38
Do m < 1,ta thu du'ejctli ba"td~ngthucnay rang f(xk) :s;f(y*). Dieu nay dfin
dSn
1 1
f(xk) + Akd<p(xk,xk)=f(xk) :s; f(y*) :s; f(y*)+ Akd<p(Y*,xk).
VI y* Ia nghi~mduy nha"tnen xk =y* vadoB6 de2.6.2tasuyraxkIa cvctieu
cua f trenJR!.~.
(ii) Ta ky hi~ui(k) la ChIs61~pungvoi xkdu'ejc~pnh~t,nghlala yi(k}= xk+l.
Ta dinh nghla "yk- ,i(k} E 8'ljJi(k}(xk+l). Ta bitt rang
,k=- :k <p/(xk,xk+l).
Tli nhungky hi~utrentachungminhcackh~ngdinhsau:
a. {f(xk)}kh6ngtang.VI
f(xk) - f(xk+1)~
36 trang |
Chia sẻ: huyen82 | Lượt xem: 1415 | Lượt tải: 0
Tóm tắt tài liệu Một phương pháp proximal điểm trong cho bài toán cực tiểu lồi và cho bất đẳng thức biến phân, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
m[J(xk)- 'ljJi(k}(xk+1)] (2.62)
nentheoChtiy 2.6, f(xk) - 'ljJi(k}(xk+l)la ham kh6ngam, do do {f(xk)}cling
kh6ngtang.Do dotacothegiasa{f(xk)}bi ch~ndu'oi(nSukh6ngthlf(xk)~
-00 va chungminhxong).
b.,kE 8Ekf(xk).Voi
Ek= f(xk) - 'ljJi(k}(xk+l)+ :k«p'(xk,xk+1),xk- xk+l).
Tli dinhnghlacua,k, tathffyngaydu'ejcrang
Ek= f(xk) - 'ljJi(k}(xk+l) - (,k,xk - xk+l).
M~tkhacdo f ~ 'ljJi(k}va ,k E 8'ljJi(k}(xk+l)nen
Vy, f(y) ~ 'ljJi(k}(y)~ 'ljJi(k}(xk+l)(,k,y - xk+l). (2.63)
Trangtru'onghejpd~cbi~t,voi y = xk thl Ek~ O.TIT (2.63)ta co
Vy, f(y) ~ f(xk)+'ljJi(k}(xk+l)- f(xk)+(rk,y- xk)+(,k,xk- xk+l),
l
nghlala,k E 8Ekf(xk).
+00 1
c.L {Ek - :\«p' (xk,xk+l),xk - xk+l)} < +00
k=l k
Tli (2.62)taco
Ek = f(xk) - 'ljJi(k}(xk+l)+ lk«p'(xk,xk+l),xk - xk+l)
:s; ~[J(xk) - f(xk+l)] + lk«p'(xk,xk+1),xk - xk+l).
39
Nhuv~y
n n
I) Ek- :k «I>'(xk,xk+l),xk - xk+l)} ~ ~I)f(xk) - f(xk+l)]k=l k=l
- ~[J(xl) - f(xn+l )].
Vi f bi ch~nduoi nen
+00 1
L {Ek- ~«I>'(xk,xk+l),xk - xkH)} < +00.
k=l k
d. f(xk) -+ ! =inf{f(x)Ix 2:O}
Day {f(xk)}khongtang,hQitl;lde'nf. Gia su phanchungding! > 1* :=
inf f(x), nghlala t6nt 0thoaf(y) +8<f(xk),Vkdli IOn.xE!R.P
Vi Ek-lk «I>/(xk,xk+l),xk- xk+l)-+ 0 nen t6nt<;likod~voi k 2:kothl
Ek- ~«I>/ (xk xk+l) Xk - k+l) 8, ' , x <-
/\k 2'
Tu B6 d€ 2.2.2voi a =xk,b=xkH va c=y, taco
Ily- xk+1112-Ily - xkl12~-t(y - xk+l, (xk,xk+l))
= - t(y - xk, I(xk, xk+1)) - t(xk - xk+1,I(xk ,xk+1)).
Tu (2.64),taco ngay
-t(xk - xk+l,/(xk,xk+l))<~k(~- Ek)
M~tkhactuph~nb va ryk= -lk '(xk, xk+l) E OEkf(xk) ta du<;5c
-t(y - xk,I(xk,xk+l)) = ~k(ryk,Y - xk)
va
f(Xk)- 8>f(y) 2:f(xk)+(-l, y - xk)- Ek'
Ke'th<;5pvoi (2.67)va (2.68)tadu<;5c
1 k I k k+l Ak
- e(y- x , (x ,x ))<e [-8+Ek].
Cu<3iclingtu (2.65),(2.66)va (2.69)tadu<;5c
k+1 2 k 2 Ak 8 k 2 8
lIy - x II <lIy - x II +-[- - Ek - 8+Ek] =lIy - x II - Ak-'- () 2 2()
(2.64)
(2.65)
(2.66)
(2.67)
(2.68)
(2.69)
40
Liy t6ngbit ding thuetrenvoi mQik >kotadu'Qe
k-l
(y
0 ::; Ilxk - yl12::; Ilxko- yl12- 2() L Ak'
k=ko
+=
Cho k --t +00 thl L Ak ::;2: Ilxko - yl12< +00,di€u nay mall thuffnvoi gia thie't.
k=ko
BaygiGtagiasil'f co eveti€u x trenIR~va {Ad bi eh~n.
e. {xk}bi eh~n
Dungbit ding thue(2.65)voiy =x tadu'Qe
Ilxk+l- xl12::; Ilxk- xl12 - t(x- xk, '(xk, xk+l)) - t(xk - xk+l, '(xk, xk+l)).
Tli dinhnghlaeuaryk= -lk '(xk,xk+l) E OEkf(xk),ta co
-b(x - xk,'(xk,xk+l)) = ~k(ryk,x- xk)
::; ~k[f(x)- f(xk)+Ek]::;~kEk.
Do do
Ilxk+l- x112::;Ilxk- xl12+ ~k[Ek- :k «1>'(xk,xk+l),xk- xk+l)].
Vi {Ak}bi eh~n( dogiathie't), apd1;1ngph~ne taco
+=A 1
L ()k[Ek- :\«1>'(xk,xk+l),xk- xk+l)]<+00.
k=l k
Dung B6 d€ 2.1 ta suyra {llxk- xllhhQit1;1.V~y{xk}bi eh~n.
f. MQi di€m gioi h<;lnx* eua{xk}Ia eveti€u eua f tren IR~va xk --t x*
Cho xnk --t x*. VI f lien t1;1enen f(xnk)--t f(x*). Ap d1;1ngph~nd, f(xk) --t J =
inf f(x). Do do f(x*) = j. VI x*E IR~nenx* la eveti€u euahamf trenIR~.
xER~
Tli (2.70)thayx bdix* ta du'Qe
Ilxk+l- x*112::;Ilxk- x*112+(yk,
(2.70)
trongdo
{y= Ak[E - ~«1>' (xk xk+l ) xk - xk+l)]
k () k Ak " .
+=
Vi L (jk <+00 nenapd1;1ngmQtke'tquaeuaCorreavaLemareehal([7],M~nh
k=l
d€ 1.3)thl toanbQday {xk}hQit1;1de'nx*. .
41
2.7 Ktt quatinh toan86.
f)~ thu~tgi<lidti d~Hdu'Qc,ta cin gi<libai toancon sail
{
mill 7/Ji(y)+ 1kd<p(y,xk),
Y E JR~+.
V(ji 7/Ji(y)= max{f(yj) +(s(yj),Y-yj) I j =0,. . . ,i-I}, baitoantrentu'dngdu'dng
v(ji
(SPh,i
mill v +1kd<p(Y,xk),
v 2:f(yj) + (s(yj),y - yj) j =0,. . . , i-I,
Y E JR~+.
Ta tha'ydng ne'u(yi,vi) la nghi~mcuabai toantrenthl
Vi=max{f(yj)+(s(yj),y - yj)}.
Vi r.p(t)= ~(t- 1)2+p,(t-logt - 1)nenhamml,lctieu cua bai toan(SPk,i) "cvc
ky" phi tuye'nva vi~cHmnghi~mcuabai toan(SPk,i)co th~ra'tkho khan.Tuy
nhien,ne'u
P
d<p(y,xk)= L(x~)2r.p(Y;),xm=1 m
thlhamml,lctieula tachdu'QCva cachgi<libai toantrenIa tagi<libai toand6i
ng~ucuano. V(ji mQim,tad~tZm= ;7:va Z= (zm)thlbai toan(SPk,i)co th~Tn
vie't l(,linhu'sail
(MSPh,i
p
mm v +L amr.p(zm),
m=1
(sj Z) - v <b., - J' j=0,...,i-1,
Z E JR~+,
t d ' - ~ (
k
)2 j - ( j ) k - 1
' b. - ( ( j ) j ) - f( j ) '-rang 0 am - Ak xm , sm - S Y xm' m - ,..., p va J - s y ,y y, J -
1,..., i-I. HamLagrangetu'dnglingv(jibaitoan(MSP)k,ila
p i-I
L(v,z,p,)=v+L amr.p(Zm)+ LP,j [(sj, z) - v - bj]
m=1 j=O
va hamd6ing~u la
d(p,)= inf{L(v,z,p,) I v E JR,z > O}
!
inf{t amr.p(zm)+ ~p'j[(sj,z) - bj]}- z>o
- m=1 j=O
-00
i-I
ne'uL p,j = 1,
j=1
ngu'Qcl(,li.
42
Do v~yb~titmlnd6ing§:utu'onglingIa
{
max d(~),
L ~j =1
(D)
~j2::0,j=O"",i-l,
trongdo
P i-I
d(~)=L dm(~)- L ~jbj,
m=I j=O
i-I
dm(~)= inf{G:ma},
j=O
<p(zm)=z~- Zm-log Zm'
Honnua,m6ihamdmla khclvi va
Vdm(~)= (stnz~- bj)O~j~i-I'
i-I
trongdo z~= argmin{G:ma}.
j=O
Vi (D) Ia bai tmlntrailnenhammvctieucuano de u'oc1u'<;Jng,ta co th~sa
dvngba'tky phu'ongphapc6 di~nnaod~giclino. GQi~* la nghit%mcuabai
toan(D) thlz*= (z~)trongdo
i-I
z:n= argmill {G:m<p(zm)+L ~;stnzm},
j=O
va
i-I i-I
* -
(~ * j *) ~ *b'v - ~ ~js ,Z - ~ ~j J
j=O j=O
la nghit%mcuabai toan(SPk,i).Th~tv~y,dodi€u kit%ndQIt%chbli taco
i-I
L~;[(sj, z*) - v* - bj] =0,
j=O
i-I
Vi L~; =1nen
j=o
i-I i-I i-I
* - ~ * * - (~ * j *) ~ *b'v - ~~jV - ~~jS ,Z - ~~j J'
j=o j=o j=o
43
Thi dl;l: f(x) =max{fj(x)=xTQ(j)x+(cj? x,j = 1,..., 5}
yoi
Q~k= etcos(ik)sinj,i < k
Qii = *Isinjl+L IQikl
i=/=k
cj = e}sin(ij),i=l,...,n.
ChQn:
xQ = (1 1 1 1 1 1 1 1 1 1 )
A = 0.1000
m = 0.4000
Tieu chuffndung:
Ilxold- xl12~ 0.001000
Gi<itItbandffucuahamI.jJ 5337.0664
Ke'tqua:
2 61.74627860 1
3 16.821912574
4 7.51790296 2
5 2.74151481 4
6 1.62981397 3
7 0.32026335 4
8 0.02442314 5
9 -0.06580683 6
10 -0.14407693 10
11 -0.16407434 8
12 -0.17470473 9
13 -0.17881529 8
14 -0.18039020 13
15 -0.18219034 10
16 -0.18263927 14
17 -0.17967192 40
18 -0.18234564 13
19 -0.18315244 11
20 -0.18042678 40
Solution:
0.00000.00060.01210.03630.07730.00000.07210.07440.04590.0189
f = -0.18042678
._.