Nghiên cứu ảnh hưởng của vận tốc cắt tới cơ chế mòn dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi

Tài liệu Nghiên cứu ảnh hưởng của vận tốc cắt tới cơ chế mòn dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi: ... Ebook Nghiên cứu ảnh hưởng của vận tốc cắt tới cơ chế mòn dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi

pdf105 trang | Chia sẻ: huyen82 | Lượt xem: 1847 | Lượt tải: 1download
Tóm tắt tài liệu Nghiên cứu ảnh hưởng của vận tốc cắt tới cơ chế mòn dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP --------------------------------------- LUẬN VĂN THẠC SĨ KỸ THUẬT NGHIÊN CỨU ẢNH HƯỞNG CỦA VẬN TỐC CẮT TỚI CƠ CHẾ MÒN DỤNG CỤ PCBN SỬ DỤNG TIỆNTINH THÉP 9XC QUA TÔI Ngành : CÔNG NGHỆ CHẾ TẠO MÁY Mã số : 11120611008 Học viên : NGUYỄN THỊ THANH VÂN Người hướng dẫn Khoa học: PGS.TS. PHAN QUANG THẾ THÁI NGUYÊN - 2009 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP ------------------------------------- LUẬN VĂN THẠC SĨ KỸ THUẬT Họ và tên học viên : NGUYỄN THỊ THANH VÂN Giáo viên hướng dẫn : PGS.TS. PHAN QUANG THẾ Tên đề tài : Nghiên cứu ảnh hưởng của vận tốc cắt tới cơ chế mòn dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi. Chuyên ngành : CÔNG NGHỆ CHẾ TẠO MÁY Ngày giao đề tài : Ngày hoàn thành : Khoa đào tạo sau đại học Ts Nguyễn Văn Hùng Người hướng dẫn khoa học PGS.TS Phan Quang Thế Học viên KS. Nguyễn Thị Thanh Vân LỜI CẢM ƠN Với lòng biết ơn sâu sắc, tôi xin trân trọng cảm ơn: Thầy giáo PGS.TS Phan Quang Thế - Thầy hướng dẫn khoa học của tôi về sự định hướng đề tài, sự hướng dẫn tận tình của Thầy trong việc tiếp cận và khai thác các tài liệu cũng như những chỉ bảo trong quá trình tôi làm thực nghiệm và viết luận văn. Tôi xin bày tỏ lòng biết ơn tới: Thầy giáo ThS. Lê Viết Bảo – Cô giáo ThS. Nguyễn Thị Quốc Dung đã tạo điều kiện hết sức thuận lợi cho tôi được tiến hành thí nghiệm tại xưởng sản xuất và trong suốt quá trình hoàn thành luận văn này. Tôi cũng xin gửi lời cảm ơn c án bộ phụ trách phòng thí nghiệm Quang phổ khoa Vật lý trường ĐHSP Thái Nguyên; cán bộ phòng kỹ thuật và xưởng Nhiệt luyện công ty phụ tùng số 1; cán bộ, nhân viên xưởng cơ khí nơi tôi tiến hành thực nghiệm; cán bộ phòng thí nghiệm khoa cơ khí – ĐHKTCN đã dành cho tôi những điều kiện thuận lợi nhất, giúp tôi hoàn thành nghiên cứu của mình. Tôi cũng xin gửi lời cảm ơn Trường Cao đẳng nghề Cơ điện-Luyện kim Thái Nguyên nơi tôi đang công tác đã tạo điều kiện cho tôi được học tập nâng cao trình độ, mở mang kiến thức. Cuối cùng tôi xin gửi lời cảm ơn tới gia đình và bạn bè, đồng nghiệp đã ủng hộ, động viên, giúp đỡ tôi trong suốt thời gian thực hiện luận văn này. Thái Nguyên, tháng 4 năm 2009 Học viên Nguyễn Thị Thanh Vân MỤC LỤC Lời cảm ơn Mụclục Danh mục các ký hiệu Danh mục các chữ viết tắt Danh mục các hình vẽ và đồ thị Danh mục các bảng biểu PHẦN MỞ ĐẦU 1 1. Tính cấp thiết của đề tài 1 2. Nội dung nghiên cứu 2 3. Phương pháp nghiên cứu. 3 4. Dự định kết quả 3 CHƯƠNG I : BẢN CHẤT VẬT LÝ CỦA QUẢ TRÌNH CẮT VÀ MÒN DỤNG CỤ 4 1.1. Bản chất vật lý 4 1.1.1. Quá trình cắt và tạo phoi 4 1.1.2. Đặc điểm quá trình tạo phoi khi tiện cứng 11 1.2. Lực cắt khi tiện 14 1.2.1. Lực cắt khi tiện và các thành phần lực cắt 14 1.2.2 Các yếu tố ảnh hưởng đến lực cắt khi tiện 18 1.2.2.1. Ảnh hưởng của vận tốc cắt 18 1.2.2.2. Ảnh hưởng của lượng chạy dao và chiều sâu cắt 20 1.2.2.3. Ảnh hưởng của vât liệu gia công 20 1.2.2.4. Ảnh hưởng của vật liệu làm dao và đặc điểm của vật liệu CBN khi tiện cứng 21 1.2.2.5. Ảnh hưởng của bán kính đỉnh dao r 23 1.2.2.6. Ảnh hưởng của mòn dụng cụ cắt 24 1.3. Nhiệt cắt 24 1.3.1. Khái niệm chung 24 1.3.2. Trường nhiệt độ 29 1.3.3. Quá trình phát sinh nhiệt 32 1.3.3.1. Nhiệt trong vùng biến dạng thứ nhất 32 1.3.3.2. Nhiệt trên mặt nước (QAC) và trường nhiệt độ 33 1.3.3.3. Nhiệt trên mặt tiếp xúc giữa mặt sau và bề mặt gia công (QAD) và trường nhiệt độ 34 1.3.3.4. Ảnh hưởng của vận tốc cắt tới nhiệt cắt và trường nhiệt độ trong dụng cụ 35 1.4. Kết luận 36 1.5. Mòn dụng cụ cắt 37 1.5.1. Dạng mòn 37 1.5.2. Các cơ chế mòn cơ bản của dụng cụ cắt 41 1.5.2.1 Mòn do dính 42 1.5.5.2. Mòn do hạt mài 43 1.5.5.3. Mòn do khuếch tán 44 1.5.2.4. Mòn do ôxy hóa 45 1.6. Mòn dụng cụ PCBN 45 CHƯƠNG II : NGHIÊN CỨU THỰC NGHIỆM VỀ MÒN DỤNG CỤ PCBN VÀ NHÁM BỀ MẶT 54 2.1. Thí nghiệm 54 2.1.1. Yêu cầu đối với hệ thống thí nghiệm 54 2.1.2. Mô hình thí nghiệm 54 2.1.3. Thiết bị thí nghiệm 55 2.1.3.1. Máy 55 2.1.3.2. Dao 55 2.1.3.3. Phôi 56 2.1.3.4. Chế độ cắt 57 2.1.3.5. Thiết bị đo nhám bề mặt 58 2.1.3.6. Thiết bị phân tích bề mặt và kim tương 58 2.2. Trình tự thí nghiệm 58 2.3. Kết quả thí nghiệm 59 2.3.1. Tương tác ma sát giữ a phoi và mặt trước 59 2.3.2. Tương tác ma sát giữa phoi và mặt sau dụng cụ 64 2.3.3. Kết luận 64 2.4. Mòn dụng cụ PCBN và nhám bề mặt 64 2.4.1. Phân tích thí nghiệm 64 2.4.2. Kết quả thí nghiệm mòn dụng cụ PCBN 65 2.4.3. Thảo luận kết quả 69 2.4.4. Kết luận 71 CHƯƠNG III: NGHIÊN CỨU THỰC NGHIỆM VỀ ẢNH HƯỞNG CỦA VẬN TỐC CẮT ĐẾN CƠ CHẾ MÒN DỤNG CỤ PCBN 72 3.1. Nghiên cứu thực nghiệm 72 3.2. Thí nghiệm 72 3.2.1. Thiết bị thí nghiệm và dụng cụ đo 72 3.2.2. Trình tự thí nghiệm 73 3.3. Kết quả thí nghiệm 73 3.4. Phân tích kết quả thí nghiệm 78 3.5. Phương trình hồi quy 80 3.6. Kết luận 84 CHƯƠNG IV: KẾT LUẬN CHUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU TIẾP THEO CỦA ĐỀ TÀI 85 4.1. Kết luận chung 85 4.2. Phương pháp nghiên cứu tiếp theo 86 TÀI LIỆU THAM KHẢO 87 DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT a: chiều dày lớp kim loại bị cắt ap: chiều dày phoi Kf: mức độ biến dạng của phoi Kbd: mức độ biến dạng của phoi trong miền tạo phoi Kms: mức độ biến dạng của phoi do ma sát với mặt trước của dao θ : góc trượt r: bán kính mũi dao γ (hayγ n) : góc trước của dao Pz (hay Pc): lực tiếp tuyến khi tiện Py (hay Pp): lực hướng kính khi tiện Px: lực chiều trục khi tiện S: lượng chạy dao (mm/vòng) t: chiều sâu cắt (mm) V: vận tốc cắt (m/phút) Q: tổng nhiệt lượng sinh ra trong quá trình cắt QAB = Q1: nhiệt sinh ra trên mặt phẳng trượt QAC = Q2: nhiệt sinh ra trên mặt trước QAD = Q3: nhiệt sinh ra trên mặt sau Qphoi: nhiệt truyền vào phoi Qdao: nhiệt truyền vào dao Qmôi trường: nhiệt truyền vào môi trường Qphôi: nhiệt truyền vào phôi KAB: ứng suất cắt trung bình trong miền biến dạng thứ nhất As: diện tích của mặt phẳng cắt Vs: vận tốc của vật liệu cắt trên mặt phẳng cắt kt: hệ số dẫn nhiệt của vật liệu gia công β: hệ số phân bố nhiệt từ mặt phẳng trượt vào phôi và phoi c: nhiệt dung riêng ρ: tỷ trọng của vật liệu RT: hệ số nhiệt khi cắt Ф: góc tạo phoi γm: tốc độ biến dạng của các lớp phoi gần mặt trước δt: chiều dày của vùng biến dạng thứ hai K: hệ số thẩm nhiệt ΔFc, ΔFt: áp lực tiếp tuyến và pháp tuyến trên vùng mòn mặt sau Fcf, Ftf: lực cắt tiếp tuyến và pháp tuyến đo khi mòn dao VBave: chiều cao trung bình của vùng mòn mặt sau τs: ứng suất tiếp trên vùng mòn mặt sau Kc, Kt: các hệ số thực nghiệm µ: hệ số ma sát trên vùng ma sát thông thường của mặt trước µf: hệ số ma sát trên mặt sau b: hệ số truyền nhiệt θo: nhiệt cắt Cl: hệ số phụ thuộc vào điều kiện gia công u: số mũ biểu thị ảnh hưởng của vận tốc cắt đến nhiệt cắt φ: góc nghiêng chính φ1: góc nghiêng phụ Vw: thể tích mòn mặt sau Vcr: thể tích mòn mặt trước KB, KF, KT: các kích thước vùng mòn mặt trước hs: độ mòn giới hạn Ra, Rz: độ nhám bề mặt khi tiện DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1: Sơ đồ miền tạo phoi ......................................................................... 5 Hình 1.2: Miền tạo phoi ................................................................................... 6 Hình 1.3: Miền tạo phoi ứng với vận tốc cắt khác nhau .................................. 8 Hình 1.4: Tính góc trượt θ.............................. Error! Bookmark not defined. Hình 1.5: Quan hệ giữa vận tốc cắt và biến dạng của phoi. Error! Bookmark not defined. Hình 1.6: Quan hệ giữa bán kính mũi dao r và biến dạng của phoi ........ Error! Bookmark not defined. Hình 1.7: Ba giai đoạn hình thành phoi khi tiện thép 100Cr6 với .......... Error! Bookmark not defined. V = 100 m/p; s = 0,1mm/v; t = 1mm; môi trường cắt khô. . Error! Bookmark not defined. Hình 1.8: Dạng của phoi trong mối liên hệ với độ cứng của phôi .......... Error! Bookmark not defined. và vận tốc cắt ................................................... Error! Bookmark not defined. Hình 1.9: Hệ thống lực cắt khi tiện ................ Error! Bookmark not defined. Hình 1.10: Mối quan hệ giữa lực cắt và chiều dài cắt khi tiện thép thấm Các bon, Ni tơ tôi cứng đến 60 HRC bằng dao PCBN .. Error! Bookmark not defined. với γ = - 6o và α = 0o. .................................... Error! Bookmark not defined. Hình 1.11: Ảnh hưởng của vận tốc cắt tới lực cắt ........ Error! Bookmark not defined. Hình 1.12: Cấu trúc tế vi của hai loại mảnh dao (BZN6000 – 92% CBN – High CBN) và (BZN8100 – 70% CBN – Low CBN) [13]. . Error! Bookmark not defined. Hình 1.13: Ảnh hưởng của bán kính đỉnh dao tới lực cắt ... Error! Bookmark not defined. Hình 1.14: ....................................................................................................... 28 (a) Sơ đồ hướng các nguồn nhiệt. ................................................................... 28 (b) Ba nguồn nhiệt và sơ đồ truyền nhiệt trong cắt kim loại. ......................... 28 Hình 1.15 : Tỷ lệ % nhiệt truyền vào phoi, phôi, dao và môi trường ........... 29 phụ thuộc vào vận tốc cắt [6] .......................................................................... 29 Hình 1.16: Trường nhiệt độ khi tiện .............................................................. 30 Đường nét liền: Đường đẳng nhiệt; đường nét đứt: Dòng nhiệt.Dòng nhiệt vuông góc với đường đẳng nhiệt. .................................................................... 30 Hình 1.17: Sự phân bố nhiệt độ khi tiện trên mặt phân cách phoi - dụng cụ 31 Hình 1.18: Đường cong thực nghiệm của Boothroyd .. Error! Bookmark not defined. để xác định tỷ lệ nhiệt (β) truyền vào phôi [11]. ........... Error! Bookmark not defined. Hình 1.19: Sơ đồ phân bố ứng suất trên mặt sau mòn .. Error! Bookmark not defined. Hình 1.20 : Ảnh hưởng của vận tốc cắt tới nhiệt độ cắt .... Error! Bookmark not defined. 1. Thép austenit mangan 2. Thép Cacbon 3. Gang 4. Nhôm ............... Error! Bookmark not defined. Hình 1.21: Các dạng mòn phần cắt của dụng cụ khi tiện.... Error! Bookmark not defined. Hình 1.22: Quan hệ giữa một số dạng mòn của dụng cụ .... Error! Bookmark not defined. Hình 1.23: Các thông số đặc trưng cho mòn mặt trước ................................. 41 và mặt sau – ISO3685 [19].............................................................................. 41 Hình 1.24: Ảnh hưởng của vận tốc cắt đến cơ chế mòn .... Error! Bookmark not defined. khi cắt liên tục (a) và cắt gián đoạn (b) [23] ... Error! Bookmark not defined. Hình 1.25: Sơ đồ mòn mặt trước và sau của mảnh dao PCBN .............. Error! Bookmark not defined. trên mặt cắt ngang [15] ................................... Error! Bookmark not defined. Hình 1.26: Hình ảnh biến dạng dẻo lưỡi cắt [12].......... Error! Bookmark not defined. (V = 250m/p, S = 0,1mm/v, t = 0,125mm, r = 3,2mm, lưỡi cạnh viền) .. Error! Bookmark not defined. Hình 1.27: Hình ảnh mòn mặt sau dao BZN 8100 và BZN6000 [13] .... Error! Bookmark not defined. Hình 1.28: Vùng tương tác gi ữa vật liệu gia công và vật liệu dụng cụ [16]. ......................................................................... Error! Bookmark not defined. Hình 1.29: Sơ đồ đơn giản về quá trình mòn dính trên vùng có lớp đọng của vật liệu gia công [13] ................. Error! Bookmark not defined. Hình 1.30: Độ cứng tế vi của một số loại các bít ở nhiệt độ 20oC [15]. ........ 51 Hình 2.1. Mô hình thí nghiệm…………………………................................54 Hình 2.2. Máy tiện CNC - HTC 2050………………………………………55 Hình 2.3. Mảnh dao PCBN sử dụng trong nghiên cứu ……………………..56 Hình 2.4. Thân dao MTENN 2020 K16 - N………………………………...56 Hình 2.5. Cấu trúc kim cương của thép 9XC sử dụng trong thí nghiệm……57 Hình 2.6. Hình ảnh mặt trước của mảnh dao PCBN khi cắt với vận tốc cắt 180m/p chụp trên kính hiển vi điện tử……………………………………… 60 Hình 2.7. Hình ảnh phóng to vùng vật liệu gia công dính trên mặt trước của dụng cụ khi cắt với vận tốc cắt 180m/p…………………………………..... 61 Hình 2.8: Hình ảnh mặt trước của mảnh dao PCBN chụp trên kính ............. 63 hiển vi điện tử .............................................................................................. 63 a. Khi cắt với vận tốc cắt 160 m/p sau khi tiện 12,36 phút ...................... 63 b. Khi cắt với vận tốc cắt 140 m/p sau khi tiện 19,72 phút ...................... 63 Hình 2.9: ......................................................................................................... 66 (a): Hình ảnh mòn mặt trước của mảnh dao PCBN sau khi tiện 2,61 phút với các vết biến dạng dẻo bề mặt. ............................................................... 66 (b): Hình ảnh phóng to của (a). ................................................................... 66 (c): Mòn mặt trước của mảnh dao PCBN sau khi tiện 12,36 phút cho thấy bề mặt bị mòn rất ghồ ghề. .......................................................................... 66 (d): Hình ảnh cơ chế mòn mặt trước với sự bóc tách của các lớp vật liệu dụng cụ do dính - mỏi. ................................................................................ 66 Hình 2.10: ....................................................................................................... 67 (a) Mòn mặt sau của mảnh dao PCBN sau khi tiện 7,69 phút cho thấy vật liệu gia công dính trên vùng mòn tương đối phẳng. ................................... 67 (b) Ảnh mòn mặt sau, sau 10,09 phút gia công. ......................................... 67 (c) Ảnh phóng to vật liệu gia công bám lên vùng mòn mặt sau (b)............ 67 (d) Góc mòn bên trái của (b). ...................................................................... 67 Hình 2.11: ....................................................................................................... 68 (a) Mòn mặt sau của mảnh dao PCBN sau khi tiện 12,36 phút cho thấy hình ảnh gồ ghề của vùng mòn. .......................................................................... 68 (b) Hình ảnh phóng to của (a). .................................................................... 68 Hình 3.1: Ảnh hưởng của vận tốc cắt đến độ nhám ....................................... 73 Hình 3.2. Đồ thị quan hệ giữa vận tốc cắt và nhám Ra, Rz…………………75 Hình 3.3: Ảnh vùng mòn mặt sau của mảnh dao PCBN cắt với vận tốc cắt: 75 (a): v1 = 180 m/p sau 7,69 phút ............................................................... 75 (b): v2 = 160 m/p sau 12,36 phút ............................................................. 75 (c): v3 = 140 m/p sau 19,72 phút ............................................................. 75 Hình 3.4: ......................................................................................................... 76 (a)Ảnh phóng to vùng mòn mặt sau trên lưỡi cắt chính từ hình 3.3(c) .. 76 (b)Ảnh phóng to vùng “phồng” dưới lưỡi cắt phụ từ hình 3.3(b)........... 76 (c)So sánh cấu trúc tế vi vùng “phồng” dưới lưỡi cắt phụ (c’) với cấu trúc tế vi nguyên thuỷ của PCBN (c) ............................................................. 76 (d)Ảnh phóng to vùng dính vật liệu gia công trên mặt sau dưới lưỡi cắt phụ từ hình 3.3(c). ................................................................................... 76 Hình 3.5: ......................................................................................................... 77 (a) Ảnh mặt trước của mảnh dao PCBN cắt với vận tốc cắt 160 m/p sau 12,36 phút. ............................................................................................... 77 (b) Ảnh phóng to thể hiện cơ chế phá huỷ lưỡi cắt phụ từ hình 3.4(a) ... 77 Khi giảm vận tốc cắt xuống 160 m/p sau 12,36 phút, trên mặt sau chỉ xuất hiện một vùng bị “phồng” ở phía dưới lưỡi cắt phụ. Tiếp tục giảm vận tốc cắt tới 140 m/p, sau 19,72 phút, trên mặt sau chỉ tồn tại vùng dính vật liệu gia công (Hình 3.3(c)). ....................................................... 77 Hình 3.6: Mặt hồi quy dạng Loga của nhám bề mặt Ra theo loga của lượng chạy dao S và vận tốc V khi t = 0,12 mm…………………… ……….81 Hình 3.7: Đồ thị biểu diễn mối quan hệ giữa nhám bề mặt Ra và S,V. Các vùng nhám bề mặt Ra nhận giá trị tối ưu (t = 0,12 mm). ......................... 82 Hình 3.8: Mặt hồi quy dạng loga của tuổi bền T theo loga của lượng chạy dao S và vận tốc V khi t = 0,12 mm. ...................................................... 83 Hình 3.9: Đồ thị biểu diễn mối quan hệ giữa tuổi bền dụng cụ cắt T và S, V. Các vùng tuổi bền T nhận giá trị tối ưu (t = 0,12 mm) ..................... 83 DANH MỤC CÁC BẢNG BIỂU Bảng 1.1: Lịch sử và đặc tính của vật liệu dụng cụ cắt 26 Bảng 1.2: Tính chất cơ - nhiệt một số vật liệu dụng cụ 27 Bảng 1.3: Tính chất cơ - nhiệt của một số vật liệu phủ 27 Bảng 2.1: Thành phần hoá học của phôi thép 9XC (%) 57 Bảng 2.2: Vận tốc cắt và các thông số nhám 59 Bảng 3.1: Kết quả đo nhám bề mặt tương ứng với các chế độ cắt thiết kế 74 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1 PHẦN MỞ ĐẦU 1. Tính cấp thiết của đề tài : Tiện cứng là nguyên công tiện các chi tiết đã qua tôi (thường là thép hợp kim) có độ cứng cao khoảng từ 40 ÷ 65 HRC được sử dụng rộng rãi trong công nghiệp ô tô, chế tạo bánh răng, vòng ổ, dụng cụ, khuôn mẫu vv… Tiện cứng được sử dụng thay mài khi gia công chính xác các chi tiết máy có tỉ số chiều dài trên đường kính nhỏ, các chi tiết có hình dáng phức tạp và không nhất thiết phải sử dụng dung dịch trơn nguội. Tiện cứng cho độ chính xác và nhám bề mặt tương đương với mài nhưng tiện cứng có khả năng tạo nên lớp bề mặt có ứng suất dư nén làm tăng tuổi thọ về mỏi của chi tiết máy trong các tiếp xúc lăn khi sử dụng, cho năng suất cao hơn mài với đầu tư ban đầu thấp hơn nhiều. Tiện cứng thường dùng trong nguyên công tiện tinh với độ chính xác ngang mài nên các yêu cầu về độ chính xác, độ cứng vững của hệ thống công nghệ rất khắt khe. Vật liệu thường sử dụng làm dao tiện cứng là CBN (Cubic nitrit Bo). Đây là loại vật liệu tổng hợp sử dụng các hạt CBN với chất gắn kết l à TiC hoặc kim loại như Co. Khi sử dụng mảnh dao với hàm lượng CBN thấp (CBN – L) và cao (CBN – H), mòn xuất hiện trên cả mặt trước và sau với ba cơ chế mòn khác nhau là mòn do dính, mòn do cào xước và mòn do nhiệt, trong đó mòn do nhiệt là cơ chế mòn chính. Mòn ảnh hưởng trực tiếp đến nhám bề mặt chi tiết gia công, do vậy nó phải được nghiên cúu để nắm vững và điều khiển nhằm giảm tác động của nó và nâng cao chất lượng của quá trình cắt gọt. Mòn của dụng cụ cắt là hiện tượng lý hoá phức tạp trong quá trình gia công cắt gọt các vật liệu. Cũng như mòn của các chi tiết máy, mòn của dụng cụ làm thay đổi các thông số hình học dụng cụ và giảm tuổi bền cũng như khả năng làm việc Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2 của dụng cụ. Mòn của dụng cụ còn ảnh hưởng trực tiếp đến chất lượng và độ chính xác của bề mặt gia công. Đối với quá trình gia công loạt lớn và tự động hoá, độ mòn và tuổi bền của dụng cụ lại càng được quan tâm và chú ý hơn do các ảnh hưởng của nó tới năng suất và chất lượng của sản phẩm chế tạo. Do vậy, việc nghiên cứu quá trình mòn khi tiện cứng để nâng cao khả năng làm việc, nâng cao chất lượng bề mặt gia công là cần thiết đối với ngành cơ khí. Khi tiện thép nhiệt luyện bằng dao nitritbo xuất hiện lực cắt đơn vị lớn, do đó ở vùng tiếp xúc nhiệt độ cắt tăng cao, gây ảnh hưởng đến tuổ i bền của dao và chất lượng lớp bề mặt của chi tiết gia công. Xét về mặt mài mòn của dụng cụ cắt cần quan tâm tới nhiệt độ lớn nhất trên mặt trước và mặt sau, sự phân bố nhiệt trên các bề mặt này. Nhưng việc xác định nhiệt độ lớn nhất này rất khó khăn. Mặt khác nhiệt độ cắt chịu ảnh hưởng của vận tốc cắt lớn hơn so với lượng chạy dao. Khi tiện tinh, chiều sâu cắt nhỏ, vận tốc cắt lớn, áp lực lên dao nhỏ, nhiệt độ tập trung ở vùng mũi dao cao nên làm dao bị mềm ra và cùn nhanh. Ảnh hưởng của vận tốc cắt đến cơ chế mòn như thế nào khi tiện tinh thép hợp kim dụng cụ 9XC qua tôi một loại vật liệu có nhiều ưu điểm được dùng rộng rãi nhất để chế tạo dụng cụ cắt với vận tốc thấp nhằm thoả mãn các yêu cầu về khả năng làm việc đang là yêu cầu cần thiết của các nhà sản xuât. Do vậy đề tài: “Nghiên cứu ảnh hưởng của vận tốc cắt tới cơ chế mòn dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi” là cần thiết và cấp bách. 2. Nội dung nghiên cứu. - Nghiên cứu tổng quan về bản chất vật lý của quá trình cắt kim loại khi tiện và cơ chế mòn của dụng cụ cắt. - Nghiên cứu thực nghiệm về mòn dụng cụ PCBN và ảnh hưởng của vận tốc cắt tới cơ chế mòn dụng cụ PCBN sử dụng tiện tinh thép 9XC qua tôi. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3 3. Phương pháp nghiên cứu. Phương pháp nghiên cứu kết hợp lý thuyết và thực nghi ệm. Nghiên cứu tổng quan về các vấn đề liên quan đến tiện cứng từ đó rút ra vấn đề định hướng cho nghiên cứu về mòn và tuổi bền của dụng cụ. Tiến hành các nghiên cứu và phân tích thực nghiệm sử dụng mảnh dao PCBN tiện tinh thép 9XC qua tôi để xác định cơ chế mòn và tuổi bền của dao khi cắt với các vận tốc cắt khác nhau. Xác định mối quan hệ giữa vận tốc cắt và nhám bề mặt gia công khi sử dụng các vận tốc cắt khác nhau sau những khoảng thời gian khác nhau. Xử lý các số liệu thực nghiệm để tìm vận tốc cắt tối ưu nhằm đạt được chất lượng bề mặt tốt nhất hoặc tuổi bền cao nhất. 4. Dự định kết quả : Phát hiện ra một số cơ chế mòn dụng cụ PCBN mới mối quan hệ giữa mòn, cơ chế mòn và vận tốc cắt. Xác định được vận tốc cắt tối ưu trong dải vận tốc cắt sử dụng trong nghiên cứu nhằm đạt được nhám bề mặt nhỏ nhất hoặc tuổi bền cao nhất của dụng cụ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 4 CHƯƠNG I BẢN CHÂT VẬT LÝ CỦA QUÁ TRÌNH CẮT VÀ MÒN DỤNG CỤ 1.1. Bản chất vật lý. Trong quá trình gia công kim loại bằng cắt gọt có rất nhiều hiện tượng vật lý xảy ra: phát sinh nhiệt, ma sát, mài mòn, lẹo dao, rung động, biến cứng, biến dạng phoi…Các hiện tượng vật lý này ảnh hưởng rất lớn đến công tiêu hao trong quá trình cắt gọt, độ mòn của dụng cụ cắt, chất lượng của chi tiết gia công. 1.1.1. Quá trình cắt và tạo phoi. Quá trình cắt kim loại là quá trình lấy đi một lớp phoi trên bề mặt gia công để có chi tiết đạt hình dạng, kích thước và độ nhám bề mặt theo yêu cầu. Để thực hiện một quá trình cắt cần thiết phải có hai chuyển động : - Chuyển động cắt chính (Chuyển động làm việc) : Với tiện đó là chuyện động quay tròn của phôi. - Chuyển động chạy dao: Đó là chuyển động để đảm bảo duy trì sự tạo phoi liên tục trong suốt quá trình cắt. Với tiện đó là chuyển động tịnh tiến dọc của dao khi tiện mặt trụ [6]. Khi cắt để có thể tạo ra phoi, lực tác dụng vào dao cần phải đủ lớn để tạo ra trong lớp kim loại bị cắt một ứng suất lớn hơn sức bền của vật liệu bị gia công. Hình dạng, độ cứng, mức độ biến dạng và cấu tạo phoi chứng tỏ rằng lớp kim loại bị cắt thành phoi đã chịu một ứng suất như vậy (hình1.1). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 5 Hình 1.1: Sơ đồ miền tạo phoi Quá trình tạo phoi được phân tích kỹ trong vùng tác động bao gồm: - Vùng biến dạng thứ nhất là vùng vật liệu phôi nằm trước mũi dao được giới hạn giữa vùng vật liệu phoi và vùng vật liệu phôi. Dưới tác dụng của lực tác động trước hết trong vùng này xuất hiện biến dạng dẻo. Khi ứng suất do lực tác động gây ra vượt quá giới hạn bền của kim loại thì xuất hiện hiện tượng trượt và phoi được hình thành (vùng AOE). Trong quá trình cắt, vùng phoi một luôn di chuyển cùng với dao. - Vùng ma sát th ứ nhất là vùng vật liệu phoi tiếp xúc với mặt trước của dao. - Vùng ma sát th ứ hai là vùng vật liệu phôi tiếp xúc với mặt sau của dao. - Vùng tách là vùng bắt đầu quá trình tách kim loại khỏ i phôi để hình thành phoi. Vật liệu dòn khác biệt vật liệu dẻo ở vùng biến dạng thứ nhất, do tổ chức hạt là khác nhau nên ở vùng này biến dạng dẻo hầu như không xảy ra. Quá trình bóc tách phoi diễn ra gần như đồng thời với lực tác động. Việc nghiên cứu quá trình tạo phoi có một ý nghĩa rất quan trọng vì trị số của công cắt (công làm biến dạng chiếm 90% công cắt), độ mòn của dao (tuổi thọ của dụng cụ cắt) và chất lượng bề mặt gia công phụ thuộc rất nhiều vào quá trình tạo phoi. a. b. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 6 Khi cắt do tác dụng của lực P (hình 1.1), dao bắt đầu nén vật liệu gia công theo mặt trước. Khi dao tiếp tục chuyển động trong vật liệu gia công phát sinh biến dạng đàn hồi, biến dạng này nhanh chóng chuyển sang trạng thái biến dạng dẻo và một lớp phoi có chiều dày ap được hình thành từ lớp kim loại bị cắt có chiều dày a, di chuyển dọc theo mặt trước của dao. Việc nghiên cứu kim loại trong miền tạo phoi chứng tỏ rằng trước khi biến thành phoi, lớp kim loại bị cắt đã trải qua một giai đoạn biến dạng nhất định, nghĩa là giữa lớp kim loại bị cắt và phoi có một khu vực biến dạng. Khu vực này được gọi là miền tạo phoi (hình 1.2). Hình 1.2: Miền tạo phoi Trong miền này (như sơ đồ hoá hình 1.1) có những mặt trượt OA, OB,OC,OD,OE. Vật liệu gia công trượt theo những mặt đó (là những mặt có ứng suất tiếp có giá trị cực đại). Miền tạo phoi được giới hạn bởi đường OA, dọc theo đường đó phát sinh những biến dạng dẻo đầu tiên, đường OE - đường kết thúc biến dạng dẻo và đường AE - đường nối liền khu vực chưa biến dạng của kim loại và phoi. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 7 Trong quá trình cắt, miền tạo phoi AOE di chuyển cùng với dao. Ngoài ra lớp kim loại bị cắt, sau khi đã bị biến dạng trong miền tạo phoi, khi di chuyển thành phoi còn chịu thêm biến dạng phụ do ma sát với mặt trước của dao. Những lớp kim loại phía dưới của phoi, kề với mặt trước của dao (hình 1.1) chịu biến dạng phụ thêm nhiều hơn các lớp phía trên. Mức độ biến dạng của chúng thường lớn đến mức là các hạt tinh thể trong chúng bị kéo dài ra theo một hướng nhất định, tạo thành têch tua. Như vậy phoi cắt ra chịu biến dạng không đều.Mức độ biến dạng của phoi: Kf = Kbd + Kms (1 –1) Ở đây: Kbd là mức độ biến dạng của phoi trong miền tạo phoi Kms là mức độ biến dạng của phoi do ma sát với mặt trước của dao. Vì biến dạng dẻo của phoi có tính lan truyền, do đó lớp kim loại nằm phía dưới đường cắt ON (hình 1.1a) cũng sẽ chịu biến dạng dẻo. Chiều rộng của miền tạo phoi phụ thuộc vào tính chất của vật liệu gia công và điều kiện cắt (thông số hình học của dao, chế độ cắt…). Vận tốc cắt có ảnh hưởng có ảnh hưởng lớn nhất đến chiều rộng miền tạo phoi. Tăng vận tốc cắt miền tạo phoi sẽ co hẹp lại. Hiện tượng đó có thế được giải thích như sau : Khi tăng vận tốc cắt vật liệu gia công sẽ chuyển qua miền tạo phoi với tốc độ nhanh hơn. Khi di chuyển với vận tốc lớn như vậy, vật liệu gia công sẽ đi ngang qua đường OA nhanh đến mức sự biến dạng dẻo không kịp xảy ra theo đường OA mà chậm đi một thời gian theo đường OA’. Tương tự như vậy, nơi kết thúc quá trình biến dạng trong miền tạo phoi sẽ là đường OE’ chậm hơn so với OE (hình 1.3). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 8 Hình 1.3: Miền tạo phoi ứng với vận tốc cắt khác nhau Như vậy ở vận tốc cắt cao miền tạo phoi sẽ là A’OE’; A’OE’ quay đi một góc theo chiều quay của kim đồng hồ và khi đó chiều dày cắt giảm đi so với trước (a’1 < a1) vì biến dạng dẻo giảm đi. Khi vận tốc cắt rất lớn miền tạo phoi co hẹp đến mức mà chiều rộng của nó chỉ vào khoảng vài phần trăm milimet. Trong trường hợp đó sự biến dạng của vật liệu gia công có thể xem như nằm lân cận mặt OF. Do đó để cho đơn giản, ta có thể xem một cách gần đúng quá trình biến dạng dẻo khi cắt xảy ra ngay trên mặt phẳng OF đi qua lưỡi cắt và làm với phương chuyển động của dao một góc bằng θ. Mặt OF được gọi là mặt trượt quy ước, còn góc θ gọi là góc trượt. Góc trượt là một thông số đặc trưng cho hướng và giá trị của biến dạng dẻo trong miền tạo phoi. Hình 1.4: Tính góc trượt θ Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 9 V1 V2 V3K 3 2 0 20 40 60 80 Theo hình vẽ 1.4 nếu chiều dày lớp kim loại bị cắt là a, chiều dày của phoi là a1 ta có : )cos( sin )cos(. sin. 1 γθ θ γθ θ − = − == OC OC a ar (1-2) Do đó có thể tính θ theo công thức : γ γθ sin.1 cos. r rtg − = (1-3) Nếu đặt r K 1= thì ta có công thức sau : γ γθ sin cos − = K tg (1-4) Như vậy góc trượt θ phụ thuộc vào γ và tỉ số K. Khi cắt kim loại bị biến dạng dẻo nên kích thước của phôi thường thay đổi so với kích thước của lớp kim loại sinh ra nó. Đại lượng K đặc trưng cho sự biến dạng xảy ra trong quá trình cắt gọt, K càng lớn biến dạng càng lớn. Trong cắt gọt người ta mong muốn K nhỏ tức là biến dạng nhỏ, khi đó công tiêu hao trong quá trình cắt gọt bé, chất lượng bề mặt của chi tiết gia công cao. Thực nghiệm cho thấy quan hệ giữa K và V như hình 1.5. Hình 1.5: Quan hệ giữa vận tốc cắt và biến dạng của phoi Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 10 Khi Vc tăng từ V1 đến V2 biến dạng của phoi giảm Trong vùng vận tốc cắt này khi V c tăng µ tăng do đó lực ma sát tăng, biến dạng của phoi tăng. Mặt khác khi này lẹo dao xuất hiện và tăng dần làm tăng góc trước, giảm góc cắt thì quá trình cắt dễ dàng hơn, phoi thoát ra dễ dàng hơn biến dạng của phoi giảm và đạt gia trị cực tiểu tại B ứng với Vc = V2 (tại đây chiều cao lẹo dao lớn nhất). Hai ảnh hưởng này bù trừ lẫn nhau nhưng ảnh hưởng của lẹo dao lớn hơn. Khi Vc tăng từ V2 ÷ V3 biến dạng của phoi tăng. Trong vùng vận tốc cắt này khi V c tăng chiều cao lẹo dao giảm dần, dẫn đến góc trước giảm, góc cắt tăng, biến dạng của phoi tăng. Khi Vc tăng, hệ số ma sát giảm, lực ma sát giảm, biến dạng của phoi giảm. Kết hợp hai ảnh hưởng này, ảnh hưởng của lẹo dao lớn hơn nên khi Vc tăng biến dạng của phoi tăng và đạt giá trị cực đại khi Vc = V3 (tại đây lẹo dao mất hẳn). Khi Vc > V3: lẹo dao không còn, mặt khác nhiệt độ cắt ở vùng cắt rất cao làm cho lớp kim loại của phoi sát mặt trước bị chảy nhão, hệ số ma sát giữa phoi và mặt trước giảm, K giảm. Khi Vc > 200 ÷ 300 m/f hệ số ma sát µ thay đổi rất ít, dẫn đến biến dạng ._.của phoi hầu như không thay đổi. Các giá trị V1, V2, V3 phụ thuộc vào điều kiện gia công, vật liệu làm dao, phôi, thông số hình học của dụng cụ cắt. Bán kính mũi dao r cũng ảnh hưởng đến hệ số biến dạng phoi, r tăng chiều dày trung bình của lớp cắt giảm, chiều dài của đoạn lưỡi cắt cong tham gia cắt tăng, phoi thoát ra cong bị biến dạng phụ thêm do sự giao nhau của chúng trên cung cong (phương thoát phoi xem như thẳng góc với lưỡi cắt) làm cho biến dạng của phoi tăng hình 1.6. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 11 Hình 1.6: Quan hệ giữa bán kính mũi dao r và biến dạng của phoi 1.1.2. Đặc điểm quá trình tạo phoi khi tiện cứng Trong tiện cứng, quá trình biến dạng trong vùng tạo phoi diễn ra rất phức tạp, chủ yếu do độ cứng của vật liệu gia công (sau khi tôi) nên giải pháp tốt nhất vẫn là sử dụng mảnh dao có độ cứng, khả năng chịu nhiệt… đặc biệt cao. Tiêu biểu cho nhóm này là các mảnh CBN, PCBN … Poulachon và đồng nghiệp [14] đã chỉ ra rằng thường có hai cơ chế tạo phoi lý thuyết khi gia công thép tôi. - Cơ chế thứ nhất cho rằng adiabatic shear gây ra sự không ổn định dẫn đến sự trượt mạnh trong vùng tạo phoi. - Cơ chế thứ hai cho rằng các vết nứt đầu tiên xuất hiện theo chu kỳ trên bề mặt tự do của phoi phía trước lưỡi cắt và truyền dần đến lưỡi cắt. Poulachon và đồng nghiệp cũng khẳng định rằng khi tiện trực giao thép 100Cr6 trong dải độ cứng từ 10 ÷ 62 HRC tồn tại của 3 kiểu cơ chế cắt. Phoi dây được tạo ra khi tiện thép có độ cứng từ 10 ÷ 50 HRC, lực cắt giảm khi tăng độ cứng trong dải này. Điều này được giải thích là khi độ cứng của vật liệu gia công tăng sẽ làm tăng nhiệt độ trong vùng tạo phoi làm giảm độ bền của vật liệu gia công dẫn đến tăng góc tạo phoi và giảm chiều dài tiếp xúc giữa phoi và mặt trước. Cả hai yếu tố đều có tác dụng giảm lực cắt. Khi tăng độ cứng của vật liệu gia công lên trên 50 HRC, phoi sẽ chuyển từ phoi dây sang phoi dạng răng cưa và lực cắt tăng lên. Khi tăng độ cứng, Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 12 góc tạo phoi tăng và chiều dày của phoi giảm Khi độ cứng tăng, tồn tại hai yếu tố trái ngược ảnh hưởng đến cơ chế tạo phoi đó là tăng độ bền của vật liệu gia công do tăng độ cứng và giảm độ bền của vật liệu gia công do tăng nhiệt độ trong vùng tạo phoi. Khi độ cứng tiếp tục tăng, vật liệu gia công trở nên giòn hơn và yêu cầu năng lượng cắt nhỏ hơn. Khi gia công vật liệu giòn, biến dạng nứt trở nên nhỏ hơn và khi nó nhỏ hơn một giới hạn nhất định, nứt sẽ trở nên thịnh hành và hiện tượng trượt cục bộ xảy ra gián đoạn trong vùng trượt chỉ ra trên hình 1. Khi hiện tượng này xảy ra, nhiệt độ trong dụng cụ không tăng mà lại bắt đầu giảm. Một điều cần lưu ý là phoi dạng răng cưa xuất hiện khi gia công phôi có độ cứng thấp hơn nhưng với vận tốc cắt cao hơn. Điều này chứng tỏ cơ chế tạo phoi được điều khiển bởi sự cân bằng giữa vận tốc cắt và độ cứng của vật liệu gia công và mối quan hệ giữa hai yếu tố này với nhiệt độ trong vùng cắt. Hình 1.7 chỉ ra 3/4 giai đoạn hình thành phoi răng cưa khác nhau. Hình 1.6: Ba giai đoạn hình thành phoi khi tiện thép 100Cr6 với v = 100 m/p; s = 0,1 mm; t = 1 mm; môi trường cắt khô. Hình 1.7: Ba giai đoạn hình thành phoi khi tiện thép 100Cr6 với V = 100 m/p; s = 0,1mm/v; t = 1mm; môi trường cắt khô. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 13 Giai đoạn 1: Khi ứng suất cắt đạt giá trị tới hạn trong vùng tạo phoi một vệt nứt đột nhiên xuất hiện và phát triển gần đến lưỡi cắt. Chiều dài của vết nứt là rất quan trọng và có thể so sánh với chiều dày của phoi khi biến dạng không xảy ra. Tất nhiên vết nứt xuất hiện trước khi phoi răng cưa được hình thành. Giai đoạn 2: Do sự xuất hiện của vết nứt, vùng phoi giữa vết nứt và cạnh viền sẽ bị đẩy lên không kèm theo biến dạng và vết nứt sẽ bị khép lại khi dụng cụ tiến lên phía trước và chiều cao của phoi giảm xuống. Tốc độ trượt của phoi trên mặt trước lớn đến mức mà có thể tạo ra nhiệt độ cao gần điểm A3 vì thế Máctensít sinh ra do ma sát giữa các lớp phoi thể hiện ở dạng lớp trắng bao quanh mảnh phoi được hình thành. Hơn nữa một lớp trắng tương tự sẽ sinh ra trên bề mặt gia công do ma sát rất lớn giữa mặt sau của dụng cụ với bề mặt gia công có nguyên nhân là lực hướng kính Py rất lớn. Giai đoạn 3: Khi chiều rộng của khe hở trở nên hẹp tới mức mà tốc độ bật ra và biến dạng dẻo của phoi là rất lớn. Dưới tác dụng của nhiệt độ cao hai lớp trắng trên phoi và trên bề mặt phân cách giữa phoi và bề mặt gia công kết hợp lại tạo nên phần thứ hai của phoi răng cưa. Do ở đây chiều dày của phoi rất nhỏ và tốc độ nguội rất cao vì thế hiện tượng chuyển đổi trong vùng này là “adiabatic”. Giai đoạn 4: Mảnh phoi răng cưa hình thành và thực tế điền vào chỗ trống tồn tại giữa vết nứt và mặt trong của phoi do biến dạng dẻo. Sự phân bố ứng suất nén đã giảm trong giai đoạn 2 và 3 lại trở nên quan trọng và tạo nên vết nứt mới cho một chu kỳ tạo mảnh phoi vụn mới [14]. Dạng phoi được hình thành phụ thuộc vào sự cân bằng giữa vận tốc cắt và độ cứng của vật liệu gia công và mối liên hệ giữa hai thông số này với nhiệt độ sinh ra trong vùng cắt. Hình 1.8 sự ảnh hưởng của tỷ số HVphoi / HVphôi (Tỷ số giữa độ cứng lớn nhất đo trên phoi và độ cứng của phôi ban Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 14 đầu) đến dạng phoi hình thành. Kết quả thí nghiệm cho thấy biến cứng ảnh hưởng lớn đến sự hình thành phoi khi độ cứng của phôi tăng hoặc vận tốc cắt thấp [14]. Hình 1.8: Dạng của phoi trong mối liên hệ với độ cứng của phôi và vận tốc cắt 1.2. Lực cắt khi tiện 1.2.1. Lực cắt khi tiện và các thành phần lực cắt Ta đã biết, để thực hiện quá trình tạo phoi, khi cắt dụng cụ phải tác động vào vật liệu gia công một lực nhất định. Lực này làm biến dạng vật liệu và phoi được hình thành. Tuy nhiên dụng cụ cắt cũng chịu một phần lực tương tự. Việc nghiên cứu lực cắt trong quá trình gia công vật liệu có ý nghĩa cả về lý thuyết lẫn thực tiễn. Trong thực tế, những nhận thức về lực cắt rất quan trọng để thiết kế dụng cụ cắt, thiết kế đồ gá, tính toán và thiết kế máy móc, thiết bị … Dưới tác dụng của lực cắt cũng như nhiệt cắt, dụng cụ sẽ bị mòn, bị phá huỷ. Muốn hiểu được quy luật mài mòn và phá huỷ thì phải hiểu được quy luật tác động của lực cắt. Muốn tính công tiêu hao khi cắt cần phải biết lực cắt. Những nhận thức lý thuyết về lực cắt tạo khả năng chính xác hóa Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 15 lý thuyết quá trình cắt. Trong trạng thái cân bằng năng lượng của quá trình cắt thì các mối quan hệ lực cắt cũng phải cân bằng. Điều đó có nghĩa là một mặt lực cản cắt tác dụng lên vật liệu chống lại sự tách phoi, mặt khác lực cắt do dụng cụ cắt tác dụng lên lớp cắt và bề mặt cắt [4], [6]. Lực cắt là một hiện tượng động lực học, tức là trong chu trình thời gian gia công thì lực cắt không phải là một hằng số. Lực cắt được biến đổi theo quãng đường của dụng cụ. Lúc đầu lực cắt tăng dần cho đến điểm cực đại. Giá trị lực cắt cực đại đặc trưng cho thời điểm tách phần tử phoi ra khỏi chi tiết gia công. Sau đó lực cắt giảm dần song không đạt đến giá trị bằng không bởi vì trước khi kết thúc sự chuyển dịch phần tử phoi cắt thì đã bắt đầu biến dạng phần tử khác [4], [6]. Hệ thống lực cắt khi tiện được mô tả sơ bộ trên hình 1.9. Lực tổng hợp P được phân tích thành ba thành phần lực bao gồm : lực tiếp tuyến Pz (hay Pc), lực hướng kính P y (hay Pp) và lực chiều trục (lực ngược với hướng chuyển động chạy dao) Px. Hình 1.9: Hệ thống lực cắt khi tiện Thành phần lực Pz là lực cắt chính. Giá trị của nó cần thiết để tính toán công suất của chuyển động chính, tính độ bền của dao, của chi tiết cơ cấu chuyển động chính và các chi tiết khác của máy công cụ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 16 Thành phần lực hướng kính Py có tác dụng làm cong chi tiết, ảnh hưởng đến độ chính xác gia công, độ cứng vững của máy và dụng cụ cắt. Thành phần Px tác dụng ngược hướng chạy dao, nó dùng để tính độ bền của chi tiết trong chuyển động phụ, độ bền của dao cắt và công suất tiêu hao của cơ cấu chạy dao. Lực cắt tổng cộng được xác định: P = 222 zyx PPP ++ (1- 5) Trường hợp tổng quát các thành phần lực này không thuần nhất. Trị số của Pz là hình chiếu chính, xác định bằng lực pháp tuyến tác dụng lên mặt trước của dao. Còn lại Px, Py phụ thuộc vào độ lớn và hướng của lực ma sát. Bởi vậy các thành phần lực này thay đổi khi thay đổi vật liệu gia công, thông số hình học dụng cụ cắt và chế độ cắt, … Lực cắt khi gia công vật liệu có độ cứng cao không cao hơn so với khi gia công vật liệu có độ cứng thấp trong cùng điếu kiện. Góc tạo phoi lớn và phoi dạng răng cưa do tính dẻo của vật liệu gia công kém làm giảm lực cắt mặc dù độ bền của vật liệu cao. Khi gia công thép 0,25% các bon thay đổi độ cứng đến HV500 sử dụng dao có góc trước 0o, lực cắt hầu như độc lập với độ cứng. Mặt khác khi sử dụng góc trước -20o, khi tăng độ cứng của phôi cả lực cắt và lực hướng kính đều giảm. Tăng góc trước âm có tác dụng làm tăng thành phần lực cắt hướng kính đáng kể [14]. Khi tiện thép thấm các bon, ni tơ tôi cứng đến 60 HRC bằng dao PCBN với γ = - 6o và α = 0o, các thành phần lực cắt Pz và Py tăng nhanh theo chiều dài cắt còn thành phần P x tăng hầu như không đáng kể theo chiều dài cắt. Thành phần lực cắt Py luôn là thành phần lớn nhất do góc trước âm lớn biến đổi dọc theo bán kính của lưỡi cắt chỉ ra trên hình 1.10 [12]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 17 Hình 1.10: Mối quan hệ giữa lực cắt và chiều dài cắt khi tiện thép thấm Các bon, Ni tơ tôi cứng đến 60 HRC bằng dao PCBN với γ = - 6o và α = 0o. Liu và đồng nghiệp [17] được sử dụng dao PCBN – L với 60% CBN và TiN làm chất dính kết khi gia công thép vòng b i tôi cứng đến 60 ÷ 64 HRC. Họ đã phát hiện ra rằng lực cắt giảm dần khi tăng độ cứng của vật liệu gia công đến 50 HRC. Khi độ cứng vượt quá 50 HRC phoi dây dạng răng cưa xuất hiện và lực cắt tăng đột ngột. Độ cứng 50 HRC gọi là độ cứng tới hạn với tiêu chí lực cắt tối thiểu. Vấn đề bôi trơn làm nguội tối thiểu so với cắt khô và bôi trơn làm nguội tràn đã được Varadarajan và đồng nghiệp nghiên cứu [18] khi tiện thép có độ cứng 46 HRC sử dụng dao các bít phủ TiC, TiN, TiCN. Các kết quả chỉ ra rằng bôi trơn, làm nguội tối thiểu có ưu điểm vượt trội so với tiện khô hoặc bôi trơn, làm nguội thông thường trên khía cạnh về lực cắt, độ nhám bề mặt sau gia công, hệ số co rút phoi, chiều dài tiếp xúc phoi và mặt trước và tuổi bền dụng cụ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 18 Theo Diniz.A.E và đồng ngh iệp [33], tiện cứng thường thực hiện trong môi trường khô vì nhiệt độ cao làm cho phoi biến dạng và trượt dễ hơn. Tuy nhiên nhiệt độ cao lại làm cho phôi dễ bị biến dạng, ảnh hưởng tới độ chính xác hình học, kích thước và chất lượng tích hợp bề mặt. Trong nghiên cứu của họ đã sử dụng dao PCBN tiện thép AISI 52100 tôi cứng đạt 58 ÷ 60 HRC với vận tốc cắt từ 110 ÷ 175 m/p; s = 0,08 mm/v; t = 0,3 mm trong môi trường khô, bôi trơn/làm nguội bằng tưới tràn và bôi trơn làm nguội tối thiểu. Kết quả thí nghiệm đã chứng tỏ rằng trong môi trường cắt khô và tối thiểu mòn mặt sau luôn nhỏ hơn khi bôi trơn/làm nguội tưới tràn; độ nhám bề mặt hầu như không thay đổi khi cắt trong cả ba môi trường. Từ đây có thể thấy môi trường cắt khô là tốt nhất trên khía cạnh giảm mòn, độ nhám bề mặt thấp và tiết kiệm chi phí chất bôi trơn/làm nguội. Trái lại các nghiên cứu thực tế của Koefer [33] cho thấy sử dụng dung dịch làm nguội ở dạng sương mù hay áp suất cao có tác dụng làm tăng tuổi bền của dao khi tiện cứng và dầu không nên sử dụng trong tiện cứng do nhiệt độ ở vùng cắt cao (tới 1700oF). 1.2.2.Các yếu tố ảnh hưởng đến lực cắt khi tiện Lực cắt trong quá trình gia công nói chung và khi tiện nói riêng đều chịu ảnh hưởng của rất nhiều yếu tố khác nhau như vật liệu gia công, thông số hình học của dụng cụ cắt, chế độ cắt ...v.v… 1.2.2.1 Ảnh hưởng của vận tốc cắt - Khi tăng vận tốc cắt từ V1 ÷ V2 Hiện tượng lẹo dao xuất hiện và tăng đến giá trị cực đại khi Vc = V2. Lẹo dao càng lớn biến dạng càng giảm do đó lực cắt càng giảm. - Khi tăng vận tốc cắt từ V2 ÷ V3 Hiện tượng lẹo dao giảm dần rồi triệt tiêu cùng với sự giảm dần của lẹo dao biến dạng của phoi tăng lên do đó lực cắt tăng lên. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 19 Khi Vc > V3 biến dạng của phoi giảm (đã giải thích ảnh hưởng của vận tốc cắt đến biến dạng của phoi) làm giảm lực cắt. Khi Vc tăng quá (400 ÷ 500 m/p) thì lực cắt hầu như không thay đổi vì biến dạng của phoi hầu như bão hoà. Hình 1.11: Ảnh hưởng của vận tốc cắt tới lực cắt - Để nâng cao năng suất cắt, giảm công tiêu hao trong quá trình cắt gọt ta nên cắt ở vận tốc cắt cao Vc > V3. Nên đường cong phía bên phải của đồ thị mang ý nghĩa thực tế. - Trong phạm vi vận tốc cắt từ Vc = V3 ÷ 400 m/p mối quan hệ giữa vận tốc cắt và các thành phần của lực cắt như sau: Pz = 11nV C , Py = 22nV C , Px = 33nV C Trong đó : các hệ số C 1, C2, C3, là hệ số phụ thuộc vào điều kiện gia công (Vật liệu phôi, thông số hình học của dụng cụ cắt, lớp cắt, dung dịch trơn nguội…) PxPyPz Kg 300 275 250 225 200 175 150 125 100 75 500 40 80 120 160 200 V M/p Px Py Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 20 n1, n2 , n3 là số mũ b iểu thị ảnh hưởng của tốc độ cắt tới lực cắt, phụ thuộc vào điều kiện gia công. Khi gia công thép bằng dao HKC: n1 = 0,1 ÷ 0,26; n2 = 0,18 ÷ 0,20; n3 = 0,22 ÷ 0,40 1.2.2.2. Ảnh hưởng của lượng chạy dao và chiều sâu cắt Các nghiên cứu thực nghiệm cho thấy đối với tất cả các thành phần lực cắt Px, Py và Pz ảnh hưởng của lượng chạy dao và chiều sâu cắt có thể tính bằng công thức chung sau : pp yxp stCP ..= (1-6) Hệ số Cp và các số mũ xp, yp phụ thuộc vào tính chất vật liệu gia công, các thông số hình học của dao, dung dịch trơn nguội … Ví dụ công thức thực nghiệm xác định các thành phần lực cắt khi tiện thép bằng dao hợp kim cứng : 4,05,0 ... −= VStCP xx 3,06,09,0 ... −= VStCP yy (1-7) 15,075,0 ... −= VStCP zz 1.2.2.3. Ảnh hưởng của vật liệu gia công Vật liệu chi tiết gia công có ảnh hưởng rất nhiều tới lực cắt, vật liệu chi tiết gia công khác nhau thì [σ ]dh, [σ ]b khác nhau do đó lực để ra biến dạng chúng cũng khác nhau. Vật liệu chi tiét gia công khác nhau thì hệ số ma sát với dụng cụ cắt cũng khác nhau, vì vậy lực cắt cũng khác nhau. Đối với thép [σ ]b càng lớn lực cắt càng lớn. Đối với gang độ cứng HB càng lớn lực cắt càng lớn Trong thực nghiệm người ta tìm được thành phần ),( HBfPz bσ= qua các công thức gần đúng sau : qBz CvP σ.= qvz HBCP .= Khi gia công thép có HB ≤ 170 lấy q = 0,35; HB > 170 lấy q = 0,75. (1-8) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 21 Với gang lấy q = 0,55. Nói cách khác, độ cứng và độ bền vật liệu gia công càng cao, lực cắt càng lớn. Quan hệ phụ thuộc này có thể được biểu thị bằng công thức tỷ lệ, nếu HB’ tương ứng P’, còn HB” tương ứng P”. Ta có : q HB HB P P      = ' " " ' hay q HB HBPP      = ' "'" (1-9) Như vậy theo công thức trên có thể xác định lực cắt khi gia công thép có HB” nếu biết lực cắt P’ khi gia công thép có HB’. Nói chung l ực cắt khi gia công thép lớn hơn khi gia công gang 1,5÷2 lần. 1.2.2.4. Ảnh hưởng của vật liệu làm dao và đặc điểm của vật liệu CBN khi tiện cứng. Khi gia công cùng một loại vật liệu, vật liệu làm dụng cụ cắt khác nhau thì biến dạng của phoi cũng khác nhau, lực ma sát giữa mặt sau của dụng cụ cắt với phôi, mặt trước của dụng cụ cắt cũng khác nhau. Mặt khác trong vùng tiếp xúc giữa dụng cụ cắt với phoi và chi tiết gia công còn xảy ra các mối tương tác hoá lý rất phức tạp. Do đó vật liệu làm dụng cụ cắt khác nhau, lực cắt khác nhau. Thực nghiệm cho thấy khi gia công thép bằng dụng cụ cắt vật liệu là HKC lực cắt chỉ bằng 90 ÷ 95 % so với dụng cụ cắt thép gió. Khi cắt bằng dụng cụ cắt vật liệu sứ lực cắt chỉ bằng 88 ÷ 90 % khi cắt bằng dao thép gió. Theo Trent [11], CBN là loại vật liệu không tồn tại trong tự nhiên. CBN có các tính chất cơ lý tuyệt diệu đó là: độ bền nóng cao, có khả năng duy trì hình dạng ở nhiệt độ cao, độ cứng ở nhiệt độ trong phòng cao từ (4000 ÷ 5000 HV) phụ thuộc vào hướng của bề mặt đo độ cứng và hướng mạng tinh thể. Một lượng nhỏ kim loại hoặc ceramics được trộn với Nitritbo tạo nên CBN. Độ cứng của CBN giảm khi nhiệt độ tăng nhưng vẫn cao hơn tất cả những vật liệu dụng cụ khác làm cho loại vật liệu này có thể cắt vật liệu có độ cứng cao với vận tốc cắt cao kết hợp với khả năng chống mòn do cào xước và Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 22 khả năng chống tương tác với sắt thép cao. Độ dẫn nhiệt của PCBN khoảng 100 W/moC.Mảnh dao CBN có hai loại: - Các lớp mỏng với chiều dày < 5 mm được gắn lên thân các bít. - Cả khối CBN. Các tính chất và khả năng sử dụng của dụng cụ PCBN chủ yếu phụ thuộc vào độ cứng rất cao của Nitritbo nhưng pha thứ hai đóng vai trò quan trọng. Hàm lượng pha thứ hai càng cao thì tuổi bền của dụng cụ càng cao đặc biệt khi gia công tinh v ới lượng chạy dao và chiều sâu cẳt nhỏ. Khi gia công thô tuổi bền của dao tăng khi sử dụng mảnh dao với hàm lượng pha thứ hai thấp [11,14]. Có thể chia CBN thành hai nhóm: - Nhóm có thành phần CBN cao khoảng 90 % (CBN – H) sử dụng chất dính kết kim loại. - Nhóm có thành phần CBN thấp khoảng 50 ÷ 70 % (CBN – L) sử dụng ceramics làm chất kết dính. Hình 1.12: Cấu trúc tế vi của hai loại mảnh dao (BZN6000 – 92% CBN – High CBN) và (BZN8100 – 70% CBN – Low CBN) [13]. Hình ảnh cấu trúc của hai loại thép này được chỉ ra trên hình 1.12 với chất dính kết là Co đối với CBN – H và Co, TiN với CBN – L. Mặc dù CBN – H có độ cứng cao hơn và độ dai va đập cao hơn nhưng tuổi bền của CBN – L lại cao hơn và tạo nên độ bóng bề mặt tốt hơn [13]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 23 Hiện tượng này được giải thích theo nhiều cách khác nhau như: CBN – L có tuổi bền cao hơn là do có sức bền liên kết cao hơn, lớp đọng trên mặt sau của dao CBN – L có tác dụng bảo vệ mặt sau, CBN – L có hệ số dẫn nhiệt thấp hơn là nguyên nhân tăng nhiệt độ trong vùng tạo phoi làm giảm độ cứng của vật liệu gia công quanh vùng cắt làm cho quá trình cắt dễ dàng hơn. Hơn nữa cấu trúc và tính chất hoá học của mảnh dao CBN có thể quyết định vấn đề mòn của dao CBN [13]. Dao CBN – L tồn tại pha dính kết ceramics làm tăng tính trơ hoá học của vật liệu dụng cụ dẫn đến tăng khả năng cắt. Nghiên cứu về tính gia công của một số loại thép hợp kim tôi cứng đến trên 60 HRC cho thấy lực cắt hướng trục Px tăng khi gia công thép có các hạt các bít thô (thép S6-5-2), và lực cắt Pz tăng với thép có các hạt các bít mịn và đồng đều (thép 16MnCr5E). Từ đó có thể thấy rằng CBN không thích hợp về mặt kinh tế khi gia công thép có thành phần ferit cao và độ cứng dưới 50 HRC [14]. 1.2.2.5. Ảnh hưởng của bán kính đỉnh dao r. Khi tăng bán kính đỉnh dao r làm điều kiện cắt thay đổi, biến dạng của phoi tăng do đó Pz tăng hình 1.13. Hình 1.13: Ảnh hưởng của bán kính đỉnh dao tới lực cắt Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 24 Trong đó: đường 1 có công thức 1,0.rCP zz = đường 2 có công thức 25,0.rCP yy = (1-10) đường 3 có công thức 25,0. −= rCP xx Từ các công thức này ta thấy rằng, bán kính r tăng sẽ làm thành phần Py, Pz tăng còn Px giảm, trong đó Py tăng mạnh hơn so với Pz. Tuy nhiên trong gia công tinh người ta cố gắng chọn dao có r nhỏ để vừa giảm lực cắt đồng thời tăng được chất lượng bề mặt gia công. 1.2.2.6. Ảnh hưởng của mòn dụng cụ cắt Nếu dụng cụ cắt khi gia công chỉ bị mòn theo mặt trước, điều này thường xảy ra khi ra công thép ở thời gian cắt gọt ban đầu (trong quá trình cắt gọt do ma sát giữa mặt trước của dụng cụ cắt với phoi), mặt trước của dụng cụ cắt bị mòn thành rãnh có hình lưỡi liềm ở mặt trước làm tăng góc trước, phoi thoát ra dễ dàng hơn, biến dạng của phoi giảm làm giảm lực cắt. Nếu dụng cụ cắt bị mòn ở mặt sau và mòn ở mũi dao thì lực cắt sẽ tăng. Như vậy sự thay đổi của lực cắt phụ thuộc vào trạng thái mòn của dụng cụ cắt (mòn mặt trước, mặt sau, mũi dao…) 1.3. Nhiệt cắt 1.3.1. Khái niệm chung Nhiệt trong quá trình cắt đóng vai trò rất quan trọng, vì nó ảnh hưởng trực tiếp tới cơ chế tạo phoi, lẹo dao, hiện tượng co rút phoi, lực cắt và cấu trúc tế vi lớp bề mặt. Đồng thời nhiệt cắt còn là nguyên nhân chính gây mòn dụng cụ cắt, ảnh hưởng lớn đến tuổi bền dụng cụ cắt, đặc biệt trong tiện cứng vì giá thành các mảnh dao thường khá cao. Phần lớn công tiêu hao trong quá trình cắt gọt chuyển hoá thành nhiệt năng (97,5%). Số còn lại làm thay đổi thế năng trong mạng tinh thể kim loại. Quy luật phát sinh và truyền nhiệt trong quá trình cắt gọt rất quan trọng để tìm các biện pháp giảm nhiệt độ sinh ra trong quá trình cắt gọt có ý nghĩa lớn về Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 25 lý luận và thực tiễn. Nhằm nâng cao tuổi bền của dụng cụ cắt, năng suất và chất lượng gia công Nhiệt độ phát sinh khi gia công bằng cắt phụ thuộc chủ yếu vào các tính chất của phôi và dao, chế độ cắt và các điều kiện khác như môi trường cắt. Các yếu tố như mòn dụng cụ, cơ chế tạo phoi, chất lượng lớp bề mặt đều chịu ảnh hưởng của nhiệt độ cắt. Trong nhiều trường hợp nhiệt độ cắt là yếu tố hạn chế hiệu quả sử dụng của dụng cụ. Khi cắt vật liệu siêu cứng sử dụng dao ceramics như thép hợp kim hoá và tăng bền bề mặt, các hợ p kim siêu cứng, nhiệt cắt là cần thiết để làm mềm vật liệu gia công cục bộ mà không ảnh hưởng tới sức bền của dụng cụ. Trong các phương pháp thực nghịêm để đo nhiệt độ cắt như cặp ngẫu nhiệt dao – phôi, phát xạ hồng ngoại, sự thay đổi cấu trúc tế vi, cặp ngẫu nhiệt trên dao, phương pháp sử dụng cặp ngẫu nhiệt trên dao được sử dụng rộng rãi để đo nhiệt độ trên dụng cụ siêu cứng [34]. Nhiệt độ trong vùng cắt tăng theo giá trị độ cứng của phôi tới HRC 50, khi độ cứng của phôi vượt quá giá trị này nhiệt độ cắt giảm đi khi tăng độ cứng. Điều khác với quy luật thay đổi nhiệt độ của lý thuyết cắt kim loại truyền thống này được giải thích do sự thay đổi về cơ chế tạo phoi khi gia công thép có độ cứng từ 50 HRC trở lên [14, 35]. Nói chung sự tỏa nhiệt khi cắt là do có một công A (kG.m) sinh ra trong quá trình hớt phoi. Nó xác định bởi công thức : A = A1 + A2 + A3 (1-11) Trong đó : A1: Công sinh ra làm biến dạng đàn hồi và biến dạng dẻo A2: Công sinh ra để làm thắng lực ma sát ở mặt trước dao. A3: Công sinh ra để thắng lực ma sát ở mặt sau dao. Ngoài ra công A có thế tính bởi công thức khác : A=Pz.L (1.12) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 26 Trong đó : Pz: lực theo phương cắt chính (kG). L : chiều dài cắt (m) Trong tiện cứng ta thấy vật liệu phôi cứng hơn nhiều so với tiện thông thường, vì vậy nhiệt sinh ra trong vùng cắt là rất lớn, để thoả mãn khả năng chịu nhiệt này hàng loạt các loại vật liệu dụng cụ mới được ra đời, thông qua bảng 1.1. [6] Bảng 1.1. Lịch sử và đặc tính của vật liệu dụng cụ cắt Năm Vật liệu dụng cụ Vận tốc cắt (m/ph) Nhiệt độ giới hạn đặc tính cắt (oC) Độ cứng (HRC) 1894 Thép cacbon dụng cụ 5 200-300 60 1900 Thép hợp kim dụng cụ 8 300-500 60 1900 Thép gió 12 1908 Thép gió cải tiến 15 -20 500-600 60 - 64 1913 Thép gió (tăng Co và WC) 20-30 600-650 - 1931 Hợp kim cứng cácbit vonfram 200 1000 - 1200 91 1934 Hợp kim cứng WC và TiC 300 1000 - 1200 91-92 1955 Kim cương nhân tạo 800 100000HV 1957 Gốm 300 -500 1500 92-94 1965 Nitrit Bo 100-200 (thép tôi) 1600 8000HV 1970 Hợp kim cứng phủ (TiC) 300 1600 18000HV Ta thấy rằng phần vật liệu cứng trong dụng cụ cắt tăng lên, do đó tính chịu mài mòn, tính chịu nhịêt tăng, tăng tuổi bền p cụ và do đó tăng được vận tốc cắt. Khả năng cắt của vật liệu Nitrit Bo trong bảng là rất cao và đang được ứng dụng khá phổ biến trong gia công vật liệu có độ cứng cao cũng như trong tiện cứng. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 27 Bảng 1.2. Tính chất cơ - nhiệt một số vật liệu dụng cụ Vật liệu Thông số Cacbit Vonfram Gốm sứ nhân tạo CBN Kim cương nhân tạo Khối lượng riêng (g/cm3) 6,0 – 15,0 3,8 – 7,0 3,4 – 4,3 3,5 - 4,2 Độ cứng (HV 30) 1300- 1700 1400- 2400 3000 - 4500 4000- 7000 Modul đàn hồi (GPa) 430 - 630 300 - 400 580 - 680 680 – 890 Giới hạn bền (Mpam1/2) 8 - 18 2 - 7 6,7 8,89 Độ bền nhiệt (oC) 800 - 1200 1300- 1800 1500 600 Hệ số truyền nhiệt (W/mK) 100 30 - 40 40 - 200 560 Hệ số giãn nở vì nhiệt (10-6K-1) 5,0-7,5 7,4-9,0 3,6-4,9 0,8 Bảng 1.3 Tính chất cơ - nhiệt của một số vật liệu dụng cụ phủ Lớp phủ Thông số TiN TiCN TiAlN Diamond Độ cứng 2400 3500 3300 800 Khả năng dẫn nhiệt (kW/mK) 0,07 0,1 0,05 lớn Điện trở (µ - Ωcm) 25 68 1.1022 nhỏ Hệ số ma sát 0,4 0,25 0,3 Nhiệt sử dụng (oC) <500 <400 <800 Mật độ (g/cm3) 5,2 4,93 5,1 3,5 Mô đun đàn hồi E (kN/mm2) 256 350 - 800 Màu vàng nâu xanh đen nâu Cụ thể Nitrit Bo lập phương đa tinh thể (PCBN) được coi là vật liệu có độ cứng cao nhất chỉ sau kim cương nhưng lại có độ bền nhiệt cao hơn kim Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 28 cương (1500oC) [46]. Bảng 1.2 và 1.3 thể hiện tính chất cơ - nhiệt của vật liệu dụng cụ CBN so với một số loại vật liệu dụng cụ có tính năng cắt cao khác (Cacbit Vonfram, gốm sứ nhân tạo và kim cương nhân tạo). Các nghiên cứu đã chứng tỏ rằng khoảng 98% – 99% công suất cắt biến thành nhiệt từ ba nguồn nhiệt: vùng tạo phoi (quanh mặt phẳng trượt AB), mặt trước (AC) và mặt sau (AD) như trên hình 1.14a Hình 1.14: (a) Sơ đồ hướng các nguồn nhiệt. (b) Ba nguồn nhiệt và sơ đồ truyền nhiệt trong cắt kim loại. Các nguồn nhiệt này truyền vào dao, phoi, phôi và môi trường với tỷ lệ khác nhau phụ thuộc vào chế độ cắt và tính chất nhiệt của hệ thống dao, phoi, phôi và môi trường [6], [40]. Thực tế vận tốc cắt là nhân tố ảnh hưởng lớn nhất đến tỷ lệ này, khi cắt với vận tốc cắt đủ lớn phần lớn nhiệt cắt truyền vào phoi (hình 1.14 b) [6]. Gọi Q là tổng nhiệt lượng sinh ra trong quá trình cắt: Q = Q mặt phẳng cắt + Q mặt trước + Q mặt sau (1–13) Theo định luật bảo toàn năng lượng thì lượng nhiệt này sẽ truyền vào hệ thống phoi, dao, phôi và vào môi trường theo công thức sau: a b. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 29 Q = Qphoi + Q dao + Q phôi + Q môi trường (1- 14) Với lưu lý rằng tốc độ truyền nhiệt vào môi trường có thể coi như không đáng kể trong tính toán khi môi trường cắt là không khí. Hình 1.15 : Tỷ lệ % nhiệt truyền vào phoi, phôi, dao và môi trường phụ thuộc vào vận tốc cắt [6] Từ hình 1.15 ta thấy nhiệt lượng truyền vào phoi lớn nhất và là một hàm của vận tốc cắt. Càng tăng vận tốc cắt nhiệt lượng truyền vào phoi càng nhiều, nhiệt lượng truyền vào phôi và dụng cụ cắt càng ít. Nhiệt lượng truyền vào dao và phôi càng ít càng có lợi cho quá trình cắt gọt. Như vậy trong tiện cứng sử dụng dao PCBN do vận tốc cắt cho phép là rất cao (thường từ 100 ÷220 m/phút) nên nhiệt cắt sinh ra trong quá trình chủ yếu truyền vào phoi khoảng 68 – 85%, nhiệt cắt truyền vào dao là không đáng kể (khoảng 10%) (hình 1.15). Điều đó đặc biệt có lợi cho quá trình gia công. 1.3.2. Trường nhiệt độ Thông qua trường nhiệt độ trên phôi, dụng cụ cắt, phoi ta biết được vùng nào có nhiệt độ lớn nhất, biết được ảnh hưởng của nhiệt độ đến quá trình gia công để tìm các biện pháp làm giảm nhiệt độ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 30 - Trường nhiệt độ trên phôi giúp ta biết được ảnh hưởng của nhiệt độ trong quá trình cắt đến chất lượng bề mặt chi tiết gia công. - Trường nhiệt độ trên dụng cụ cắt giúp ta giải thích về quá trình mòn dụng cụ cắt. - Trường nhiệt độ trên phoi ít có ý nghĩa. Hình 1.16; 1.17 giúp ta biết được trường nhiệt độ trê n dụng cụ cắt – phoi – phôi khi tiện. Hình 1.16: Trường nhiệt độ khi tiện Đường nét liền: Đường đẳng nhiệt; đường nét đứt: Dòng nhiệt.Dòng nhiệt vuông góc với đường đẳng nhiệt. - Nhiệt lượng tập trung trên phoi lớn nhất, nhưng do độ dẫn nhiệt của vật liệu làm dụng cụ cắt nên nhiệt độ tập trung trên dụng cụ cắt thường lớn hơn nhiệt độ tập trung trên phoi và phôi. - Thí nghiệm cho thấy nhiệt độ lớn nhất nằm ở khu vực tiếp xúc giữa dụng cụ cắt và phoi, cách mũi dao (0,3 ÷ 0,5)l, l là chiều dài tiếp xúc giữa phoi và mặt trước. Khu vực này có áp lực giữ phoi và mặt trước lớn nhất gọi là trung tâm áp lực. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 31 Ở mũi dao nhiệt độ tập trung cũng rất lớn. Điều này giải thích tại sao dụng cụ cắt mòn theo rãnh lõm ở mặt trước, mòn ở mũi dao… Trường nhiệt độ trên phôi cho thấy, nhiệt độ trên bề mặt có thể tới 6700K, càng xa mũi dao nhiệt độ giảm dần (vì lớp bề mặt chịu ma sát và biến dạng rất lớn, càng xa bề mặt biến dạng càng giảm). Những nghiên cứu lý thuyết và thực nghiệm trường nhiệt độ cho thấy: - Trường nhiệt độ khi gia công là không ổn định. - Nhiệt độ tại một điểm xác định θ (x,y,z) phụ thuộc vào các yếu tố: + Vật liệu dụng cụ cắt và chi tiết gia công. + Điều kiện cắt. + Phương pháp gia công. Nghiên cứu quá trình mòn dụng cụ cắt phải xét đến nhiệt độ lớn nhất trên mặt trước và mặt sau, sự phân bố nhiệt trên các bề mặt này, xác định được nhiệt độ lớn nhất này thường rất khó khăn, nhiệt độ trung bình ở mặt phân cách phoi - dụng cụ cắt, dụng cụ cắt – phôi gọi là nhiệt độ cắt gọt, gọi tắt là nhiệt cắt. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 32 Hình 1.17: Sự phân bố nhiệt độ khi tiện trên mặt phân cách phoi - dụng cụ 1.3.3. Quá trình phát si._.uất dường như không phù hợp với các kết quả của nghiên cứu này. Hình ảnh các rãnh biến dạng dẻo trên vùng mòn mặt trước trên hình 2.9(b) khẳng định biến dạng dẻo bề mặt do các hạt cứng (các bít (FeCr)3C) và các ôxít khác trong thép 9XC dưới tác dụng của ứng suất pháp rất lớn ở vùng gần lưỡi cắt gây nên là cơ chế mòn chính trên mặt trước. Tuy nhiên sau thời gian cắt đủ lớn, khi mòn phát triển dần vào phía trong vùng mặt trước theo hướng thoát phoi, ứng suất pháp trên mặt trước giảm đi nhanh chóng, hiện tượng dính trở nên phổ biến ở vùng phoi thoát khỏi mặt trước thì cơ chế mòn do mỏi kết hợp với dính là nguyên nhân mòn ở vùng này gây bóc tách từng mảng vật liệu dụng cụ ra khỏi vùng bề mặt như trên hình 2.9(d). Đây là một phát hiện mới về cơ chế mòn mặt trước trong tiện tinh cứng. Hơn nữa từ hình 2.9(c) có thể thấy khi mòn mặt trước phát triển trên hầu hết diện tích tiếp xúc giữa phoi và mặt trước thì cơ chế mòn do bóc tách các mảnh vật liệu trở nên chiếm ưu thế thay cho cơ chế mòn do cào xước làm cho mòn mặt trước phát triển với tốc độ cao hơn. Bề mặt vùng mòn trở nên ghồ ghề và không nhẵn như bề mặt vùng mòn mặt trước thông thường. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 70 Điều này có thể giải thích do cơ tính của PCBN ít bị suy giảm bởi nhiệt độ cao trong vùng cắt, tuy nhiên tác dụng có chu kỳ của các hạt cứng trong thép lên bề mặt kết hợp với dính đã làm cho bề mặt của dụng cụ bị phá huỷ theo cơ chế dính mỏi kết hợp sau một thời gian gia công nhất định. Mòn mặt sau cũng phát triển theo quy luật thông thường trong cắt kim loại cho đến 7,69 phút (Hình 2.10(a)). Cơ chế mòn mặt sau tương đối phù hợp với kết quả nghiên cứu của Kenvin [13] như trên hình 2.10(c). Tuy nhiên sau 10,09 phút gia công trên mặt sau xuất hiện hai mảng dạng vẩy cục bộ (Hình 2.10(b)). Đây là vùng tương ứng với các rãnh mòn sâu trên dụng cụ khi cắt các hợp kim có nhiệt độ nóng chảy cao và theo Shaw [20], thì các rãnh mòn sâu trên mặt trước và sau ở vùng này có liên quan đến tác dụng truyền nhiệt mạnh ở hai bên rìa của phoi vào bề mặt dụng cụ cắt. Đây là hiện tượng mòn phức tạp liên quan nhiều đến nhiệt độ cao. Theo Trent [11] nhiệt độ cao kết hợp với biến cứng của phoi, tác dụng của ôxi trong môi trường cắt đã tạo nên các rãnh mòn sâu ở vùng này trên dao tiện các bít khi tiện thép. Khi thời gian cắt tăng lên đến 12,36 phút các mảng dạng vẩy này phát triển trên toàn mặt sau và một số mảng bong ra tạo nên mòn. Đây cũng là một phát hiện mới về cơ chế mòn mặt sau trong tiện tinh cứng. Từ các kết quả đo nhám bề mặt có thể thấy cho đến 7,69 phút cắt, Ra gần như không thay đổi Ra = 0,53 ÷0,60 µm, nhưng khi thời gian cắt đạt tới 10,09 phút có sự thay đổi đột biến về nhám bề mặt. Ra tăng ≈23%, sau đó Ra giữ gần như không thay đổi tới 12,36 phút cắt. Nhám bề mặt tăng nhanh khi mòn mặt trước và mặt sau đạt tới một mức độ nào đó và sau đó giữ gần như không đổi. Điều này có thể liên quan trực tiếp tới sự phát triển bề rộng của vùng mòn trên mặt trước tới 20µm và sự xuất hiện các mảng dạng vẩy trên mặt sau như đã phân tích ở phần trên. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 71 Có thể thấy rằng nếu như mòn trên mặt trước và sau phát triển theo cơ chế khuếch tán, suy yếu pha thứ hai dẫn đến bóc tách các hạt CBN như các nghiên cứu mới đây thì tuổi bền của mảnh dao CBN có thể sẽ cao hơn nhiều lần so với thực tế. Hiện tượng bong từng mảng vật liệu dụng cụ trên mặt trước, tạo thành dạng vẩy và bong từng mảng vật liệu dụng cụ trên mặt sau là nguyên nhân cơ bản làm rút ngắn tuổi bền của dụng cụ. Các cơ chế mòn này có thể liên quan đến nhiệt, số chu kỳ cào xước của hạt cứng trong vật liệu gia công và dính trên bề mặt tiếp xúc của mặt trước và mặt sau cũng như kết hợp với tác dụng ôxi hoá của ôxi từ môi trường. 2.4.4. Kết luận Các kết quả của nghiên cứu cho thấy khi tiện tinh thép 9XC bằng dao PCBN mòn mặt trước và mặt sau là hai dạng mòn chủ yếu. Trong giai đoạn đầu, cơ chế mòn mặt trước chủ yếu là biến dạng dẻo do tác dụng cào xước của các hạt cứng trong thép và sự tách ra khỏi bề mặt của các hạt CBN. Cơ chế mòn mặt sau là quá trình bóc tách của các hạt CBN do pha thứ hai của vật liệu dụng cụ bị yếu đi khi tương tác với vật liệu gia công. Trong giai đoạn sau, cơ chế mòn mặt trước là do mỏi dính với sự bóc tách của từng mảng vật liệu trên mặt trước. Cơ chế mòn mặt sau có thể liên quan đến nhiệt, số chu kỳ cào xước của hạt cứng và dính kết hợp với tác dụng ôxi hoá của ôxi từ môi trường tạo nên các mảng dạng vẩy và bong ra khỏi mặt sau. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 72 CHƯƠNG III NGHIÊN CỨU THỰC NGHIỆM VỀ ẢNH HƯỞNG CỦA VẬN TỐC CẮT ĐẾN CƠ CHẾ MÒN DỤNG CỤ PCBN 3.1.Nghiên cứu thực nghiệm Nghiên cứu thực nghiệm được tiến hành nhằm xác định vận tốc cắt tối ưu để đạt độ chính xác gia công, chất lượng lớp bề mặt và độ mòn của dao. Tuy chất lượng lớp bề mặt được đánh giá bằng nhiều thông số như nhám bề mặt, mức độ biến cứng lớp bề mặt, ứng suất dư trong lớp bề mặt, cấu trúc tế vi của lớp bề mặt…nhưng trong các yếu tố này thì nhám bề mặt được quan tâm nhiều nhất trong gia công lần cuối và trong phạm vi của nghiên cứu này, tác giả tập trung nghiên cứu về mối liên hệ giữa vận tốc cắt, độ nhám bề mặt gia công và cơ chế mòn dụng cụ PCBN khi tiện tinh thép 9XC. Tiện cứng thường gắn liền với quá trình tiện tinh, trong thực tế phôi trước khi nhiệt luyện đã được gia công cơ và để lại một lượng dư tối thiểu cho nhiệt luyện và gia công lần cuối. Lựa chọn vận tốc cắt để đạt được tuổi thọ của dụng cụ cắt cao cũng là một mục tiêu của nghiên cứu, tuổi thọ của dụng cụ cắt ở đây được xác định theo độ nhám bề mặt chi tiết gia công khi thực hiện một vận tốc cắt nhất định. Về mặt lý thuyết nghiên cứu thực nghiệm phải được tiến hành trong phòng thí nghiệm với điều kiện rất khắt khe về chế độ công nghệ. Tuy nhiên, xuất phát từ những khó khăn về thiết bị thí nghiệm của trường, nghiên cứu của tác giả được tiến hành tại cơ sở sản xuất của doanh nghiệp. 3.2. Thí nghiệm 3.2.1. Thiết bị thí nghiệm và dụng cụ đo Thiết bị thí nghiệm được mô tả như trong chương II. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 73 3.2.2. Trình tự thí nghiệm Phôi thép 9XC sau khi được tiện thô bằng mảnh dao hợp kim cứng K01 đảm bảo độ côn không vượt quá 0,05 mm/100 mm chiều dài phôi. Sau đó sử dụng mảnh dao PCBN tiện tinh qua một lượt trước khi tiến hành thí nghiệm và khi thay mảnh dao mới. Sau một số lần chạy dao độ cứng của phôi được kiểm tra và nếu thấp hơn độ cứng cần thiết phôi sẽ được nhiệt luyện lại để đảm bảo độ cứng ban đầu. Sáu mảnh dao sử dụng tiện tinh phôi thép 9XC theo 3 chế độ cắt như trên. Với bộ chế độ cắt thứ nhất và thứ hai, 4 mảnh dao cắt tới 7,69 phút và 12,36 phút. Khi sử dụng bộ chế độ cắt thứ ba, 2 mảnh dao cắt tới 12,36 phút và 19,72 phút. Sau đó các mảnh dao được tháo ra, quan sát và phân tích trên kính hiển vi điện tử TM – 1000. 3.3. Kết quả thí nghiệm Vận tốc cắt ảnh hưởng đến lực cắt, nhiệt cắt, đến biến dạng vật liệu gia công, đến ma sát ở mặt trước và mặt sau dao cụ với bề mặt gia công. Do đó nó ảnh hưởng nhiều đến độ nhám bề mặt gia công (hình 3.1). Hình 3.1: Ảnh hưởng của vận tốc cắt đến độ nhám Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 74 Ở vận tốc cắt thấp nhiệt cắt nhỏ, biến dạng lớp bề mặt không lớn nên vận tốc cắt ít ảnh hưởng đến độ nhám. Khi cắt ở vận tốc cao hơn từ 20 ÷ 40 m/p nhiệt cắt tăng, biến dạng dẻo tăng, lẹo dao phát triển rồi bị phá huỷ. Góc trước thay đổi, lực cắt biến thiên, do vậy ở vùng vận tốc cắt này giá trị Ra tăng. Tiếp tục tăng vận tốc cắt, nhiệt cắt tăng, song lẹo dao giảm dần rồi triệt tiêu, độ nhám bề mặt gia công tăng. Ở vận tốc cắt rất cao nhiệt cắt ổn định, lẹo dao không có, hệ số ma sát ổn định, độ nhám bề mặt gia công ít thay đổi. Khi gia công các vật liệu dòn (ví dụ gang) tăng vận tốc cắt làm giảm quá trình bong tróc các hạt, độ nhám sẽ giảm. Thực hiện đo nhám bề mặt bằng máy đo Mitutoyo – 201 của Nhật Bản. Thay đổi vận tốc cắt, giữ nguyên chiều sâu cắt và lượng chạy dao. Nhám bề mặt được đo theo phương đường sinh, trong mặt phẳng đi qua đường tâm của phôi. Kết quả thí nghiệm được thể hiện trong bảng 3.1. Đồ thị quan hệ giữa vận tốc cắt và các thông số nhám trên hình 3.2 Bảng 3.1: Kết quả đo nhám bề mặt tương ứng với các chế độ cắt thiết kế TT TT V (m/p) S (mm/v) t (mm) Ra (µm) 1 100 0,1 0,12 0,33 0,40 0,34 2 120 0,1 0,12 0,45 0,43 0,46 3 140 0,1 0,12 0,38 0,39 0,37 4 160 0,1 0,12 0,40 0,50 0,51 5 180 0,1 0,12 0,53 0,56 0,60 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 75 Hình 3.2: Đồ thị quan hệ giữa vận tốc cắt và nhám Ra,Rz 0 0.5 1 1.5 2 2.5 3 3.5 100 120 140 160 180 v(m/p) R a, R z Ra Rz Hình 3.3: Ảnh vùng mòn mặt sau của mảnh dao PCBN cắt với vận tốc cắt: (a): v1 = 180 m/p sau 7,69 phút (b): v2 = 160 m/p sau 12,36 phút (c): v3 = 140 m/p sau 19,72 phút [µm] (a) (b) (c) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 76 Khảo sát mặt sau các mảnh dao PCBN khi sử dụng ba chế độ công nghệ khác nhau với vận tốc cắt thay đổi từ 140 m/p đến 180 m/p (Hình 3.3(a); 3.3(b); 3.3(c)) cho thấy mòn mặt sau luôn tồn tại từ lưỡi cắt chính với độ cao hs tăng dần từ phía mũi dao đến cuối chiều dài cắt trên lưỡi cắt chính và đều đạt hsmax ≈ 0,1 mm mặc dù thời gian cắt khác nhau rất nhiều. Hình 3.4: (a) Ảnh phóng to vùng mòn mặt sau trên lưỡi cắt chính từ hình 3.3(c) (b) Ảnh phóng to vùng “phồng” dưới lưỡi cắt phụ từ hình 3.3(b). (c) So sánh cấu trúc tế vi vùng “phồng” dưới lưỡi cắt phụ (c ’) với cấu trúc tế vi nguyên thuỷ của PCBN (c) (d) Ảnh phóng to vùng dính vật liệu gia công trên mặt sau dưới lưỡi cắt phụ từ hình 3.3(c). (c) (c’) (d) (b) (a) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 77 Cấu trúc của bề mặt mòn này bao gồm lớp dính của vật liệu gia công trên bề mặt và các vết cào xước (Hình 3.4(a)). Các rãnh mòn có chiều sâu lớn hơn khi tăng vận tốc cắt. Khi cắt với vận tốc cắt 180 m/p sau 7,69 phút trên mặt sau suất hiện hai vùng bị “phồng” phía dưới lưỡi cắt chính và phụ nhưng vùng bị “phồng” dưới lưỡi cắt phụ lớn hơn và gần mũi dao hơn (Hình 3.3(a)). Hình 3.5: (a) Ảnh mặt trước của mảnh dao PCBN cắt với vận tốc cắt 160 m/p sau 12,36 phút. (b) Ảnh phóng to thể hiện cơ chế phá huỷ lưỡi cắt phụ từ hình 3.4(a) Khi giảm vận tốc cắt xuống 160 m/p sau 12,36 phút, trên mặt sau chỉ xuất hiện một vùng bị “phồng” ở phía dưới lưỡi cắt phụ. Tiếp tục giảm vận tốc cắt tới 140 m/p, sau 19,72 phút, trên mặt sau chỉ tồn tại vùng dính vật liệu gia công (Hình 3.3(c)). Kết quả phân tích vùng “phồng” dưới lưỡi cắt phụ chỉ ra trên hình 3.4(b). Vật liệu dụng cụ trong vùng này bị “phồng” lên từng mảng và lần lượt bong ra khỏi mặt sau tạo thành những hốc rộng và nông trên bề mặt này. Hình 3.4(c) là cấu trúc bề mặt nguyên thuỷ của mảnh dao PCBN và hình 3.4(c ’) là (a) (b) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 78 cấu trúc bề mặt của mảnh dao PCBN trên vùng phồng. Rõ ràng mật độ các hạt PCBN trên vùng “phồng” cao hơn rất nhiều so với mật độ PCBN trên bề mặt nguyên thuỷ. Ảnh trên hình 3.4(d) phóng to vùng dính vật liệu gia công phía dưới lưỡi cắt phụ từ hình 3.3 (c). Trên vùng này, vật liệu gia công bám lên bề mặt sau thành lớp và sau đó bong ra từng mảng để lộ các mảng vật liệu dụng cụ bên dưới là hình ảnh của cơ chế mòn dính. Ảnh trên hình 3.5(a) thể hiện vùng lưỡi cắt phụ trên mặt trước gần mũi dao bị phá huỷ sau 12,36 phút cắt với vận tốc cắt 160 m/p. Cơ chế phá huỷ của vùng này là sự vỡ ra từng mảng vật liệu dụng cụ dưới tác dụng của lực cắt trong các mặt phẳng gần vuông góc với mặt trước (hình 3.5(b)). Quá trình phá huỷ bộ phận lưỡi cắt phụ phát triển dần đến mũi dao và làm tăng nhám bề mặt gia công. 3.4. Phân tích kết quả thí nghiệm Cơ chế mòn mặt sau trên lưỡi cắt chính hoàn toàn phù hợp với nghiên cứu [14,13, 39,15]. Đó là do tương tác giữa lớp dính vật liệu gia công trên mặt sau với chất dính kết của vật liệu dụng cụ làm các hạt PCBN bị tách ra khỏi mặt sau tạo nên nguồn hạt cứng và gây cào xước bề mặt sau. Các hạt các bít (FeCr)3C với mật độ cao và đường kính xấp xỉ 3 µm trong thép 9XC cũng là một nguyên nhân gây ra mòn do cào xước trên bề mặt sau. Mòn mặt sau từ lưỡi cắt chính xảy ra liên tục với tốc độ chậm. Chiều cao mòn hs tăng khi tăng vận tốc cắt, vận tốc cắt càng cao tốc độ mòn càng lớn. Khi giảm vận tốc cắt từ 180 m/p xuống 140 m/p thời gian để mòn đạt tới giá trị hsmax tăng lên 2,5 lần. Mòn mặt sau trên vùng phía dưới lưỡi cắt chính và phụ khi cắt với vận tốc 180 m/p; và chỉ dưới lưỡi cắt phụ khi cắt với vận tốc 160 m/p là nguyên nhân chủ yếu gây phá huỷ lưỡi cắt phụ, làm tăng nhám bề mặt dẫn tới phá huỷ mũi dao. Mòn ở vùng này xảy ra với tốc độ cao do vật liệu của dao trên mặt Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 79 sau bị bong ra từng mảng làm yếu vùng dưới lưỡi cắt, đặc biệt là vùng dưới lưỡi cắt phụ. Có thể thấy rõ cơ chế mòn này liên quan đến nhiệt độ phát triển trên mặt sau vì khi giảm vận tốc cắt từ 180 m/p xuống 160 m/p (tức là giảm nhiệt cắt) mòn dạng này chỉ còn tồn tại dưới lưỡi cắt phụ nhưng phát triển chậm hơn (sau 12,36 phút so với 7,69 phút) và gây phá huỷ lưỡi cắt phụ như trên hình 3.5(a) và 3.5(b). Từ ảnh trên hình 3.4(d) cho thấy, khi giảm vận tốc cắt tới 140 m/p, sau 19,72 phút cắt, cơ chế mòn chính trên mặt sau dưới lưỡi cắt phụ là mòn do dính. Giảm vận tốc cắt là giảm nhiệt độ phát triển trên vùng mặt sau dẫn đến thay đổi cơ chế mòn từ mòn do nhiệt sang mòn do dính. Từ ảnh trên hình 3.4(b) có thể giải thích bản chất hình thành vùng “phồng” và sự bong ra các mảnh vật liệu dụng cụ do hai nguyên nhân. Thứ nhất, do khả năng dẫn nhiệt kém của vật liệu mảnh dao (PCBN và chất dính kết), vùng nhiệt độ cao xuất hiện trên mặt sau sẽ gây nên giãn nở không đồng đều so với vật liệu bên trong tạo nên vùng “phồng” làm yếu liên kết vùng đó với các lớp bên trong. Thứ hai, nhiệt độ cao thúc đẩy quá trình ôxi hoá chất dính kết của vật liệu dụng cụ trên bề mặt vùng “phồng” làm các hạt PCBN dễ bị bật ra khỏi vùng này và ôxi hoá sâu vào các lớp bên trong (hình 3.4(c’); 3.4(c)). Sau đó từng mảnh vật liệu dụng cụ bị bong ra dưới tác dụng của lực ma sát trên mặt sau. Đây là kết quả nghiên cứu mới so với cá c nghiên cứu trước đây về cơ chế mòn dụng cụ khi tiện cứng. Từ hình 3.3 và hình 3.4 có thể thấy rằng vùng mặt sau dưới lưỡi cắt phụ là vùng chịu ảnh hưởng nặng nề của mòn kể cả mòn do nhiệt và mòn do dính khi vận tốc cắt thay đổi từ 140 m/p đến 180 m/p. Sự phát triển của mòn ở vùng này là nguyên nhân làm tăng nhanh nhám bề mặt chi tiết gia công, dẫn đến sự phá huỷ lưỡi cắt phụ và mũi dao. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 80 Từ các kết quả thí nghiệm có thể thấy rằng với các vận tốc cắt sử dụng trong nghiên cứu, nhám bề mặt đạt được thay đổi t rong phạm vi từ 0,3 µm đến khoảng 0,6 µm theo thang đo Ra. Tuy nhiên xác định vận tốc cắt tối ưu để đạt được nhám bề mặt tốt nhất ta phải sử dụng phương trình hồi quy và xử lý số liệu thực nghiệm. 3.5. Phương trình hồi quy Quá trình tiện cứng bằng dao gắn mảnh PCBN là một quá trình gia công có cơ chế phức tạp, chịu nhiều ảnh hưởng của các thông số và sự tác động của các thông số đến quá trình là rất phức tạp. Để xác định vận tốc cắt mà tại đó nhám bề mặt đạt giá trị nhỏ nhất ta phải xử lý các số liệu thực nghiệm. Phương trình sử dụng làm phương trình hồi quy thích hợp nhất trong cắt kim loại được tác giả sử dụng trong nghiên cứu có dạng như sau: lnRa = bo + b1lnV + b2lnS + b3lnt + b11(lnV)2 + b22(lnS)2 + b33(lnt)2 + b12(lnV)(lnS) + b13(lnVc)(lnt) + b23(lnS)(lnt) (3 - 1) Đây là phương trình bậc hai với ba biến độc lập lnS, lnV và lnt. Khi t = const và S = const ta có phương trình như sau: lnRa = β 1 + β 2lnV + β 3lnS + β 4(lnV)2 + β 5(lnS)2 + β 6(lnV)(lnS) (3 - 2) Trong nghiên cứu này, giá trị vận tốc cắt V = 160 m/p bị loại ra khỏi phần nghiên cứu hồi quy vì như trên, với sự hình thành của các vùng phồng rộp do nhiệt ở vùng dưới lưỡi cắt phụ làm suy giảm sức bền vật liệu dưới lưỡi cắt dẫn đến mũi dao bị phá huỷ tương đối nhanh. Vì thế vận tốc cắt V ≥ 160 m/p không nên sử dụng khi tiện cứng thép 9XC. Để hồi quy các kết quả thí nghiệm về phương trình (3-2) và xác định vận tốc cắt tối ưu để đạt được nhám bề mặt nhỏ nhất, sử dụng phần mềm MatLab được kết quả hồi quy là: lnRa = - 171,038 + 6,4448lnS + 67,3917lnV + 2,1152lnS.lnV + 0,44158 (lnS)2 – 6,0176 (lnV)2 (3 - 3) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 81 4.2 4.4 4.6 4.8 5 4.5 5 5.5 5.6 5.8 6 6.2 6.4 LnS LnV Ln R a Kết quả chạy chương trình cho hệ số biến thiên giải thích: R2 = 0,85278 Hệ số Fo = 17,3774 tương ứng với giá trị của p = 9,081e-006 Đồ thị của phương trình (3 - 3) được thể hiện trên hình 3.6. Ứng với t = 0,12mm, Ra đạt min tại vận tốc cắt nhỏ nhất V = 100 m/p. Kết quả xác định vùng nhám có giá trị nhỏ chỉ ra trên hình 3.7. Giá trị nhỏ nhất của nhám bề mặt là Ramin = 0,221µm – 0,30 µm. Hình 3.6: Mặt hồi quy dạng Loga của nhám bề mặt Ra theo loga của lượng chạy dao S và vận tốc V khi t = 0,12 mm. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 82 50 100 150 90 100 110 120 130 140 150 200 400 600 S(mm/v) V(m/p) R a( m m .e -6 ) 211 300 350 400 400 S(mm.e-3/v) V( m /p ) 60 80 100 120 140 95 100 105 110 115 120 125 130 135 140 Hình 3.7: Đồ thị biểu diễn mối quan hệ giữa nhám bề mặt Ra và S,V. Các vùng nhám bề mặt Ra nhận giá trị tối ưu (t = 0,12 mm). Với chiều sâu cắt t = 0,12mm, kết quả hồi quy xác định vận tốc cắt tối ưu để đạt được tuổi bền cao nhất là Tmax = 49,37 cm2 tại vận tốc cắt lớn nhất V = 140m/p. Đồ thị của mặt hồi quy chỉ ra trên hình 3.8. Kết quả xác định vùng tuổi bền có giá trị lớn chỉ ra trên hình 3.9. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 83 Hình 3.8: Mặt hồi quy dạng loga của tuổi bền T theo loga của lượng chạy dao S và vận tốc V khi t = 0,12 mm. 4.2 4.4 4.6 4.8 5 4.5 5 5.5 3 3.2 3.4 3.6 3.8 LnS LnV Ln T 50 100 150 100 120 140 20 25 30 35 40 45 50 S(mm.e-3/v) V(m/p) T( cm 2) 30 30 40 4 S(mm/p) V( m /p ) 80 100 120 100 105 110 115 120 125 130 135 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 84 Hình 3.9: Đồ thị biểu diễn mối quan hệ giữa tuổi bền dụng cụ cắt T và S, V. Các vùng tuổi bền T nhận giá trị tối ưu (t = 0,12 mm) 3.6. Kết luận Ba cơ chế mòn chính khi tiện cứng thép 9XC qua tôi khi thay đổi vận tốc cắt từ 160 m/p đến 180 m/p là do mòn dính, mòn do cào xước và mòn do nhiệt. Mòn do nhiệt là dạng mòn chính do dãn nở nhiệt cục bộ của lớp vật liệu dụng cụ trên mặt sau kết hợp với quá trình ôxi hoá ở nhiệt độ cao làm bong các mảnh vật liệu dụng cụ ra khỏi bề mặt. Mòn phát triển nhanh hơn ở vùng dưới lưỡi cắt phụ làm tăng nhám bề mặt và phá huỷ mũi dao. Mòn mặt sau từ lưỡi cắt chính là mòn do dính và mòn do cào xước gây ra bởi các hạt PCBN khi bị bong ra từ vật liệu dụng cụ và các hạt các bít trong vật liệu gia công.Tốc độ mòn tỉ lệ thuận với vận tốc cắt. Khi giảm vân tốc cắt tới 140 m/p, cơ chế mòn do nhiệt không tồn tại mà chỉ còn cơ chế mòn do dính trên mặt sau dưới lưỡi cắt phụ. Mòn do nhiệt phát triển rộng hơn và nhanh hơn trên vùng mặt sau dưới lưỡi cắt phụ là vấn đề cần tiếp tục nghiên cứu để tìm ra bản chất của hiện tượng này. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 85 CHƯƠNG IV KẾT LUẬN CHUNG VÀ PHƯƠNG HƯỚNG NGHIÊN CỨU TIẾP THEO CỦA ĐỀ TÀI 4.1. Kết luận chung Các kết quả của nghiên cứu cho thấy khi tiện tinh thép 9XC bằng dao PCBN mòn mặt trước và mặt sau là hai dạng mòn chủ yếu. trong giai đoạn đầu, cơ chế mòn mặt trước chủ yếu là biến dạng dẻo do tác dụng cào xước của các hạt cứng trong thép và sự tách ra khỏi bề mặt của các hạt CBN. Cơ chế mòn mặt sau là quá trình bóc tách của các hạt CBN do pha thứ hai của vật liệu dụng cụ bị yếu đi khi tương tác với vật liệu gia công. Trong giai đoạn sau, cơ chế mòn mặt trước là do mỏi dính với sự bóc tách của từng mảng vật liệu trên mặt trước. Cơ chế mòn mặt sau có thể liên quan đến nhiệt, số chu kỳ cào xước của hạt cứng và dính kết hợp với tác dụng ôxi hoá của ôxi từ môi trường tạo nên các mảng dạng vẩy và bong ra khỏi mặt sau. Ba cơ chế mòn chính khi tiện cứng thép 9XC qua tôi khi thay đổi vận tốc cắt từ 160 m/p đến 180 m/p là do mòn dính, mòn do cào xước và mòn do nhiệt. Mòn do nhiệt là dạng mòn chính do dãn nở nhiệt cục bộ của lớp vật liệu dụng cụ trên mặt sau kết hợp với quá trình ôxi hoá ở nhiệt độ cao làm bong các mảnh vật liệu dụng cụ ra khỏi bề mặt. Mòn phát triển nhanh hơn ở vùng dưới lưỡi cắt phụ làm tăng nhám bề mặt và phá huỷ mũi dao. Mòn mặt sau từ lưỡi cắt chính là mòn do dính và mòn do cào xước gây ra bởi các hạt PCBN khi bị bong ra từ vật liệ dụng cụ và các hạt các bít trong vật liệu gia công.Tốc độ mòn tỉ lệ thuận với vận tốc cắt. Khi giảm vân tốc cắt tới 140 m/p, cơ chế mòn do nhiệt không tồn tại mà chỉ còn cơ chế mòn do dính trên mặt sau dưới lưỡi cắt phụ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 86 Mòn do nhiệt phát triển rộng hơn và nhanh hơn trên vùng mặt sau dưới lưỡi cắt phụ là vấn đề cần tiếp tục nghiên cứu để tìm ra bản chất của hiện tượng này. Từ kết quả nghiên cứu có thể thấy khi gia công tinh thép 9XC tôi cứng trên HRC = 50, không nên sử dụng vận tốc cắt ≥ 160 m/p vì ở vận tốc cắt này dụng cụ sẽ bị phá huỷ rất nhanh do nhiệt. 4.2. Phương hướng nghiên cứu tiếp theo Sử dụng phương pháp cắt trực giao để nghiên cứu bản chất tương tác ma sát trong tiện cứng. Nghiên cứu mối quan hệ giữa trường nhiệt độ phát triển ở vùng mũi lưỡi cắt với nhám bề mặt và tuổi bền của dụng cụ. Nghiên cứu ảnh hưởng của cấu trúc tế vi lớp bề mặt đến nhám bề mặt và tuổi bền của dụng cụ. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 87 TÀI LIỆU THAM KHẢO 1.Trần Văn Địch (2004), Gia công tinh bề mặt chi tiết máy, Nhà xuất bản khoa học và kỹ thuật, Hà Nội. 2.Trần Văn Địch, Nguyễn Trọng Bình, Nguyễn Thế Đạt, Nguyễn Viết Tiếp, Trần Xuân Việt (2006), Công nghệ chế tạo máy, Nhà xuất bản khoa học và kỹ thuật, Hà Nội. 3.Trần Văn Địch (2003), Nghiên cứu độ chính xác gia công bằng thực nghiệm, Nhà xuất bản khoa học và kỹ thuật. 4.Trần Hữu Đà, Nguyễn Văn Hùng, Cao Thanh Long (1998), Cơ sở chất lượng của quá trình cắt, Trường ĐHKTCN Thái Nguyên. 5. Nguyễn Văn Hùng (2003), Luận án tiến sỹ: “Nghiên cứu tối ưu các thông số của quá trình mài điện hoá bằng mài kim cương khi gia công hợp kim cứng, Trường ĐHBK Hà Nội. 6. Bành Tiến Long, Trần Thế Lục, Trần Sỹ Tuý (2001), Nguyên lý gia công vật liệu, Nhà xuất bản khoa học và kỹ thuật. 7. Trần Thế Lục (1988), Giáo trình Mòn và Tuổi bền của dụng cụ cắt, Khoa cơ khí - Trường ĐHBK Hà Nội. 8. Phan Quang Thế (2002), Luận án tiến sỹ: “Nghiên cứu khả năng làm việc của dụng cụ thép gió phủ dùng cắt thép các bon trung bình”, Trường ĐHBK Hà Nội. 9. Nguyễn Quốc Tuấn (2005), Cơ sở chất lượng của quá trình cắt, Trường ĐHKTCN Thái Nguyên. 10. Phan Quang Thế, Trần Ngọc Giang (2008), “Nghiên cứu cơ chế mòn dao gắn mảnh PCBN sử dụng tiện tinh thép 9XC qua tôi”, Tạp chí Khoa học và Công nghệ, tập 2, số 4 (48). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 88 11.Trent E.M and Wright P.K (2000), Metal cutting, Butterworth – Heinemann USA. 12. Kishawy H.A. Elbestawy (1999), “Effects of Process Parameters on Materials Side Flow during Hard Turning”, International Journal ơf Machine Tools and Manufacturing, Vol 39, pp. 1017 – 1030. 13. Kevin Chou Y, Evans C.J, Barash M.M (2002), “Experimental Investigation on CBN Turning ơf Hardened AIAI 52100 Steel”,Journal of Materials Processing Technology, Vol 124, pp. 274 – 283. 14. Poulachon.G, Moisan.A, Jawahir.I.S,(2001), “Tool Wear Mechanism in Hard Turning with Polycrystalline Cubic Boron Nitri Tools”, Wear, Vol.250, pp.576-586. 15. Poulachon.G, Bandyopadhyay.B.P, Jawahir.I.S, Pheulpin.S, Seguin.E, (2004), “Wear Behavior of CBN while Turning Various Hardened Steels”, Wear, Vol. 256, pp.302-310. 16. Zimmermann.M, Lahres.M, Viens.D.V, Laube.B.L,(1997), “Investigations of the Wear of Cubic Boron Nitride Cutting Tools Using Auger Electron Spectrocopy and X-ray analysis by EPMA”, Wear, Vol.209, pp.241-246. 17. Liu.X.L, Wen.D.H, Li.Z.J, Xiao.L, Yan.F.G, (2002), “Experimental Study on Hard Turning Hardened GCr15 Steel with PBCN Tool”, Journal of Materials Processing Technology, Vol.129, pp. 217-222. 18. Varadarajan. A.S, Philip. P.K, Ramamoorthy. B, (2002), “Investigastion of Hard Turning with Minimal Cutting Fluid Application (HTMF) and its Comparison with Dry and Wet Turning”, International Journal of Machine Tools and Manufacturing, Vol. 42, pp. 1993-2000. 19. Stephenson D.A and Agapiou J.S (1997), Metal Cutting Theory and Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 89 Practice, Marcel Dekker, Inc, USA. 20. Shaw M. C, (1989), Metal Cutting Principles, Oxford University Press, New York. 21. Loladze T. N, (1976), "Tribology of Metal Cutting and Creation of New Tool Materials", Annals of the CIRP, Vol. 25. Pp. 83-88. 22. Boothroyd G, (1975), Fundamemtals of Machining Machine Tools, Scripta Book Company, USA. 23. Loffler F. H.W, (1994), "Systematics Approach to Improve the Performance of PVD Coatings for Tools Applications", Surface and Coatings Technology, Vol. 68/69, pp. 729-740. 24. Loladze T. N. (1958), Wear of Cutting Tools, Mashqiz, Moscow. 25. Armarego E. J. A and Brown, R. H, (1969), The Machining of Metals, Prentice Hall, Inc, New Jersey. 26. Colwell L. V, (1963), "Resume and Critique of Papers Part two", International Research in production Engineering, The American Society of mechanical Engineers, New York, pp. 83-88. 27. Brierley R. G and Siekmann H. J, (1964), Machining Principles and Cost Control, Mc Graw-Hill Book Company, London. 28. Min W and Youzhen Z, (1988), "Diffusion Wear in Milling Titanium Alloys", Materials Science and technology, Vol. 4. pp. 548-553. 29. Trent E. M, (1967), “Metallurgical Changes at the Tool/Work Interface”, Machinability, ISI Special Report 94, The Iron and Steel Institute, Portsmouth, pp. 79-87. 30. Ekemar. S, (1982), “Coated Indexable Cemented Carbide Inserts - A Development in Progress”, Modern Trends in Cutting Tool, Society of Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 90 Manufacturing Engineers, Michigan, pp. 24-26. 31. Hau-Bracamonte, J. L, (1981), “Partial Austenitisation within Flow Zone when Cutting a Low Carbon Steel”, Metals Technology, November, 1981, pp. 447- 450. 32. Ahman L.. Stridh B and Wisell H, (1990), “Diffusion and Continuous Wear of High Speed Steel Cutting Tools”, Materials Science and Technology, Vol 43/44, pp. 1074-1085. 33. Diniz.A.E, Ferreira.J.R, Filho.F.T, (2003), “Influence of Refrigeration/ Lubrication Condition on SAE 52100 Hardened Steel Turning at Several Cutting Speeds”, International Journal of Machine Tools and Manufacturing, Vol. 43, pp. 317-326. 34. Ren.X.J, Yang.Q.X, James.R.D, Wang.L, (2004), “Cutting Temperature in Hard Turning Chromium Hardfacings with PCBN Tooling”, Journal of Materials Processing Technology, Vol. 147, pp. 38-44. 35. Liu.X.L, Wen.D.H, Li.Z.J, Xiao.L, Yan.F.G, (2002), “Cutting Temperature and Tool Wear of Hard Turning Hardened Bearing Steel”, Journal of Materials Processing Technology, Vol. 129, pp. 200-206. 36. Poulachon.G, Albert.A, Schluraff. M, Jawahir.I.S, (2005), “An Experimental Investigation of Work Material Microstructure Effects on White Layer Formation in PBCN Hard Turning”, International Journal of Machine Tools and Manufacturing, Vol. 45, pp. 211-218. 37. Hua.R and others, (2005), “Effects of Feeds Rate, Workpiece Hardness and Cutting Edge on Subsurface Residual Stress in the Hard Turning of Bearing Steel Using Chamfer + Hone Cutting Edge Geometry”, Journal of Materials Processing Technology, Vol. 394, pp. 238-248. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 91 38. Zorev N.N, (1966), Metal Cutting Mechanics, Pergamon Press, New Your. 39. Kevin Chou Y, Evans Chris J, (1997), Tool Wear Mechanism in Continuous Cutting of hardened Tool Steels, Wear, Vol. 212, pp.59 – 65. 40. Rezhicob A.N, (1969), Heat Generation in Metal Cutting, Mosscow. 41. Tay A.O. Stevenson M.G and De Vahl G, (1976), A numerical method for calculating temperature distributions in machining from force an shear angle measurements, International Journal of machine Tools and Manufacture,Vol. 16, pp. 335 – 349. 42. Zorev N.N, (1963), Interrelationship between shear processes occuring along tool face and on shear plane in metal cutting, International research in production engineering, The American Society of mechanical Engineers, New York, pp. 48 – 67. 43. Jun C.K and Smith K.H, (1994), Alumina Silicon carbide whisher composite tools, Ceramic Cutting Tools, Noyes Publications, New Jersey, USA, pp. 86 – 111. 44. Tay A.O. Stevenson M.G and De Vahl Davis G, (1974), Using the Finite Element Method to Determine temperature Distribution in orthogonal machining, Proceedings of Institutions Mechanical Engineers, Vol 188, pp. 627 – 638. 45. Ivett Viktoria BANA, (2006), Manufacturing of high precision bores. 46. J.M. Zhou, H. Walter, M. Andersson, J.E. Stahl, (2003), Effect of chamfer angle on wear of PCBN cutting tool, International Journal of Machine Tools & Manufacture 43, 301 – 305. ._.

Các file đính kèm theo tài liệu này:

  • pdfLA9297.pdf
Tài liệu liên quan