Một phương pháp proximal điểm trong cho bài toán cực tiểu lồi và cho bất đẳng thức biến phân

38 Do m < 1,ta thu du'ejctli ba"td~ngthucnay rang f(xk) :s;f(y*). Dieu nay dfin dSn 1 1 f(xk) + Akd<p(xk,xk)=f(xk) :s; f(y*) :s; f(y*)+ Akd<p(Y*,xk). VI y* Ia nghi~mduy nha"tnen xk =y* vadoB6 de2.6.2tasuyraxkIa cvctieu cua f trenJR!.~. (ii) Ta ky hi~ui(k) la ChIs61~pungvoi xkdu'ejc~pnh~t,nghlala yi(k}= xk+l. Ta dinh nghla "yk- ,i(k} E 8'ljJi(k}(xk+l). Ta bitt rang ,k=- :k <p/(xk,xk+l). Tli nhungky hi~utrentachungminhcackh~ngdinhsau: a. {f(xk)}kh6ngtang.VI f(xk) - f(xk+1)~

pdf36 trang | Chia sẻ: huyen82 | Lượt xem: 1401 | Lượt tải: 0download
Tóm tắt tài liệu Một phương pháp proximal điểm trong cho bài toán cực tiểu lồi và cho bất đẳng thức biến phân, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
m[J(xk)- 'ljJi(k}(xk+1)] (2.62) nentheoChtiy 2.6, f(xk) - 'ljJi(k}(xk+l)la ham kh6ngam, do do {f(xk)}cling kh6ngtang.Do dotacothegiasa{f(xk)}bi ch~ndu'oi(nSukh6ngthlf(xk)~ -00 va chungminhxong). b.,kE 8Ekf(xk).Voi Ek= f(xk) - 'ljJi(k}(xk+l)+ :k«p'(xk,xk+1),xk- xk+l). Tli dinhnghlacua,k, tathffyngaydu'ejcrang Ek= f(xk) - 'ljJi(k}(xk+l) - (,k,xk - xk+l). M~tkhacdo f ~ 'ljJi(k}va ,k E 8'ljJi(k}(xk+l)nen Vy, f(y) ~ 'ljJi(k}(y)~ 'ljJi(k}(xk+l)(,k,y - xk+l). (2.63) Trangtru'onghejpd~cbi~t,voi y = xk thl Ek~ O.TIT (2.63)ta co Vy, f(y) ~ f(xk)+'ljJi(k}(xk+l)- f(xk)+(rk,y- xk)+(,k,xk- xk+l), l nghlala,k E 8Ekf(xk). +00 1 c.L {Ek - :\«p' (xk,xk+l),xk - xk+l)} < +00 k=l k Tli (2.62)taco Ek = f(xk) - 'ljJi(k}(xk+l)+ lk«p'(xk,xk+l),xk - xk+l) :s; ~[J(xk) - f(xk+l)] + lk«p'(xk,xk+1),xk - xk+l). 39 Nhuv~y n n I) Ek- :k «I>'(xk,xk+l),xk - xk+l)} ~ ~I)f(xk) - f(xk+l)]k=l k=l - ~[J(xl) - f(xn+l )]. Vi f bi ch~nduoi nen +00 1 L {Ek- ~«I>'(xk,xk+l),xk - xkH)} < +00. k=l k d. f(xk) -+ ! =inf{f(x)Ix 2:O} Day {f(xk)}khongtang,hQitl;lde'nf. Gia su phanchungding! > 1* := inf f(x), nghlala t6nt 0thoaf(y) +8<f(xk),Vkdli IOn.xE!R.P Vi Ek-lk «I>/(xk,xk+l),xk- xk+l)-+ 0 nen t6nt<;likod~voi k 2:kothl Ek- ~«I>/ (xk xk+l) Xk - k+l) 8, ' , x <- /\k 2' Tu B6 d€ 2.2.2voi a =xk,b=xkH va c=y, taco Ily- xk+1112-Ily - xkl12~-t(y - xk+l, (xk,xk+l)) = - t(y - xk, I(xk, xk+1)) - t(xk - xk+1,I(xk ,xk+1)). Tu (2.64),taco ngay -t(xk - xk+l,/(xk,xk+l))<~k(~- Ek) M~tkhactuph~nb va ryk= -lk '(xk, xk+l) E OEkf(xk) ta du<;5c -t(y - xk,I(xk,xk+l)) = ~k(ryk,Y - xk) va f(Xk)- 8>f(y) 2:f(xk)+(-l, y - xk)- Ek' Ke'th<;5pvoi (2.67)va (2.68)tadu<;5c 1 k I k k+l Ak - e(y- x , (x ,x ))<e [-8+Ek]. Cu<3iclingtu (2.65),(2.66)va (2.69)tadu<;5c k+1 2 k 2 Ak 8 k 2 8 lIy - x II <lIy - x II +-[- - Ek - 8+Ek] =lIy - x II - Ak-'- () 2 2() (2.64) (2.65) (2.66) (2.67) (2.68) (2.69) 40 Liy t6ngbit ding thuetrenvoi mQik >kotadu'Qe k-l (y 0 ::; Ilxk - yl12::; Ilxko- yl12- 2() L Ak' k=ko += Cho k --t +00 thl L Ak ::;2: Ilxko - yl12< +00,di€u nay mall thuffnvoi gia thie't. k=ko BaygiGtagiasil'f co eveti€u x trenIR~va {Ad bi eh~n. e. {xk}bi eh~n Dungbit ding thue(2.65)voiy =x tadu'Qe Ilxk+l- xl12::; Ilxk- xl12 - t(x- xk, '(xk, xk+l)) - t(xk - xk+l, '(xk, xk+l)). Tli dinhnghlaeuaryk= -lk '(xk,xk+l) E OEkf(xk),ta co -b(x - xk,'(xk,xk+l)) = ~k(ryk,x- xk) ::; ~k[f(x)- f(xk)+Ek]::;~kEk. Do do Ilxk+l- x112::;Ilxk- xl12+ ~k[Ek- :k «1>'(xk,xk+l),xk- xk+l)]. Vi {Ak}bi eh~n( dogiathie't), apd1;1ngph~ne taco +=A 1 L ()k[Ek- :\«1>'(xk,xk+l),xk- xk+l)]<+00. k=l k Dung B6 d€ 2.1 ta suyra {llxk- xllhhQit1;1.V~y{xk}bi eh~n. f. MQi di€m gioi h<;lnx* eua{xk}Ia eveti€u eua f tren IR~va xk --t x* Cho xnk --t x*. VI f lien t1;1enen f(xnk)--t f(x*). Ap d1;1ngph~nd, f(xk) --t J = inf f(x). Do do f(x*) = j. VI x*E IR~nenx* la eveti€u euahamf trenIR~. xER~ Tli (2.70)thayx bdix* ta du'Qe Ilxk+l- x*112::;Ilxk- x*112+(yk, (2.70) trongdo {y= Ak[E - ~«1>' (xk xk+l ) xk - xk+l)] k () k Ak " . += Vi L (jk <+00 nenapd1;1ngmQtke'tquaeuaCorreavaLemareehal([7],M~nh k=l d€ 1.3)thl toanbQday {xk}hQit1;1de'nx*. . 41 2.7 Ktt quatinh toan86. f)~ thu~tgi<lidti d~Hdu'Qc,ta cin gi<libai toancon sail { mill 7/Ji(y)+ 1kd<p(y,xk), Y E JR~+. V(ji 7/Ji(y)= max{f(yj) +(s(yj),Y-yj) I j =0,. . . ,i-I}, baitoantrentu'dngdu'dng v(ji (SPh,i mill v +1kd<p(Y,xk), v 2:f(yj) + (s(yj),y - yj) j =0,. . . , i-I, Y E JR~+. Ta tha'ydng ne'u(yi,vi) la nghi~mcuabai toantrenthl Vi=max{f(yj)+(s(yj),y - yj)}. Vi r.p(t)= ~(t- 1)2+p,(t-logt - 1)nenhamml,lctieu cua bai toan(SPk,i) "cvc ky" phi tuye'nva vi~cHmnghi~mcuabai toan(SPk,i)co th~ra'tkho khan.Tuy nhien,ne'u P d<p(y,xk)= L(x~)2r.p(Y;),xm=1 m thlhamml,lctieula tachdu'QCva cachgi<libai toantrenIa tagi<libai toand6i ng~ucuano. V(ji mQim,tad~tZm= ;7:va Z= (zm)thlbai toan(SPk,i)co th~Tn vie't l(,linhu'sail (MSPh,i p mm v +L amr.p(zm), m=1 (sj Z) - v <b., - J' j=0,...,i-1, Z E JR~+, t d ' - ~ ( k )2 j - ( j ) k - 1 ' b. - ( ( j ) j ) - f( j ) '-rang 0 am - Ak xm , sm - S Y xm' m - ,..., p va J - s y ,y y, J - 1,..., i-I. HamLagrangetu'dnglingv(jibaitoan(MSP)k,ila p i-I L(v,z,p,)=v+L amr.p(Zm)+ LP,j [(sj, z) - v - bj] m=1 j=O va hamd6ing~u la d(p,)= inf{L(v,z,p,) I v E JR,z > O} ! inf{t amr.p(zm)+ ~p'j[(sj,z) - bj]}- z>o - m=1 j=O -00 i-I ne'uL p,j = 1, j=1 ngu'Qcl(,li. 42 Do v~yb~titmlnd6ing§:utu'onglingIa { max d(~), L ~j =1 (D) ~j2::0,j=O"",i-l, trongdo P i-I d(~)=L dm(~)- L ~jbj, m=I j=O i-I dm(~)= inf{G:ma}, j=O <p(zm)=z~- Zm-log Zm' Honnua,m6ihamdmla khclvi va Vdm(~)= (stnz~- bj)O~j~i-I' i-I trongdo z~= argmin{G:ma}. j=O Vi (D) Ia bai tmlntrailnenhammvctieucuano de u'oc1u'<;Jng,ta co th~sa dvngba'tky phu'ongphapc6 di~nnaod~giclino. GQi~* la nghit%mcuabai toan(D) thlz*= (z~)trongdo i-I z:n= argmill {G:m<p(zm)+L ~;stnzm}, j=O va i-I i-I * - (~ * j *) ~ *b'v - ~ ~js ,Z - ~ ~j J j=O j=O la nghit%mcuabai toan(SPk,i).Th~tv~y,dodi€u kit%ndQIt%chbli taco i-I L~;[(sj, z*) - v* - bj] =0, j=O i-I Vi L~; =1nen j=o i-I i-I i-I * - ~ * * - (~ * j *) ~ *b'v - ~~jV - ~~jS ,Z - ~~j J' j=o j=o j=o 43 Thi dl;l: f(x) =max{fj(x)=xTQ(j)x+(cj? x,j = 1,..., 5} yoi Q~k= etcos(ik)sinj,i < k Qii = *Isinjl+L IQikl i=/=k cj = e}sin(ij),i=l,...,n. ChQn: xQ = (1 1 1 1 1 1 1 1 1 1 ) A = 0.1000 m = 0.4000 Tieu chuffndung: Ilxold- xl12~ 0.001000 Gi<itItbandffucuahamI.jJ 5337.0664 Ke'tqua: 2 61.74627860 1 3 16.821912574 4 7.51790296 2 5 2.74151481 4 6 1.62981397 3 7 0.32026335 4 8 0.02442314 5 9 -0.06580683 6 10 -0.14407693 10 11 -0.16407434 8 12 -0.17470473 9 13 -0.17881529 8 14 -0.18039020 13 15 -0.18219034 10 16 -0.18263927 14 17 -0.17967192 40 18 -0.18234564 13 19 -0.18315244 11 20 -0.18042678 40 Solution: 0.00000.00060.01210.03630.07730.00000.07210.07440.04590.0189 f = -0.18042678 ._.

Các file đính kèm theo tài liệu này:

  • pdf4_2.pdf
  • pdf0_2.pdf
  • pdf1_2.pdf
  • pdf2_2.pdf
  • pdf3_2_2.pdf
  • pdf5_2_2.pdf
  • pdf6_2.pdf
  • pdf7_2.pdf
Tài liệu liên quan