Nghiên cứu một số phương trình nhiệt phi tuyến trong không gian Sobolev có trọng

CHUaNG 4 " J::: ?..." NGHI~M T - TUAN HOAN CUA BAI TOAN K PHI TUYEN Trong chuangnay,chungWi nghienCUllnghi<$mT - tuftnhoan cuabai tmingia tribienphi tuye'nnhusau: 1 (4.1) Ut-(urr +-ur)+Ft:(u)=f(r,t),O<r<I,O<t<T,r (4.2) Ilim J;.Ur(r,t) I <+00,urCl,t)+h(t)(u(1,t)-uo)=0, , r~O+ (4.3) u(r,O)=u(r,T), I 1 1/2 (4.4) Ft:(u)=[; u u, trongd6 Uola hangsf)chotrudc,h(t),f(r,t) la hamsf)chotrudc T - tuftnhoantheot,thoacacgiathie'tsau: (H2) UoER, (H~) hEWI,OO(O,T),h(O)=h(T

pdf11 trang | Chia sẻ: huyen82 | Lượt xem: 1393 | Lượt tải: 0download
Tóm tắt tài liệu Nghiên cứu một số phương trình nhiệt phi tuyến trong không gian Sobolev có trọng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
), h(t)2ho >0, (H~) f E Co(O,T;H), f(r,O) =f(r,T). Khonglammftttinht6ngquatcuabaitoantalfty[;=1 Nghi<$mye'ucuabaitoan(4.1)- (4.4)du<;5Cthi€t l~ptubaitoan bie'nphansau: TImuEL2(0,T;V)nLOO(0,T;H)saDchoul EL2(0,T;H) va u(t) thoaphuclngtrinh bienphansau: (4.5) T T f\ul(t),vet)dt + f[(urCt),vrCt))+h(t)u(1,t)v(1,t)]dt° ° T T T + f(Fi(u(t)),v(t))dt= f(f(t),v(t))dt+uo fh(t)v(1,t)dt,° ° ° 'v'vEL2(0,T;V), 28 vadi~uki~nT - tudnhoan (4.6) u(O)=u(T). Khi do, taco dinh19sail Dinh Iy 4.1. Cho T>O va (Hl),(H~),(H~)dung.Khi do, bai loan (4.1)- (4.4)co duynhcitmQtnghi~mye'uT - tudnhoan U E L2(0,T;V) n LOO(O,T;H) saD r2/5u E L5/2(QT)' Chungminh.G6mnhi€u buGc. Btidc1.PhLtdngphapGalerkin. cho u/ E L2(0,T;H), Lffy mOtcd sa t11!cchufin {wi},j =1,2,...trongkhong gian Hilberttachdu<;1cV. Ta Hmurn(t)theod~ng rn (4.7) urn(t)=LCrnj(t)Wj' j=l trongdo crn/t) thoah~phudngtrlnhvi phanphituySn (4.8) (u~(t),Wj) +(urnr(t),Wjr ) +h(t)urn(1,t)Wj(1) +(Fi (Urn(t)),Wi) =(/(t),Wi)+uoh(t)w/l),1:::;j:::;m, vadi€u ki~nT - tu~nhoan (4.9) Urn(0) =urn (T). D~utieD,taxeth~phudngtrlnh(4.8)vadi€u ki~nd~u (4.9/) Urn(0) =uorn' trong do Uorn thuOc khong gian sinh boi cac ham {Wi},j=1,2,...,m.Khi do, ta duQcmOth~m phudngtrlnhvi phanthuongphituySnVGicac fin hamCrnj(t),j=1,2,...,m,va cacdi€u ki~nd~u(4.9/).D~thffydingt6nt~iurn(t)co d~ng 29 (4.7)thoa(4.8)va (4.9/)vdi hftukh~pndi tfen 0s,t s,Tm,vdi illQt TmE (O,T]. Cac danhgia tien nghi~illsail day chophepta 11yTm=T vdi illQi ill. Brioe 2.Ddnhgid liennghi~m. Nhanphudngtrlnhthlij cuah~(4.8)vdi cmj (t), saildo1a'y t6ng theoj , taduQc (4.10) ~llum(t)112+21Iumr(t)r+2h(t)u~(l,t)dt 1 +2frl Um(r,t)15/2dr° =2(f(t),um(t))+2uoh(t)um(t). Tu giathiet(H~)vaba'td£ngthlic(2.9),suyfa (4.11) 2\\umr(t)112+2h(t)u~(l,t)~C11Ium(t)II~ tfong do C1=mill {I,ho}. Dodo,tu(4.10),(4.11)suyfa 1 (4.12) ~llum(t)112+Clllum(t)II~ +2 frlum(r,t)15/2 dr m ° s,2(f(t),um(t))+2uoh(t)um(l,t) s,~llf(t)112+6'llum(t)112+~luoI21IhI1200 +6' ll um(t)ll v 2 6' 6' L (O,T) . S,~llf(t)112+~luoI21Ihll~oo(O'T)+26'llum(t)II~ vdi illQi 6'>0. ChQn6'>0 saGcho (4.13) CI-26'=C2 >0. Do do, tu (4.12),(4.13)tathuduQc (4.14) ~lIum(t)1I2+C21Ium(t)1I2dt 30 t::;~llum(t)112+C21Ium(t)II~+2 frlum(r,t)15!2dr & 0 ::;~llf(t)112+~luoI21IhI1200 =ht(t). (j (j L (O,T) Nhanbfttd~ngthuc(4.14)vdi eC2tvasaildotichphantaco t (4.15) lIum(t) 112::;lluoml12e-C2t +e-C2t fht(s)eC2Sds. 0 Cho T >0, taxethams6sail t - j(eC2t-lrt fht(s)eC2Sds, O<t::;T, (4.16) R(t)=] 0 ht(0)/C2, t=O. Khi do R ECo[o,T]vatad~tR =max~R(t). O<;,t<;,T N€u II uomll::; R tu(4.15),(4.16)chota (4.17) II um(t) II::;R nghlala Tm=T vdimQim. GQi Bm(O,R)la quacftudongtam0, bankfnhR trongkhong gianmchi~usinhbdi caeham wi'} =1,2,...,m,d6ivdi chuffn11.11 Xet anhX£;lFm:Bm(O,R)~ Bm(O,R)chobdicongthuc (4.18) Fm(uom)=um(T). Ta chungminhr~ngFmla anhX£;lco. Gia sa Uom'VomEBm(O,R)va d~tm(t)=Um(t)-Vm(t),trongdo Um(t)'Vm(t)la caenghi~mcuah~(4.8)tren [O,T]thoacaedi~u ki~ndftuum(O)=Uomva vm(O)=vomIftn ltim(t) thoah~phuongtrlnhvi phansailday (4.19) \~(t),wi)+(mr (t),wir)+h(t)m(1,t)wi (1) =- (I Um(t)1112Um(t)-I Vm(t)1112Vm(t),Wi),1::;}::;m vadi~uki~ndftu 31 (4.20) m(O)=uom-vom' Tinh loantuongtlfnhuchuang3,tadU<;1c (4.21) ~11m(t)112+ 11mr(t)r+ 2h(t)1m(1,t)I2dt =- 2(1um(t)11/2Um(t)-I Vm(t)11/2Vm(t),Um(t) - Vm(t))~0 Do (4.11),tu(4.21)suyra (4.22) ~11m(t)112+C111mr(t)II~~O Tich phanbfttd~ngthU'c(4.22),tadU<;1C 1 --TCI (4.23) II um(T)- vm(T)II ~e 2 II Uom- Vomll- - nghlala Fm:Bm(O,R)-) Bm(O,R)la anhX(;lco. Do d6 t6n t(;li duy nhftt UomE Bm(O,R) sao cho Uom=Fm(uom)=um(T). Do d6, voi m6i m t6n t(;limQt ham uomEBm(O,R) S110cho nghi<%mcuabai loangiatribandffu(4.8),(4.9/) la mQtnghi<%m T- tuffnhoancuah<%(4.8).Nghi<%mnayclingthoabfttd~ngthU'c (4.17)voihffuh€t tE[O,T]vanha(4.14)tasuyra t t 1 (4.24) II Um(t)112 +C2III Urnes)II ~ds+2Ids Irl um(r,s)15/2dr ~C3' 0 0 0 trongd6 C3la h~ngs6dQcl~pvoim. NhanphuongtrlnhthU'j cuah<%(4.8)voi c~/t), Iftyt6ngtheoj va saud6tichphantungphffntheobi€n ttu0d€n T, tac6 T 2 ITd 2 ~Iu~(t) II dt +- I-II Umr(t)II dt 0 2 0 dt T T +1. Ih(t)~[u;(1,t)]dt + I(I Um(t)11/2Um(t),u~(t)dt 2 0 dt 0 (4.25) 32 T T =f(f(t),u~(t))dt+uofh(t)u~(1,t)dt 0 0 Tu (4.9)tathfiydinghaibfitd~ngthucsaildaydung: T d 2 il f-II Umr(t)II dt=O, 0 dt T 1 R J .. 1/2 1 2 d 5/2 111 f(1um(t)I Um(t),um(t))dt=-frdr -IUm(r,t)1 dt 0 50 0 dt 1 =2fr(I um(r,T)15/2-I Um(r,O)15/2)dr =O. 50 Do do,d~ngthuc(4.25),nhotkh phantungphftntathuduQc (4.26) T . 2 T IT ]lu~(t)11dt= f(f(t),u~(t))dt+- fhl(t)u~(1,t)dt 0 0 20 T - Uofhl (t)um(I,t)dt. 0 Sail cling,nho(4.24),(4.26),suyfa bfitd~ngthucsail T 2 T T 2 (4.27) 2]1u~(t)II dt ~ fllf(t) 112dt + ]1u~(t)II dt 0 0 T T + ll hl ll fu~(1,t)dt+2Iuolll hl ll rlum(1,t)ldtLoo(O,T) Loo(O,T)JI0 0 T 2 T T ~ ]1U~(t)II dt + Slifer) 112dt +311hl!lrOO(O,T)IIi Um(t) II~dt 0 0 0 T +2~luolll hl ll rIIUm(t)llvdtLOO(O,T) JI0 T 2 T T ~ ]lu~(t)11dt+ fllf(t)112dt+31Ihl!lrOO(O,T)fllum(t)ll~dt 0 0 0 ( T J 1/2 +2~3T 1"0111hl"'(O,T) }Ium(t)II~dt 33 T 2 ~ ]IU~(t)11dt+C4, 0 trongdo C4la hangs6dQcl~pvoim. T 2 (4.28) ]1u~(t)II dt~C4voimQim. 0 M~tkhac,tli'(4.24),tacodanhgia t f In 3/5 1/2 1 5/3 (4.29) dsJI r 1 urn(r,s)I urn(r,s) dr 0 0 t 1 = Ids SriUrn(r,s)15/2dr ~!:.C3. 0 0 2 Bdoc 3. Qua gicii h(}n. Do (4.24),(4.28),(4.29)ta suyfa, t6nt:;timQtdayconcuaday {Urn},v~nky hit%uIa {urn}saocho (4.30) urn~ U trong Loo(O,T;H) ye'u *, (4.31) urn~U trong L2(O,T;V) ye'u, (4.32) u~~ u/ trong L2(O,T;H) ye'u, (4.33) r2/5urn~ r2/5u trongL5/2(QT)' Tru'dehe'ttanghit%mrang (4.34) u(O)=u(T). Voi mQivEH, tli'(4.9)taco (4.35) T f(u~(t),v)dt =(urn(t)- urn(O),v) =o. 0 Tli'(4.32),(4.35)suyra T T f(u~(t),v)dt~ f(u/ (t),v)dt =0 khim~ +00 0 0 Tinh toantu'dngtl!nhu'(4.35)taco 34 (4.36) (4.37) T (u(T) - u(O),v) =f\Ul (t),v)dt =0 vdi ffiQi v E H, 0 vadodo(4.34)dung. Dungb6 dS 2.11.vS tinhcoffipactcuaJ .L.Lions,ap dl;lngvao (4.31),(4.32)tacoth€ Iffyratuday{urn}ffiQt dayconvftnky hi~uIa {urn}saocho (4.38) urn ~ u ffi(;lnhtrong L2(0,T;H). Do dinhIy Riesz- Fischer,tu(4.38)tacoth€ Iffyratu {urn}ffiQt dayconvftnkyhi~uIa {urn}saocho (4.39) urn(r,t)~ u(r,t) a.e(r,t) trongQT=(0,1)x(O,T). D 11 1/2 I.". ".0 U H U U len tl;lcDen (4.40) 3/5 1 1 J/2 3/5 1 1 J/2 r urn(r,t) urn(r,t)~ r u(r,t) u(r,t) vdi a.e.(r,t) trongQT' Ap dl;lngb6 dS2.12,vdi / 3/5 1 1 1/2 3/5 1 . / J/2 N=2,q=53,Grn=r Urn urn,G=r u u. Tu (4.29),(4.41)suyra (4.41) r3/51urnlJ/2urn ~ r3/51 U 1J/2 u trong L5/\QT) y<5u. K " h.". ( ) 1 . ( iTCt J . 12 1",. ? h ~ Y lyU gi t =.J2sm T ,1= , ,... a ffiQtcosotn!cc uan trong khong gian Hilbert thlfc L2(O,T). Khi do t~p {giWj;i,j=I,2,...}I~pthanhffiQtco sdtrlfcchufintrongkhong ; 2 pan L (O,T;V). Nhanphuongtrlnhthili cua(4.8)vdi gi(t) saildoIffytichphan theot , 0~t ~T , taco 35 T T J( U~(t),wi)gi (t)dt + f(umr (t),wi r )gi (t)dt 0 0 T T + fh(t)um(1,t)w/l)gi (t)dt+ f(1Um(t)11/2Um(t),Wi)gi(t)dt 0 0 T T =f(/(t), Wi)gi(t)dt+fuoh(t)w/l)gi(t)dt 0 0 V} =1,2,...,m,Vi E N. D€ quagidi h~ncuas6 h~ngphi tuye'nI um(t)I ]/2 Um(t)trong (4.42) (4.42)tadungb6 dS sail B6d~4.1.Vi,}=1,2,...taco . T T }~~f(1Um(t)11/2Um(t),Wi)gi(t)dt = S(IU(t)11/2U(t),Wi)gi(t)dt. 0 0 Chungminh.Chily ding(4.41)tu'dngdu'dngvdi T ] T 1 (4.43) fdt fr3/51 uml1/2 umdr~ fdt fr3/51 U 11/2udr 0 0 0 0 1 VE (L5/\QT)) =L5/2(QT)' M~t khac, ta co T T] S(i Um(t)11/2Um(t),Wi )gi(t)dt = f SriUml1/2umWi(r)gi(t)dr dt 0 00 (4.44) T] =f f(r3/51Uml1/2um)(r2/5w/r)gi(t) }1rdt. 00 Do (4.44),b6 dS4.1sedu'Qchungminhne'utakh~ngdinhdu'Qc ding =r2/5wi(r)gi(t) EL5/2(QT)'Th~tv~y,do bfftd~ngthuc (2.7),taco Tl Tl 5/2 f fl15/2drdt=f Sriw/r)gi(t) I drdt 00 00 36 1 T f 114 1 ' 1 5/2 ~ 512 = r- 'irWj(r) dr jlgi(t)1 dt 0 0 5/2 1 T (4.45) ~(21IWjllv) fr-1I4drflgi(t)15/2dt0 0 T 15 '" II 11 5I 2 ~ 5I 2 =)'i2 Wj V jlgi(t)1 dt <+00.0 V~yb6d~4.1du<;5cchungminh. Cho m~ +00tfong(4.42),tli (4.30)- (4.32)vab6d~4.1,tasuy fa u thoaphuongtrlnhbie'nphan T T (4.46) f(u/(t),WjJgi(t)dt+ f(ur(t),Wjr)gi(t)dt 0 0 T T + fh(t)u(1,t)w/l) gi(t)dt + f(1u(t)11/2u(t),Wj)gi(t)dt 0 0 T T =f(f(t),Wj)gi(t)dt +itafh(t)wj(1)gi(t)dt, Vi,} E N. 0 0 Tli (4.46)suyfa phuongtrlnhsaildaydung. T T T (4.47) f(ul(t),v(t)Jdt+ f(ur(t),vr(t))dt+ fh(t)u(l,t)v(1,t)dt 0 0 0 T T T +f(1u(t)1112u(t),vet)dt=f(f(t), v(t))dt+itafh(t)v(1,t)dt 0 0 0 VvEL2(Q,T;V). V~ySt!t6nt'.linghi~mdu<;5cchungminh. Blioe 4. Tinhduynht{tnghifm. Gia sa u,v la hainghi~mye'ucua(4.1)- (4.4).Khi do W=u - v thoabai tmlnbie'nphansailday (4.48) T T T . f(wi(t),cp(t)Jdt +f(Wr(t),CPr(t))dt + fh(t)w(1,t)cp(1,t)dt 0 0 0 37 T+f(1U(t)11/2U(t)-I vet)11/2v(t),rp(t))dt =0,VrpEL2(0,T;V), 0 (4.49) w(O)=weT), vdi u,vEL2(0,T;V)nLOO(0,T;H),ul,/ EL2(0,T;H), 2/5 2/5 L5/2(Q )r u, r VET' T Ltty rp=w trong(4.48)va chliydug f\wi (t),wet)dt =O. 0 Khi dosadvng(4.11)va'(4.49)taduQc 1 T T (4.50) -Clllwll\ . ~]lwr(t)112dt+fh(t)w2(l,t)dt2 L (O,T,V) 0 0 T =- f(1 u(t) 11/2 U(t)-I V(t)11/2V(t),U(t)- vet))dt ~O. 0 Di~unayd~nd€n w=0 nghla1au=v. Dinh 1y4.1duQcchungminhhoanloan. 38 ._.

Các file đính kèm theo tài liệu này:

  • pdf5_2.pdf
  • pdf0.pdf
  • pdf1.pdf
  • pdf2.pdf
  • pdf3_2.pdf
  • pdf4_2.pdf
  • pdf6_2.pdf
  • pdf7_2.pdf
Tài liệu liên quan