Chu'dnli
DIEM BAT DONGCUA ToAN TV DONDltU CO
LIEN QUANTOI TINH COMPAcT
- §1. Diim ba'tdQngctlatoaDtli'~ompactddndi~u
Gia sli'X Iii khonggianBanachth1,1'cvoiquailh~thut1,1'sinhbdinonK
Binh nghia2.1.1
Toantli'A :MCX.-3>XduQcgQiIii compactddndi~une'unobie'nm6idayddn
di~utangtrongM thanhdayhQitlf.
Dinh If 2.1.1
Giasli'
1.M Iat~pdong
2.A :M ~ M Iatoantli'ddndi~uvacompactddndi~u
3. T6nt<;ti: xoEM saDcho xo::;;A (xo)
Khi dOA codi€m ba'tdQngtrenM
Chungminh
B~t Mo =~ XE M : x ::;;A (
10 trang |
Chia sẻ: huyen82 | Lượt xem: 1510 | Lượt tải: 0
Tóm tắt tài liệu Nghiệm dương của một số lớp phương trình toán tử, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
x) r. R5 rangtu gia thie't3) va 2) mil Mo :f; ~_;vii A
(Mo)c Mo.
Taseapdlfngnguyen1;'Entropichot~pMovaphie'uham- Strongdo
Sex)=sup~ II A (y) -A (x) II :y ~x~ur, ( uEMo) )
. xEMo
YEMo
1.Truoche'tachungminh: M6idaytang~ Xnrn C Mo co c~ntren.Ta coday
~ A (xn)rn hQitlJ dogia thie'tA Iii toantli'compactddndi~u.GQix Iii gioi h<;tncuaday
~ A (xn)r,taco
10
Xn:$;A (xn):$; X.V~yx lamQtc~ntrencuai Xnr. Ta conphai chI ra XE Mo.
TMt v~y,vi M dongne~XE M:Chon~ 00 trongba'tdangthac A (xn.) :$;A(x) ta., , ,
du'Qc
X:$;A(x) v~yXE Mo.
2.Taco-S(x):$; 0 nenS bi ch?ntren.Ne'ux:$;x' thiiy : y E Mo"y ~x' rei y : y
EMo,Y~xr,nen-s lahamgiam,dodoS lahamtang. '
Apdl,lngnguyen19Entropi,tatimduQcph~ntU'a E Mo saGrho :
v x EMo,x ~a::::>S (x) =S(a).
3.TachungminhS (a) =O.Gia satnii l(,liSea)=2oc>0 khi do tatlmduQCXl E
Mo,Xl ~asaGrho II A(x) -A( a) II >a. Vi Xl ~anenS (Xl)=Sea)=2a>O,dodota
tlmduQcX2E Mo X2~Xl, II A(X2)- A(XI) II >a.
L?p l(,li19lu~ntrentaxaydlJ'ngdlJ'QcdaytangiXnr c Mo saGrho
IIA (XntJ- A (Xn) II > a.
(\in=1,2,3,...)v~ydayi A (xn) rnkhonghQitl,lmallthu~nvoi giathie'tAla roan
tll'compactdondi<%u.
Ta chungminhdi~mb =A(a)'la di~mba'tdQngcuaA. Th~tv~y,do b ~a nen
rheadinhnghlahaniS taco :
II A(b) - A(a) II :$; Sea)=0~ A(b)=A(a) =b.
Dinh19duQcchungminh0
HeQua2.'1.1.Giasa1.KIa nonchuin
2.A: -7 la roantadondi<%nva
A( <uo,V0» la t~pcomp~ctuongd6i.
Khi doA co di~mba'tdQngtren
Chungminh:
Vi K lanonchucfnenrheadinh191.2.1.la t~pdong,bich?n.Xetday
tang {xn}n C ,ta c<inchungminh A( xn)nhQitl,l.
Th~tv~y,VI A(<no,V0» 13.t~pcomp~ctu'ongd6i nenA(xn)nco dayconhQitV.
SongVI {xn}n13.daytang,A dondi~unen{A(xn)n}dondi~ucochuadayconhQitvnen
banthannoclinghQitV.Nghla13.A 1ato<lntli'dondi~ucomp~cdondi~u,theodinh1y
2.1.1.A codiSmba'tdQngtren0 .
Hegila2.1.2:Giasli'
1. Kia nonchinhguy
2. A: -71atoantli'dondi~u
Khi d6A co di~mba'tdQngtren'
Chungminh:
VI K 13.nonchinhguynenK cling13.nonchua"nva dodinh1y1.2.1.t~p
1ad6ng,bi ch?n.
Ala ddndi~u,nenntu {xn}n1adaytangthl {A(xn)}cling13.daytang,vanonK
chinhguynen{A(xn)n}hQiW.Nghla1aA 13.toantli'dondi~u,comp~cdondi~u.Ap dvng
dinh1y2.1.1,A codi~mba'tdQngtren0
He gila2.1.3.Gia sli'
1.X 1akhonggianphanX<;l,KIa nonchua"n.
2.A: -7 13.toantli'dondi~u..
Khi doA codi~mba'tdQngtren.
Chungminh:
Vi K 1-anonchua"nentUdinhly 1.2.1.suyra 13.t~pdong,bi ch?nva
16i.DoX 1akhonggianphanX1acomp~cytu.
X6tdaytang {xn}nc,tachungminh{A ( xn)n}hQitV.Th~tv~y.
{A(xn)}nc6daycon {Ykh= {A(Xnk)}khQitvytuv~y.
V8i m6if EX* tacof (yk) ~feym)(m ~k)
rho m -700tadu'QCf( yk) ~ fey)v~yYk:;Y (\ik)
12
Tachungmint JimYk =Yk-+",
Dodint19Mazur,V 8>0,-3Z =tlYkl +"" + tmY kmE C(yk)k :
II z- y II <8/ N.Voi N Iii h~ngs6trongdint nghIanonchua:n.
Ta d~t: Kg=max{kI,k2 km},taco
Vk ~Kg : z ::;;Yk~ 0 ::;;Yk - Z ::;;Y - z
~IIYk-23II::;;Nlly-~11<8.
V~ydaytang{A(xn)}coday canhQit1,1nenclinghQit1,1.Nghla la:A la:toantli'
compacd(jndi~u.Theodint192.1.1.,A codi~mba'tdQngtren0
s=>
"§2.Diim bili d{)ngcuatoantitddndi?utfJi hqn
D,inhllgh'ia2.2.1
* T6antU'A : Me X ~ X duQcgQila compactdondi~utoi h;:tllne'umaiday
iA n ( Xn) rn thoadi~uki~n
A (Xl) ::;A2 (X2)::; An (xn)::; XnE M d~uhQit\l (1)
Dinh If 2.2.1
GiasU'
1.M Ii'!t~pd6ngvabi ch~ntrongX
2.ToantU'A :M ~ M dondi~uvacomqactdondi~utoih;:tn
3.,T6n t<:tiXo E M saGcho Xo::;A(Xo).
Khi d6A codi@mba'tdQngtrenM
Chungmink
D~tMo ={x EM, x ::;A(x) }tacoMo :f-~vaA (Mo) c Mo. Tren Mo tadinh
nghladayde phie'nhamSnnhusail:
Sn(x):=Supi II An (u) -An (v) II : u,v E Mo, x::;An (u)::;An (v) r
, ,
T~pMex)=i (u,v) : u,v E Mo, x::;An (u)::;An (v) r:f-~VI x::; An (x)::; Ant-(x); Do
v~ySn(x)xacdinh.Ngoairane'ux ::;x' thlM(x') c M(x) ne'uSn(x') ::;Sn"9'
Taconh~nxet
ill An+l(u)-An+l(v) II :u,vEMo,x::;An+l(u)-An+l(v) r
ci II An(u')-An(v') II :u',V' EMo,x::;An(u')- An(v') rnen
Sn+1(x)::;Sn(X).Do v~yt6nt;:tigioi h;:tnSex)=lim Sn(x) .n->""
vahamSex)cling1ahamgiamtrenMo
Taseapd\lngnguyenlyEntropichot~pMovaham( - S)
14
1.Xetdaytang~xn~nC Mo; ta1~pbangvo h~nhai phis.sail :
A (XI)~A2 (XI) ~......
. A (X2)~A2 (X2)~'"....
~ An (XI) ::0;.....
::;An (X2) ~.....
A (xn)~A2 (xn)~...... ~An ({(.n)~.....
. .
VI ~ Xn~ n1aday tangnencacph~ntUlIenmQtCQt1adaytang(do Ala loantU'cion
cii~u).Dov~ytac6daycheo~ An(xn)~n1aday tang,VI A 1aloan tU'compactcion
cii~ut6ih~n,daynayhQitl,lv~ gia tri gi6i h~nXva Xn~ An (Xn)~X.
Nghla1aX1ac~ntrencua~xn~ n.Taphaiki~mtradingx E Mo
Th~tv~y,tac6A n(xn)~An+I (xn)~A (X)V n
C~on =- ex>, ta cil1QcX ~ A (X), nghIa 1aX E Mo,
. .. .
2. Ap dl,lngnguyen1yEntropitatlmcil1Qca E Mo c6 tinhchatx E Mo, X ;;:::a =>
Sex)=Sea)
TachungrninhS (a)=0 . Gia sU'-S(a)=2a> 0
I
VI S2(a) ;;:::S (a)>a nen1uont6nt~iu~' v1~E Mo saDcho
a ~A2(UI)~ A2 (VI), II A2(UI) ~ A2 (VI) II >a
VI A2 (VI) ;;:::a nen S (A2 (VI) ) =2ex:dov~yS4 ( A2 (VI) ) >a
va ta Hm cil1QCU2"V2,E Mo sao cho A2 (VI) ~ A 4(U2)~ A 4 (V2)
IloA4(U2)- A4 (V2) II >a
Tie'ptl,lC1y1u~nhl1lIentasexaydl,l'ngcil1Qccacday~l\.. ~, ~vl<\0 ~cMosaDcho
A2 (UI) ~ A2 (VI) ~A 4(U2)~A 4 (V2)~ ~A2n(Un)~ A2n (Vn) ~... (J.)
0)
II A2n(un)- . A2n(vn)ll>a
R6rangday(2)c6d~ng(1)trongciinhnghla,songdo(3)n6khonghQitl,l.Mau
thu~nv6itinhcompactGoncii~ut6ih~ncuaA. v~yS (a)=O.
15
. ,
3)Cu6icungtachungminhA c6di~mb:1tdQngtIeDMo. Ta c6
a:::;A(a) :::;A 2(a) :::;......
daynayc6d~ng(1)Denno hQit1,1
Ta d~tb = limA n (a) ta c6 An-(l~)~~o/-An (a):::;A (b) V (b) n ~ 1
n-->a:J
n~nb:::;A(b).
Ta l~ic6 a :::;A n (a) :::;A n(b)V nDen
II A n (a)- A Ii (b) II :::; S (a). Do limS (a). =S (a).=on-->a:J
ne~1im[A n (b) - A n (a)] =o
n~CX)
Cu6icungtub:1tdgngthuc
0:::;A (b) -b:::;A n (b)- A n (a)tac6A(b) =b.
Chuy: Ne'utrongdinh1y2.2.1tagiunguyencacgiathie't1),2) con3)duQcthay
b~ng3) ::3XoE M saochoA (xo):::;Xothl v~nc6 ~e't1u~n:
"Khi doA c6di~mba'tdQngtrongM. "
Trencosachliytrentachungrninhke'tquac6lienquailde'nroantU'16md~u
Dinkngkla2.2.2
ne'u
Cho lio'~(t,roantU'A duQcgQi1aUo 16md~utIeD
I) A dondi~utIeD
II) V X E ,::3ex>0, ::3~>osaoexuo:::;Ax:::;~uo.
III) V [a,b] C (0,1),::35 =5(a,b)>osaochoV x E
V.t E (a,b)thl A (tx) ~( 1+5 ) t A (x).
R6rangcach~ngso'ex,pph1,1thuQcvaox,Ne'uA 1auo- 16md~uthlA ( tx)~t A
tx)
V t E ( 0,1),V X E
16
DinhIf.2.2.2 , Gia sti'
1.K 1anonchuin
2.Ala toantti'uo-16md€u tfen
3.u:::;Au;Av:::;v
Khi doA codi~mba'tdQngtren
Chung minh
Do 3)maA « u,V» c ;KIa nonchuinnenla dong,bi ch~n.Ta
sechi fa A la toantU'compactdondit$ut6i h?n
* Giasu:3a,~>0 : a uo:::;u,v :::;~Uova~<1~
Th?tV?y,ne'uu,v khongco tinhcha'trenthltUdi€u kit$n(ii) trongdinhnghlaA la
Uo-16md€u suyfa,:3a,~>0 :
,
a uo:::;Au; Av:::;~Uo. Ta d~tuj=A\.I;Vj= AV-
Ta co ocuo:::;uj,VI:::;~uo,a <1
~
Uj:::;A Ul AVi :::;Vj
DoK lanonchuinnendongbi ch~n4>\;jx E :3M >0 :
Ihll:::;M
"
* A la toantti'comp"actdondit$uWih?n.Th?tV?y,Gia s11( xn)n C thoadi€u
kit$n:A (Xj)~A 2(X2)~ A n(xn) ~ (*)
tasechifa ( * ) la dayCauchy( khidosehQitvVIX la khonggianBanach)
La'yE>0 dubed~ a <1-~ (N - h~ngs6chuincuanonK)
~ M.N
DoA la uo16md€u nen:38>0 saccho\;jx E .
'v't8- [a ,1- 8 ] tacoA (tx) ~( 1+8) tAx
~ M-N, ,
17
GQinola s6tlfnhienrheadieuki~n
0:(1+8)no-1:::;1- ~
~ . MN
0:(1+8)no>I..!...
~. .MN'
Bangeachgiams6(), tacothecoi 0:
~
(1+()to <1
Ta.chungminh\:fn:2:no,.\:fkEN thl
II A n+k(xn+d II - An (Xn )11<8
Do A k(Xn+k)E va XE nen a.~ ~A k(x n+k)va
Xn~p .uo
k
A (Xn+k) . Xn xn k 0:
2:uo2:-:::::>-:::::> A (Xn+k)2:-xn,
0: ~ ~ ~
;ac6A ,.. (x..,):>A(;x. )"(1+0); x,
A k+2(Xn+k)2:A[(1+8) 0:A(xn)] 2:(1+8)20:A 2(XJ
- . - P. P Dodo
Ak+no(Xn+k)2:A[(1+8)nO-I.CXAn.1 (xn)]2:(1+8)noexAnO(xn)
. P P
A n+k(Xn+k) = An-no [A k-no(Xn+k) 2:An-no [(1 + 8)no CXA n(Xn) J
. P
2:(1+8)no0:.An(xn)2:(1-~)An(xn)
P MN
Ke'th<;lpvoidieuki~n
A'n+k (
.
)<A
n
( )t
'
. Xt>+k - xi, aco
E
0:::;A n(Xn)-An'-k (Xn+k):::;-A n(Xn).Dod6
MN
lI~n(Xn)-An+k(Xn+k)I/s~.8 IIAll(Xn) 11~~.M=8M M.N
V~y(*) ladaycauchy.Ap dl,mgdinhly 2.2.1,A codiemba'tdQngtrenO
18
t(f
§3:D~~mba'tdQngcua to~intdddn di~utren khong gianvoi
nonMinihedral- m~nh
x IiikhongianBanachthvc,s~pboinon.MinihedraIm<;lnhK. Tacoke'tquanhu
sau:
DinhIf 2.3.1
Gia s11'
1.A :--7 Iii toant11'dondi~u
2.IeIiinonrninihedralmc .
Kh,idoA codi~mbatdQngtren.
Chungmink
D?tB=i x E :x ~Ax .~. Khi doB:;t~vi ue B. Anh XB,vi V x
E B :x ~Ax, IAx E B V X.E B.
TasechIram6it~pcons~ptuye'ntinhtrongB d€u coc~ntrenthuQcB. Th~tv~y,
Giii s11'C Iii mQtt~pcons~ptuye'ntinhtrongB. Ta thayC bi ch~ntrenboiV. Vi K
Iiinonniinihe9raImu ~Co ~v.
V X E C tacox ~Co, A dondi~u,nenA (x)~A (Co)=>x ~A (x) ~A (Co)dodo
A (Co)Iii ffiQtc~ntrencuaC nenCo ~A (Co)(do dinhnghlasupremum)=>Co E B.
Theob6d€ ZorntrongB coph~ntli'toi d<;lix*. Ta se chungminhx* Iii di~mbat
dQngcua'A. .
Tacox* E B nenx* ~A (x*).
LA (x*) E B =>A (x*)
( vi x* -I?h~ntli'toidA (x*)=x*.O
f?
19
._.