ban đầu của nó. Đồng thời, dung môi để chiết các mẫu không đƣợc gây trở ngại cho sự phân tích dạng. Dƣới đây là một số phƣơng pháp chiết đã đƣợc áp dụng trong phân tích dạng Asen: Phương pháp hòa tan (solubilization) với HCl và làm bay hơi bằng lò vi sóng: Cơ sở của phƣơng pháp hòa tan với HCl và làm bay hơi bằng lò vi sóng đƣợc trình bày thành phƣơng pháp chiết Asen vô cơ từ những sản phẩm hải sản [13]. Tuy nhiên, phƣơng pháp này không thích hợp để xác định những dạng AsIII và AsV vì AsV đƣợc chuyển đổi sang AsIII trong suốt quá trình thủy phân và chiết. Sự chuyển đổi giữa AsIII và AsV cũng đƣợc thấy khi sử dụng axit tricloroacetic để thủy phân những mẫu gạo [30]. Mới đây, phƣơng pháp có khả năng chiết nhanh (ASE) đƣợc áp dụng để chiết những dạng Asen trong mẫu rắn [30]. Phƣơng pháp bán tự động này sử dụng áp suất và nhiệt độ trong suốt thời gian chiết, cho thấy nó nhanh hơn và ít mất công sức hơn so với phƣơng pháp chiết truyền thống. Tuy nhiên, so sánh với phƣơng pháp chiết rung siêu âmvới hỗn hợp methanol- nƣớc (1:1) thì khả năng thu hồi Asen trong mẫu thấp hơn 10-20 % [12]. Qui trình phá mẫu enzim kết hợp với phƣơng pháp chiết đã đƣợc nghiên cứu để tăng hiệu suất chiết đối với một số mẫu sinh học, Những qúa trình chiết khác nhƣ chiết Soxhlet [13] và chiết pha rắn cũng đƣợc áp dụng. Methanol là dung môi thƣờng đƣợc sử dụng nhất để chiết những dạng Asen từ những mô sinh vật biển. Sự bay hơi của methanol và phân chia phần còn lại giữa điethyl ether/nuớc có thể cung cấp thông tin về những số lƣợng tƣơng đối của Asen hòa tan-lipid và hòa tan-nƣớc. Ngoài ra ngƣời ta có thể Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 25 dùng hỗn hợp methanol/choloform/nƣớc để chiết mô sinh vật nguyên bản. Cả hai quy trình thu hồi phần lớn Asen trong giai đoạn chiết.[13] Hiện nay phƣơng pháp chiết methanol: nƣớc và kết hợp rung siêu âm nhiều lần đuợc sử dụng rộng rãi nhất vì đây là một phƣơng pháp chiết rất tốt thể hiện qua hiệu suất thu hồi các dạng Asen hòa tan trong mẫu rắn lên tới 95%.[13] Nhƣ vậy đối với một số mẫu sinh vật biển hàm lƣợng Asen xác định phụ thuộc vào phƣơng pháp chiết. Asen còn lại sau khi chiết methnol có thể còn trong bã, hoặc phản ánh sự chiết không hoàn toàn vài dạng Asen phân cực hơn. Ví dụ, khi phân tích HPLC/ICP-MS dịch chiết methanol mẫu đông khô gan rùa cho thấy Asenate là vết, nhƣng chiết bằng nƣớc liên tục của cùng chất đó thì hàm lƣợng Asenate chiếm 35% toàn bộ Asen có thể chiết ra [27]. Một vài Asen hữu cơ (ví dụ Asenosugar) rất phân cực, nếu chiết bằng methanol thì chỉ tìm thấy hàm lƣợng thấp trong mẫu sinh vật biển. Nhƣ vậy, đối với một số mẫu sinh vật biển, việc xác định Asen phụ thuộc vào phƣơng pháp chiết . So với các đối tƣợng khác, số liệu về phân tích dạng Asen trong sinh vật biển có chiều hƣớng tăng. Do đó, việc đánh giá và so sánh các dữ liệu này khá đơn giản. Bên cạnh đó vì quy trình chiết đã đƣợc chuẩn hóa nên các dạng Asen đƣợc chiết ra giống nhau trƣớc khi đem đi phân tích. Tóm lại, quá trình chiết cần đạt hiệu suất cao và giảm thiểu nhỏ nhất sự phá hủy dạng Asen hiện có trong mẫu rắn, một trong những yêu cầu tiên quyết để từ đó mới có đƣợc thông tin chính xác về các dạng Asen trong các mẫu hải sản và qua đó đánh giá đƣợc tính độc của các mẫu hải sản đã đƣợc phân tích. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 26 1.4.3. Ổn định và duy trì những dạng ban đầu của mẫu. Một yêu cầu thiết yếu để thu đƣợc thông tin dạng đáng tin cậy là việc bảo quản hàm lƣợng những dạng nguyên bản hóa học ban đầu trong mẫu trƣớc khi phân tích. Nhiều phƣơng pháp đã đƣợc sử dụng để bảo toàn những dạng Asen phân bố trong mẫu tự nhiên. Những mẫu chứa hàm lƣợng AsIII và As V có nồng độ 0,5  g/l hoặc 1  g/l đƣợc bảo quản tại 40C ổn định đƣợc 21 ngày và cho thấy không có sự biến đổi nào sau 21 ngày cất giữ. Tại 250C nhận xét thấy có những dung dịch có hàm lƣợng Asen cao nhất (  20  g/l) vẫn có thể bảo quản mà không có sự mất mát đáng kể của các dạng Asen [36]. Tuy nhiên, ở tại nồng độ thấp hơn, ta quan sát thấy sự biến đổi của các dạng vào cuối tuần đầu tiên. Một số nghiên cứu cho thấy rằng bảo quản mẫu tại -200C là tốt nhất để giữ các dạng [13]. Những phƣơng pháp bảo quản trên cho các dạng ban đầu của AsIII và AsV phải thực hiện ngay lập tức sau khi thu thập mẫu thì mới có hiệu quả, nhất là khi mẫu đƣợc sử dụng để phân tích hải sản- một trong những loại mẫu rất dễ bị phân hủy dẫn đến làm sai lệch kết quả phân tích. 1.5. Các phƣơng pháp phân tích Asen Trong phân tích Asen tùy theo điều kiện hiện trƣờng mà lựa chọn phƣơng pháp phân tích phù hợp. 1.5.1. Phương pháp đo hiện trường với chất nhuộm thủy ngân Bromua +Nguyên tắc: Asen(III) và Asen(V) đƣợc chuyển thành khí AsH3 nhờ hỗn hợp khử mạnh : NH2SO3H- axit sunfamic và NaBH4 - (Natri bohiđrua). Khí Asin tạo thành sẽ tạo phức với thủy ngân bromua đƣợc tẩm trên giấy và chuyển thành màu vàng. Việc định lƣợng dựa vào màu trên giấy thử hoặc độ đậm nhạt của màu. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 27 + Giới hạn phát hiện: 10ppb.Tuy nhiên, độ hấp thụ quang có thể bị ảnh hƣởng bởi khí H2S, Cần dùng bông lọc chứa chì axetat để hấp thụ khí này. + Ứng dụng: Đo hiện trƣờng với số lƣợng mẫu lớn, chủ yếu cho mục đích sàng lọc trên diện rộng.[13] 1.5.2. Phương pháp phổ phát xạ nguyên tử cảm ứng cộng hưởng plasma (ICP- ASE) + Nguyên tắc: Dung dịch mẫu đƣợc phun ở dạng sol tới vùng plasma agon có nhiệt độ từ 60000K đến 80000K, tại đó , Asen đƣợc nguyên tử hóa và phát xạ bƣớc sóng đặc trƣng. Nồng độ Asen trong mẫu đƣợc xác định dựa trên cƣờng độ của các vạch phát xạ. + Giới hạn phát hiện: 35 -50 ppb. + Ứng dụng: Phƣơng pháp này có thể xác định nhiều nguyên tố cùng một lúc và đƣợc áp dụng đối với tất cả các loại nền màu khác nhau, tuy nhiên, các mẫu rắn và mẫu lỏng chứa nhiều kết tủa phải xử lý trƣớc khi phân tích. 1.5.3. Phương pháp quang phổ hấp thụ nguyên tử kết hợp thiết bị sinh khí Hiđrua ( HVG - ASS) . Quang phổ hấp thụ nguyên tử (ASS) là một kỹ thuật phân tích lƣợng vết các nguyên tố phổ biến, đƣợc sử dụng nhiều trong các phòng thí nghiệm với độ chọn lọc độ lặp lại cao, có thể phân tích hàng loạt mẫu trong thời gian ngắn, giá thành thiết bị không quá đắt. Phƣơng pháp này đƣợc áp dụng rộng rãi trong phân tích định lƣợng Asen kết hợp với thiết bị tạo khí Hiđrua. + Nguyên tắc: Asen vô cơ hòa tan trong nƣớc có thể ở dạng As(III) hay As(V), hiệu suất tạo khí Hiđrua của hai dạng này khác nhau nên tất cả các Asen trong mẫu phải đƣợc khử về As(III) nhờ tác nhân khử của KI hoặc NaI. Sau đó As(III) phản ứng với hiđro mới sinh (tạo thành khi tác nhân khử Zn hoặc NaBH4 gặp môi trƣờng axit) tạo ra hợp chất Asin - AsH3. Khí Asin sẽ Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 28 đƣợc dẫn vào bộ phận nguyên tử hóa mẫu nhờ khí Argon tạo ra các đám hơi nguyên tử tự do. Các nguyên tử này sẽ hấp thụ các tia sáng có bƣớc sóng đặc trƣng và cho kết quả độ hấp thụ.[13] + Giới hạn phát hiện: Phƣơng pháp này có thể xác định hàm lƣợng Asen trong mẫu cỡ 0,5ppb. 1.5.4. Phương pháp dùng vi khuẩn phát sáng. Nhóm nghiên cứu thuộc Viện khoa học và Công nghệ môi trƣờng Thụy Sĩ đã lợi đụng khả năng nhạy cảm với Asen của vi khuẩn Escherichia coli để biến đổi gen sao cho chúng phát sáng khi dò thấy Asen trong nƣớc. E. Coli hiện đang đƣợc thử nghiệm tại Việt Nam, có ƣu điểm vƣợt trội so với các phƣơng pháp khác là chi phí thấp mà không giải phóng các hóa chất độc hại vào môi trƣờng. 1.5.5. Phương pháp phân tích thể tích Dùng dung dịch chuẩn I2 + KI chuẩn dung dịch Asenic (AsO3 3- ) trong môi trƣờng kiềm có thêm vài giọt hồ tinh bột. Tại điểm cuối của phép chuẩn độ dung dịch có mau xanh hồ tinh bột + iôt. Để đảm bảo độ chính xác của phép chuẩn độ cần đƣa mọi dạng tồn tai của Asen về As(III). I2 + AsO3 3- + 2OH -  AsO4 3- + 2I - + H2O 1.5.6. Phương pháp cực phổ Von- Ampe hòa tan Cơ sở của phƣơng pháp Von- Ampe hòa tan là xây dựng đƣờng cong phụ thuộc giữa cƣờng độ dòng điện và hiệu điện thế giữa hai điện cực đƣợc đặt trong bình điện phân chứa chất cần nghiên cứu. Phƣơng pháp Von- Ampe hòa tan gồm có các giai đoạn chính nhƣ sau: Khi điện phân làm giàu cần chọn thế thích hợp và giữ không đổi trong suốt quá trình điện phân. Thông thƣờng ngƣời ta chọn thế ứng với dòng khuyếch tán giới hạn của chất cần phân tích và tại thế đó chỉ có một số tối thiểu các chất bị oxi hóa hoặc khử trên điện cực. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 29 Các loại phản ứng có thể dùng để kết tủa lên bề mặt điện cực có thể là: - Khử ion kim loại trên điện cực thủy ngân Me n+ + ne + Hg  Me(Hg)  - Khử ion kim loại trên điện cực rắn trơ Me n+ + ne  Me  - Phản ứng làm giàu chất điện cực dƣới dạng hợp chất khó tan hoặc với ion kim loại dùng làm điện cực hoặc với một ion nào đó trong dung dịch. - Hấp thụ điện hóa các chất lên bề mặt điện cực làm việc bằng cách thêm vào dung dịch một thuốc thử có khả năng bị hấp phụ lên bề mặt điện cực, sau khi bị hấp phụ nó sẽ tạo phức với ion cần xác định để tập trung ion đó lên bề mặt điện cực. Phƣơng pháp Von- Ampe hòa tan đƣợc phân chia thành dạng Von- Ampe hòa tan anot và Von- Ampe hòa tan catot. Nếu điện phân là quá trình khử catot ở thế không đổi ETL thì khi hòa tan cho quét thế với tốc độ không đổi, đủ lớn từ giá trị ETL về phía dƣơng hơn. Quá trình hòa tan là quá trình anot và phƣơng pháp gọi là "Von- Ampe hòa tan anot" hay viết tắt là ASV (Anodic Stripping Vontammestry). Nếu điện phân là quá trình oxi hóa anot ở thế không đổi ETL thì khi hòa tan cho quét thế với tốc độ không đổi, đủ lớn từ giá trị ETL về phía thế âm hơn. Quá trình hòa tan là quá trình catot và phƣơng pháp gọi là "Von- Ampe hòa tan catot" hay viết tắt là CSV (Catotdic Stripping Vontammestry). 1.5.8. Phương pháp trắc quang [4,5,10] Nguyên tắc : Để quan sát đƣợc phổ hấp thụ trong vùng UV - VIS ta phải có chất nghiên cứu ở dạng có màu. Các chất xác định cần chuyển vào dung dịch dƣới dạng hợp chất màu với một thuốc thử thích hợp có độ nhạy lớn trong vùng phổ UV - VIS trong các điều kiện tối ƣu ( pH, nhiệt độ, thời gian, tỉ lệ thuốc thử...). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 30 Chụp phổ hấp thụ electron của hợp chất màu ở dải sóng 200 - 1000 nm. Tại điểm độ hấp thụ quang đạt giá trị cực đại ta tìm đƣợc bƣớc sóng mà chất màu hấp thụ ánh sáng cực đại. Khả năng hấp thụ ánh sáng của dung dịch màu đƣợc xác định bởi biểu thức định lƣợng của định luật Buger - Lambe - Beer: A =  .l.C Trong đó: A: Mật độ quang - Khả năng hấp thụ ánh sáng của dung dịch màu.  : Hệ số hấp thụ phân tử mol. l: Bề dày cuvet có đơn vị cm. C: Nồng độ của dung dịch màu. Trong thực hành phân tích trắc quang, ngƣời ta thƣờng xây dựng đƣờng cong biểu diễn sự phụ thuộc của mật độ quang vào nồng độ chất màu trong dung dịch: A = f(C). Thực nghiệm cho thấy, mật độ quang chỉ phụ thuộc tuyến tính theo nồng độ ở một giới hạn C0 nhất định. Do đó, ta thƣờng xác định nồng độ chất nghiên cứu trong mẫu ở khoảng nồng độ tuyến tính OA (hình 1.1), nếu nồng độ lớn hơn C0thì ta phải pha loãng mẫu, kết quả nhân với hệ số pha loãng. C0 C(mg/l) Hình 1.1. Sự phụ thuộc của mật độ quang vào nồng độ chất hấp thụ. 0 A0 A LOL Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 31 Phƣơng pháp đƣờng chuẩn trong phân tích trắc quang: Trong thực tế ngƣời ta chỉ sử dụng vùng tuyến tính (Đoạn OA hay còn gọi là đƣờng chuẩn), khoảng tuyến tính này rộng hay hẹp tùy thuộc vào độ nhạy của hợp chất màu. Các chất càng nhạy trong vùng phổ UV - VIS thì vùng tuyến tính càng hẹp và lùi về phía nồng độ thấp, thuận lợi cho việc định lƣợng vết chất. Các bước xây dụng đường chuẩn: Phƣơng pháp này dựa trên cơ sở xây dựng đƣờng chuẩn biểu diễn sự phụ thuộc tuyến tính của mật độ quang vào nồng độ, sau đó đo mẫu trong cùng điều kiện, từ đó xác định đƣợc hàm lƣợng chất cần phân tích dựa vào đƣờng chuẩn. Phƣơng pháp này bao gồm các bƣớc nhƣ sau: Bƣớc 1: Chụp phổ hấp thụ phân tử của thuốc thử và hợp chất màu. Bƣớc 2: Khảo sát, chọn các điều kiệ tối ƣu cho sự tạo hợp chất màu nhƣ: thời gian, độ pH, tỉ lệ thuốc thử... Bƣớc 3: Chuẩn bị một dãy dung dịch chuẩn chứa chất cần phân tích với hàm lƣơng tăng dần, cho vào mỗi dung dịch một lƣợng thuốc thử nhƣ nhau, các điều kiện để tạo phức nhƣ: pH, thời gian, nhiệt độ và các điều kiện khác nhƣ nhau. Sau đó, xác định mật độ quang của hợp chất màu trong khoảng nồng độ tuyến tính. Bƣớc 4: Từ giá trị mật độ quang và nồng độ, ta thiết lập đƣợc đƣờng chuẩn trong hệ tọa độ xy, xác định đƣợc hàm lƣợng chất cần nghiên cứu trong mẫu thực(Cx) bằng đƣờng chuẩn khi biết giá trị mật độ quang của mẫu(Ax). Phương pháp trắc quang với phép phân tích Asen Trong phép phân tích Asen bằng phƣơng pháp trắc quang, nhiều công trình nghiên cứu đã sử dụng nhiều loại thuốc thử, trong phạm vi của luận văn này chúng tôi sử dụng thuốc thử là Bạc đietylđithiocacbamat để tạo phức với Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 32 khí Asin - AsH3, đây là phƣơng pháp đƣợc sử dụng phổ biến nhất để phân tích Asen bằng phƣơng pháp trắc quang. Qui trình của phƣơng pháp có thể tóm tắt nhƣ sau: Nguyên tắc: Các hợp chất của Asen trong mẫu đƣợc oxi hóa bằng KMnO4 hoặc K2S2O8, tiếp theo As(v) đƣợc khử về As(III) bằng KI. Sau đó Asen đƣợc khử tiếp thành khí Asin - AsH3 bằng hiđro mới sinh trong môi trƣờng axit. Asin tác dụng với dung dịch Bạc đietylđithiocacbamat trong piriđin hoặc clorofom tạo phức màu đỏ tím. Sau đó, đo độ hấp thụ quang của phức màu đƣợc tạo thành ở bƣớc sóng 520nm. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 33 CHƢƠNG II THỰC NGHIỆM VÀ PHƢƠNG PHÁP 2.1. Thiết bị, dụng cụ và hóa chất 2.1.1. Thiết bị và dụng cụ - Máy đo quang: GBC Cintra 40 UV - Visible spectrometer. - Máy đo pH: TOA pH METTER MODEL HM 5BS của Nhật. - Máy đông khô. - Máy cất nƣớc hai lần: MILL_ Q của Thụy Sĩ. - Cân phân tích chính xác 0,01mg: Srtocius - Thụy Sĩ. - Tủ sấy, lò nung, tủ hút, bếp khuấy từ. - Máy li tâm, bể rung siêu âm. - Bình định mức: 500ml, 250ml, 100ml, 50ml,25ml. - Cốc thủy tinh: 500ml, 250ml, 100ml, 50ml. - Pipet các loại: 1ml, 2ml, 5ml, 10ml, 20ml. - Đũa thủy tinh, giấy lọc, bình tia. - Phễu lọc, giấy siêu lọc, các bình PVE, chai thủy tinh tối màu.... - Dụng cụ thí nghiệm bằng teflon, thạch anh.... - Hệ tạo phức của Asen với thuốc thử Bạc đietylđithiocacbamat. - Bình đựng mẫu... Tất cả các dụng cụ dùng để phân tích đều đƣợc ngâm bằng HNO3 10% trong 24 giờ, sau đó đƣợc rửa sạch và tráng bằng nƣớc cất hai lần. 2.1.2. Hóa chất - Axit HNO3. - Axit H2SO4 - Axit HCl. - Zn hạt hoặc Zn bột sạch. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 34 - Dung dịch chuẩn Asen 1000 ppm. - Thuốc thử Bạc đietylđithiocacbamat. - Methalnol - CH3OH. -Mẫu cá chuẩn Dogfish Liver Certified Reference Material for Trace Metals (DOLT-3) có hàm lƣợng Asen tổng số: 10,2  0,5(mg/kg) 2.1.3. Chuẩn bị hóa chất và dung dịch chuẩn. + Dung dịch chuẩn asen 10 mg/l Lấy 1ml dung dịch chuẩn gốc asen 1000 mg/l cho vào bình 100ml định mức đến vạch bằng nƣớc cất hai lần. + Dung dịch chuẩn Asen 100  g/l: Lấy chính xác 1ml dung dịch chuẩn làm việc 10ppm cho vào bình 100ml định mức đến vạch bằng nƣớc cất hai lần. + Dung dịch Axit dimetylasinic-DMA mg/l: Cân 28,57mg ( CH3)2AsNaO2.3H2O thêm nƣớc cất, định mức đến 100ml. + HNO3 : HClO4 (1: 1): Trộn 100ml HNO3 ? với 100ml HClO4 72%. + MeOH : H._.

Các file đính kèm theo tài liệu này:

  • pdfLA9356.pdf
Tài liệu liên quan