CHUaNG 4
" J::: ?..."
NGHI~M T - TUAN HOAN CUA BAI TOAN
K
PHI TUYEN
Trong chuangnay,chungWi nghienCUllnghi<$mT - tuftnhoan
cuabai tmingia tribienphi tuye'nnhusau:
1
(4.1) Ut-(urr +-ur)+Ft:(u)=f(r,t),O<r<I,O<t<T,r
(4.2) Ilim J;.Ur(r,t)
I
<+00,urCl,t)+h(t)(u(1,t)-uo)=0,
, r~O+
(4.3) u(r,O)=u(r,T),
I 1
1/2
(4.4) Ft:(u)=[; u u,
trongd6 Uola hangsf)chotrudc,h(t),f(r,t) la hamsf)chotrudc
T - tuftnhoantheot,thoacacgiathie'tsau:
(H2) UoER,
(H~) hEWI,OO(O,T),h(O)=h(T
11 trang |
Chia sẻ: huyen82 | Lượt xem: 1369 | Lượt tải: 0
Tóm tắt tài liệu Nghiên cứu một số phương trình nhiệt phi tuyến trong không gian Sobolev có trọng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
), h(t)2ho >0,
(H~) f E Co(O,T;H), f(r,O) =f(r,T).
Khonglammftttinht6ngquatcuabaitoantalfty[;=1
Nghi<$mye'ucuabaitoan(4.1)- (4.4)du<;5Cthi€t l~ptubaitoan
bie'nphansau:
TImuEL2(0,T;V)nLOO(0,T;H)saDchoul EL2(0,T;H) va u(t)
thoaphuclngtrinh bienphansau:
(4.5)
T T
f\ul(t),vet)dt + f[(urCt),vrCt))+h(t)u(1,t)v(1,t)]dt° °
T T T
+ f(Fi(u(t)),v(t))dt= f(f(t),v(t))dt+uo fh(t)v(1,t)dt,° ° °
'v'vEL2(0,T;V),
28
vadi~uki~nT - tudnhoan
(4.6) u(O)=u(T).
Khi do, taco dinh19sail
Dinh Iy 4.1. Cho T>O va (Hl),(H~),(H~)dung.Khi do, bai
loan (4.1)- (4.4)co duynhcitmQtnghi~mye'uT - tudnhoan
U E L2(0,T;V) n LOO(O,T;H) saD
r2/5u E L5/2(QT)'
Chungminh.G6mnhi€u buGc.
Btidc1.PhLtdngphapGalerkin.
cho u/ E L2(0,T;H),
Lffy mOtcd sa t11!cchufin {wi},j =1,2,...trongkhong gian
Hilberttachdu<;1cV. Ta Hmurn(t)theod~ng
rn
(4.7) urn(t)=LCrnj(t)Wj'
j=l
trongdo crn/t) thoah~phudngtrlnhvi phanphituySn
(4.8) (u~(t),Wj) +(urnr(t),Wjr ) +h(t)urn(1,t)Wj(1)
+(Fi (Urn(t)),Wi)
=(/(t),Wi)+uoh(t)w/l),1:::;j:::;m,
vadi€u ki~nT - tu~nhoan
(4.9) Urn(0) =urn (T).
D~utieD,taxeth~phudngtrlnh(4.8)vadi€u ki~nd~u
(4.9/) Urn(0) =uorn'
trong do Uorn thuOc khong gian sinh boi cac ham
{Wi},j=1,2,...,m.Khi do, ta duQcmOth~m phudngtrlnhvi
phanthuongphituySnVGicac fin hamCrnj(t),j=1,2,...,m,va
cacdi€u ki~nd~u(4.9/).D~thffydingt6nt~iurn(t)co d~ng
29
(4.7)thoa(4.8)va (4.9/)vdi hftukh~pndi tfen 0s,t s,Tm,vdi
illQt TmE (O,T]. Cac danhgia tien nghi~illsail day chophepta
11yTm=T vdi illQi ill.
Brioe 2.Ddnhgid liennghi~m.
Nhanphudngtrlnhthlij cuah~(4.8)vdi cmj (t), saildo1a'y t6ng
theoj , taduQc
(4.10) ~llum(t)112+21Iumr(t)r+2h(t)u~(l,t)dt
1
+2frl Um(r,t)15/2dr°
=2(f(t),um(t))+2uoh(t)um(t).
Tu giathiet(H~)vaba'td£ngthlic(2.9),suyfa
(4.11) 2\\umr(t)112+2h(t)u~(l,t)~C11Ium(t)II~
tfong do C1=mill {I,ho}.
Dodo,tu(4.10),(4.11)suyfa
1
(4.12) ~llum(t)112+Clllum(t)II~ +2 frlum(r,t)15/2 dr
m °
s,2(f(t),um(t))+2uoh(t)um(l,t)
s,~llf(t)112+6'llum(t)112+~luoI21IhI1200 +6' ll um(t)ll v
2
6' 6' L (O,T)
. S,~llf(t)112+~luoI21Ihll~oo(O'T)+26'llum(t)II~
vdi illQi 6'>0.
ChQn6'>0 saGcho
(4.13) CI-26'=C2 >0.
Do do, tu (4.12),(4.13)tathuduQc
(4.14) ~lIum(t)1I2+C21Ium(t)1I2dt
30
t::;~llum(t)112+C21Ium(t)II~+2 frlum(r,t)15!2dr
& 0
::;~llf(t)112+~luoI21IhI1200 =ht(t).
(j (j L (O,T)
Nhanbfttd~ngthuc(4.14)vdi eC2tvasaildotichphantaco
t
(4.15) lIum(t) 112::;lluoml12e-C2t +e-C2t fht(s)eC2Sds.
0
Cho T >0, taxethams6sail
t
- j(eC2t-lrt fht(s)eC2Sds, O<t::;T,
(4.16) R(t)=] 0
ht(0)/C2, t=O.
Khi do R ECo[o,T]vatad~tR =max~R(t).
O<;,t<;,T
N€u II uomll::; R tu(4.15),(4.16)chota
(4.17) II um(t) II::;R nghlala Tm=T vdimQim.
GQi Bm(O,R)la quacftudongtam0, bankfnhR trongkhong
gianmchi~usinhbdi caeham wi'} =1,2,...,m,d6ivdi chuffn11.11
Xet anhX£;lFm:Bm(O,R)~ Bm(O,R)chobdicongthuc
(4.18) Fm(uom)=um(T).
Ta chungminhr~ngFmla anhX£;lco.
Gia sa Uom'VomEBm(O,R)va d~tm(t)=Um(t)-Vm(t),trongdo
Um(t)'Vm(t)la caenghi~mcuah~(4.8)tren [O,T]thoacaedi~u
ki~ndftuum(O)=Uomva vm(O)=vomIftn ltim(t)
thoah~phuongtrlnhvi phansailday
(4.19) \~(t),wi)+(mr (t),wir)+h(t)m(1,t)wi (1)
=- (I Um(t)1112Um(t)-I Vm(t)1112Vm(t),Wi),1::;}::;m
vadi~uki~ndftu
31
(4.20) m(O)=uom-vom'
Tinh loantuongtlfnhuchuang3,tadU<;1c
(4.21) ~11m(t)112+ 11mr(t)r+ 2h(t)1m(1,t)I2dt
=- 2(1um(t)11/2Um(t)-I Vm(t)11/2Vm(t),Um(t) - Vm(t))~0
Do (4.11),tu(4.21)suyra
(4.22)
~11m(t)112+C111mr(t)II~~O
Tich phanbfttd~ngthU'c(4.22),tadU<;1C
1
--TCI
(4.23) II um(T)- vm(T)II ~e 2 II Uom- Vomll- -
nghlala Fm:Bm(O,R)-) Bm(O,R)la anhX(;lco.
Do d6 t6n t(;li duy nhftt UomE Bm(O,R) sao cho
Uom=Fm(uom)=um(T).
Do d6, voi m6i m t6n t(;limQt ham uomEBm(O,R) S110cho
nghi<%mcuabai loangiatribandffu(4.8),(4.9/) la mQtnghi<%m
T- tuffnhoancuah<%(4.8).Nghi<%mnayclingthoabfttd~ngthU'c
(4.17)voihffuh€t tE[O,T]vanha(4.14)tasuyra
t t 1
(4.24) II Um(t)112 +C2III Urnes)II ~ds+2Ids Irl um(r,s)15/2dr ~C3'
0 0 0
trongd6 C3la h~ngs6dQcl~pvoim.
NhanphuongtrlnhthU'j cuah<%(4.8)voi c~/t), Iftyt6ngtheoj
va saud6tichphantungphffntheobi€n ttu0d€n T, tac6
T 2 ITd 2
~Iu~(t) II dt +- I-II Umr(t)II dt
0 2 0 dt
T T
+1. Ih(t)~[u;(1,t)]dt + I(I Um(t)11/2Um(t),u~(t)dt
2 0 dt 0
(4.25)
32
T T
=f(f(t),u~(t))dt+uofh(t)u~(1,t)dt
0 0
Tu (4.9)tathfiydinghaibfitd~ngthucsaildaydung:
T d 2
il f-II Umr(t)II dt=O,
0 dt
T 1
R J
.. 1/2 1 2 d 5/2
111 f(1um(t)I Um(t),um(t))dt=-frdr -IUm(r,t)1 dt
0 50 0 dt
1
=2fr(I um(r,T)15/2-I Um(r,O)15/2)dr =O.
50
Do do,d~ngthuc(4.25),nhotkh phantungphftntathuduQc
(4.26)
T . 2 T IT
]lu~(t)11dt= f(f(t),u~(t))dt+- fhl(t)u~(1,t)dt
0 0 20
T
- Uofhl (t)um(I,t)dt.
0
Sail cling,nho(4.24),(4.26),suyfa bfitd~ngthucsail
T 2 T T 2
(4.27) 2]1u~(t)II dt ~ fllf(t) 112dt + ]1u~(t)II dt
0 0
T T
+
ll
hl
ll fu~(1,t)dt+2Iuolll hl ll rlum(1,t)ldtLoo(O,T) Loo(O,T)JI0 0
T 2 T T
~ ]1U~(t)II dt + Slifer) 112dt +311hl!lrOO(O,T)IIi Um(t) II~dt
0 0 0
T
+2~luolll
hl
ll rIIUm(t)llvdtLOO(O,T) JI0
T 2 T T
~ ]lu~(t)11dt+ fllf(t)112dt+31Ihl!lrOO(O,T)fllum(t)ll~dt
0 0 0
(
T
J
1/2
+2~3T 1"0111hl"'(O,T) }Ium(t)II~dt
33
T 2
~ ]IU~(t)11dt+C4,
0
trongdo C4la hangs6dQcl~pvoim.
T 2
(4.28) ]1u~(t)II dt~C4voimQim.
0
M~tkhac,tli'(4.24),tacodanhgia
t
f In 3/5 1/2
1
5/3
(4.29) dsJI r 1 urn(r,s)I urn(r,s) dr
0 0
t 1
= Ids SriUrn(r,s)15/2dr ~!:.C3.
0 0 2
Bdoc 3. Qua gicii h(}n.
Do (4.24),(4.28),(4.29)ta suyfa, t6nt:;timQtdayconcuaday
{Urn},v~nky hit%uIa {urn}saocho
(4.30) urn~ U trong Loo(O,T;H) ye'u *,
(4.31) urn~U trong L2(O,T;V) ye'u,
(4.32) u~~ u/ trong L2(O,T;H) ye'u,
(4.33) r2/5urn~ r2/5u trongL5/2(QT)'
Tru'dehe'ttanghit%mrang
(4.34) u(O)=u(T).
Voi mQivEH, tli'(4.9)taco
(4.35)
T
f(u~(t),v)dt =(urn(t)- urn(O),v) =o.
0
Tli'(4.32),(4.35)suyra
T T
f(u~(t),v)dt~ f(u/ (t),v)dt =0 khim~ +00
0 0
Tinh toantu'dngtl!nhu'(4.35)taco
34
(4.36)
(4.37)
T
(u(T) - u(O),v) =f\Ul (t),v)dt =0 vdi ffiQi v E H,
0
vadodo(4.34)dung.
Dungb6 dS 2.11.vS tinhcoffipactcuaJ .L.Lions,ap dl;lngvao
(4.31),(4.32)tacoth€ Iffyratuday{urn}ffiQt dayconvftnky
hi~uIa {urn}saocho
(4.38) urn ~ u ffi(;lnhtrong L2(0,T;H).
Do dinhIy Riesz- Fischer,tu(4.38)tacoth€ Iffyratu {urn}ffiQt
dayconvftnkyhi~uIa {urn}saocho
(4.39) urn(r,t)~ u(r,t) a.e(r,t) trongQT=(0,1)x(O,T).
D 11
1/2
I.". ".0 U H U U len tl;lcDen
(4.40)
3/5
1 1
J/2 3/5
1 1
J/2
r urn(r,t) urn(r,t)~ r u(r,t) u(r,t)
vdi a.e.(r,t) trongQT'
Ap dl;lngb6 dS2.12,vdi
/ 3/5
1 1
1/2 3/5
1
.
/
J/2
N=2,q=53,Grn=r Urn urn,G=r u u.
Tu (4.29),(4.41)suyra
(4.41) r3/51urnlJ/2urn ~ r3/51 U 1J/2 u trong L5/\QT) y<5u.
K " h.". ( )
1 .
(
iTCt
J
. 12 1",. ? h ~
Y lyU gi t =.J2sm T ,1= , ,... a ffiQtcosotn!cc uan
trong khong gian Hilbert thlfc L2(O,T). Khi do t~p
{giWj;i,j=I,2,...}I~pthanhffiQtco sdtrlfcchufintrongkhong
; 2
pan L (O,T;V).
Nhanphuongtrlnhthili cua(4.8)vdi gi(t) saildoIffytichphan
theot , 0~t ~T , taco
35
T T
J( U~(t),wi)gi (t)dt + f(umr (t),wi r )gi (t)dt
0 0
T T
+ fh(t)um(1,t)w/l)gi (t)dt+ f(1Um(t)11/2Um(t),Wi)gi(t)dt
0 0
T T
=f(/(t), Wi)gi(t)dt+fuoh(t)w/l)gi(t)dt
0 0
V} =1,2,...,m,Vi E N.
D€ quagidi h~ncuas6 h~ngphi tuye'nI um(t)I ]/2 Um(t)trong
(4.42)
(4.42)tadungb6 dS sail
B6d~4.1.Vi,}=1,2,...taco
. T T
}~~f(1Um(t)11/2Um(t),Wi)gi(t)dt = S(IU(t)11/2U(t),Wi)gi(t)dt.
0 0
Chungminh.Chily ding(4.41)tu'dngdu'dngvdi
T ] T 1
(4.43) fdt fr3/51 uml1/2 umdr~ fdt fr3/51 U 11/2udr
0 0 0 0
1
VE (L5/\QT)) =L5/2(QT)'
M~t khac, ta co
T T]
S(i Um(t)11/2Um(t),Wi )gi(t)dt = f SriUml1/2umWi(r)gi(t)dr dt
0 00
(4.44)
T]
=f f(r3/51Uml1/2um)(r2/5w/r)gi(t) }1rdt.
00
Do (4.44),b6 dS4.1sedu'Qchungminhne'utakh~ngdinhdu'Qc
ding =r2/5wi(r)gi(t) EL5/2(QT)'Th~tv~y,do bfftd~ngthuc
(2.7),taco
Tl Tl 5/2
f fl15/2drdt=f Sriw/r)gi(t) I drdt
00 00
36
1 T
f
114
1
'
1
5/2 ~ 512
= r- 'irWj(r) dr jlgi(t)1 dt
0 0
5/2 1 T
(4.45) ~(21IWjllv) fr-1I4drflgi(t)15/2dt0 0
T
15 '"
II 11
5I 2 ~ 5I 2
=)'i2 Wj V jlgi(t)1 dt <+00.0
V~yb6d~4.1du<;5cchungminh.
Cho m~ +00tfong(4.42),tli (4.30)- (4.32)vab6d~4.1,tasuy
fa u thoaphuongtrlnhbie'nphan
T T
(4.46) f(u/(t),WjJgi(t)dt+ f(ur(t),Wjr)gi(t)dt
0 0
T T
+ fh(t)u(1,t)w/l) gi(t)dt + f(1u(t)11/2u(t),Wj)gi(t)dt
0 0
T T
=f(f(t),Wj)gi(t)dt +itafh(t)wj(1)gi(t)dt, Vi,} E N.
0 0
Tli (4.46)suyfa phuongtrlnhsaildaydung.
T T T
(4.47) f(ul(t),v(t)Jdt+ f(ur(t),vr(t))dt+ fh(t)u(l,t)v(1,t)dt
0 0 0
T T T
+f(1u(t)1112u(t),vet)dt=f(f(t), v(t))dt+itafh(t)v(1,t)dt
0 0 0
VvEL2(Q,T;V).
V~ySt!t6nt'.linghi~mdu<;5cchungminh.
Blioe 4. Tinhduynht{tnghifm.
Gia sa u,v la hainghi~mye'ucua(4.1)- (4.4).Khi do W=u - v
thoabai tmlnbie'nphansailday
(4.48)
T T T .
f(wi(t),cp(t)Jdt +f(Wr(t),CPr(t))dt + fh(t)w(1,t)cp(1,t)dt
0 0 0
37
T+f(1U(t)11/2U(t)-I vet)11/2v(t),rp(t))dt =0,VrpEL2(0,T;V),
0
(4.49) w(O)=weT),
vdi u,vEL2(0,T;V)nLOO(0,T;H),ul,/ EL2(0,T;H),
2/5 2/5 L5/2(Q )r u, r VET'
T
Ltty rp=w trong(4.48)va chliydug f\wi (t),wet)dt =O.
0
Khi dosadvng(4.11)va'(4.49)taduQc
1 T T
(4.50) -Clllwll\ . ~]lwr(t)112dt+fh(t)w2(l,t)dt2 L (O,T,V)
0 0
T
=- f(1 u(t) 11/2 U(t)-I V(t)11/2V(t),U(t)- vet))dt ~O.
0
Di~unayd~nd€n w=0 nghla1au=v.
Dinh 1y4.1duQcchungminhhoanloan.
38
._.