Lời nói đầu
Bước vào thế kỷ 21 thời đại lấy công nghệ thông tin làm nòng cốt phát triển các ngành kinh tế khác. Sự bùng nổ thông tin toàn cầu và kỹ thuật mạng INTERNET phát triễn như vũ bão đã làm thay đổi suy nghĩ của nhiều nhà làm tin học ở nước ta nói riêng và toàn cầu nói chung. Từ thuở sơ khai con người thấy việc kết hợp một nhóm người lại thì làm việc có hiệu quả hơn rất nhiêù so với việc phân tán và lẻ tẻ trong công việc , chính vì lẻ thiết thực đó mà mạng máy tính ra đời.
Sự ra đờ
87 trang |
Chia sẻ: huyen82 | Lượt xem: 1752 | Lượt tải: 0
Tóm tắt tài liệu Mạng máy tính, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
i của mạng máy tính đã mang lại giá trị thực tiễn vô cùng to lớn cho nhân loại thông qua việc giúp cho con người như được xích lại gần nhau hơn, các thông tin quan trọng chuyển tải khai thác, xử lý kịp thời, trung thực và chính xác. Với sự xuất hiện của mạng máy tính khoảng cách về địa lý, không gian và thời gian như được thu hẹp lại.
Việt Nam chính thức tham gia vào mạng máy tính INTERNET từ tháng 12 năm 1997 với tổng số 4 triệu máy điện thoại và 30 nghìn thuê bao INTERNET, đã tạo điều kiện cho mạng máy tính phát triển mạnh mẻ hơn bao giờ hết. Nhận thấy nhu cầu làm việc nhóm chia sẻ thông tin trong các cơ quan, nên em tập chung nghiên cứu về đề tài này.
Do thời gian có hạn nên em không thể tránh khỏi thiếu sót, em rất mong được sự góp ý của quý thầy cô.
Em xin cảm ơn khoa Điện tử_ viễn thông, đặc biệt là thầy giáo: Thái vinh Hiển , người đã giúp em hoàn thành cuấn đồ án tốt nghiệp này.
Hà nội, tháng 05 năm 2003.
Sinh viên
Trần văn Dũng
Phần I
Tổng quan về mạng máy tính
Chương 1
Mạng máy tính
1.1 Mạng máy tính là gì.
Mạng máy tính là một tập hợp các máy tính được kết nối với nhau bằng đường truyền vật lý theo một kiến trúc nào đó, nhằm mục đích trao đổi thông tin giữa các máy tính.
Mạng máy tính sử dụng một số nguyên tắc căn bản để truyền.
- Đảm bảo không bị mất mát khi truyền.
- Thông tin phải được truyền nhanh chóng, kịp thời, chính xác.
- Các máy tính trong một mạng phải nhận biết được nhau.
- Cách đặt tên trong mạng, cũng như cách thức xác định đường truyền trên mạng phải tuân theo một chuẩn nhất định.
1.2 Phân loại mạng máy tính.
Người ta phân loại mạng khác nhau dựa trên các yếu tố sau.
Nguyên tắc phân chia tài nguyên trên mạng, khoảng cách về địa lý, kỹ thuật chuyển mạch.
Nhìn chung tất cả các mạng máy tính đều có thành phần chức năng và đặc tính nhất định đó là.
- Máy phục vụ (Server) cung cấp tài nguyên cho người sử dụng mạng.
- Máy khách (Client) truy cập tài nguyên dùng chung do máy phục vụ cung cấp.
- Phương tiện truyền dẫn.
- Dữ liệu dùng chung.
- Máy in và các thiết bị dùng chung khác.
Bất chấp những điểm tương đồng trên căn cứ vào nguyên tắc phân chia tài nguyên mạng máy tính được chia thành hai mạng rõ rệt- mạng ngang hàng (pear – to - pear) và mạng dựa trên máy phục vụ.
1.2.1.1 Mạng ngang hàng.
ở mạng này mỗi máy tính có thể kiêm các vai trò máy phục vụ và máy khách. Mạng ngang hàng cho phép các nhóm nhỏ người dùng dễ ràng dùng chung dữ liệu, thiết bị ngoại vi và dễ cài đặt thiết bị rẻ tiền.
1.2.1.2 Mạng dựa trên máy phục vụ.
Mạng này lý tưởng nhất đối với các mạng dùng chung nhiều tài nguyên và dữ liệu. Người quản trị mạng có nhiệm vụ giám sát hoạt động trên mạng và đảm bảo sự duy trì an toàn trên mạng. Loại mạng này có thể có từ một máy phục vụ trở lên, tuỳ thuộc vào lưu lượng và số lượng thiết bị ngoại vi.
Ngoài ra còn có loại mạng kết hợp các đặc tính ưu việt của cả hai loại mạng trên. Loại mạng này thông dụng nhất nhưng đòi hỏi nhiều thời gian và công sức hoạch định.
1.2.2 Phân loại theo khoảng cách địa lý.
Nếu lấy khoảng cách địa lý làm yếu tố chính thì ta có mạng cục bộ, mạng đô thị, mạng diện rộng, mạng toàn cầu.
- Mạng cục bộ gọi tắt là LAN (Local Area Network)- mạng này được cài đặt trong phạm vi nhỏ với khoảng cách lớn nhất giữa các nút mạng là vài chục km.
- Mạng đô thị gọi tắt là MAN (Metropolitan Area Network)- mạng này được cài đặt trong phạm vi đô thị hoặc một trung tâm kinh tế xã hội có bán kính khoảng 100 km trở lại.
- Mạng diện rộng WAN (Wide Area Network) – mạng này có phạm vi có thể vượt qua biên giới, quốc gia và thậm chí cả lục địa.
- Mạng toàn cầu GAN.
1.2.3 Phân loại theo kỷ thuật chuyển mạch.
Nếu lấy kỷ thuật chuyển mạch làm yếu tố chính thì ta sẽ có mạng chuyển mạch kênh, mạng chuyển mạch gói, mạng chuyển mạch thông báo.
1.2.3.1. Mạng chuyển mạch kênh.
Đây là mạng mà giữa hai thực thễ muốn liên lạc với nhau, thì giữa chúng sẽ gây ra một kênh cố định và dữ liệu được truyền đi qua kênh đó, kênh đó được duy trì đến khi một trong hai thực thể không liên lạc tiếp quá trình truyền dữ liệu của chuyển mạch kênh gồm ba giai đoạn :
* Thiết lập đường truyền.
A
S2
S1
S3
S4
S5
S6
B
DATA
DATA3
* Truyền dữ liệu.
* Huỷ bỏ kênh.
Hình 1.1 Mạng chuyển mạch kênh
Phương pháp này có nhược 2 điểm sau :
- Tiêu tốn thời gian để thiết lập kênh cố định giửa hai thực thễ.
- Hiệu suất sử dụng đường truyền không cao.Vì có lúc kênh bị huỷ bỏ không do cả hai bên đều hết thông tin cần truyền này.Mạng điện thoại là một ví dụ điển hình của mạng chuyển mạch kênh.
1.2.3.2 Mạng chuyển mạch thông báo.
Thông báo (Message)- là một đơn vị thông tin của người sử dụng, có khuôn dạng được quy định trước. Mỗi thông báo đều có chứa vùng thông tin điều khiển trong đó chỉ định rõ đích của thông báo. Căn cứ vào thông tin mà mỗi nút trung gian có thể chuyển thông báo tới nút kế tiếp theo đường dẩn tới đích của nó. Mỗi nút cần phải lưu trữ tạm thời để đọc thông tin điều khiển trên thông báo để rồi sau đó chuyển tiếp thông báo đi. Tuỳ thuộc vào điều kiện của mạng, các thông báo khác nhau có thể gửi đi bằng các con đường khác nhau.
A
S2
S1
S3
S4
S5
B
MASSAGE
Hình 1.2 Mạng chuyển mạch thông báo
Mạng chuyển mạch thông báo thích hợp với dịch vụ thư điện tử (Electronic Mail) hơn là áp dụng có tính thời gian thực, vì tồn tại độ trễ nhất định do lưu trữ và xử lý thông tin điều khiển tại mỗi nút.
Phương pháp chuyển mạch thông báo có những ưu điểm sau:
_ Hiệu xuất sử dụng đường truyền cao vì không chiếm dụng độc quyền mà được phân chia giữa nhiều thực thể.
_ Mỗi nút mạng có thể lưu trữ thông báo cho tới khi kênh truyền rỗi mới gửi thông báo đi. Do đó giảm được tình trạng tắc nghẽn của mạng.
_ Có thể điều khiển việc truyền tin bằng cách sắp xếp độ ưu tiên cho các thông báo.
_ Có thể tăng hiệu suất sử dụng giải thông của mạng bằng cách gán địa chỉ quảng bá (Broad Cast addressing) để gửi thông báo đồng thời tới nhiều mục đích.
Bên cạnh những ưu điểm còn sự hạn chế về kích thước của thông báo, có thể dẫn đến phí tổn lưu trữ tạm thời cao và ảnh hưởng đến thời gian đáp và chất lượng truyền đi
1.3.3.3 Mạng chuyển mạch gói .
s1
s2
s4
s5
s3
s6
b
a
1
2
3
4
4
1
4
2
1
1
2
2
4
3
3
4
2
3
1
2
3
4
Mạng chuyển mạch gói
Về cơ bản mạng chuyễn mạch gói và mạng chuyển mạch thông báo là gần giống nhau. Điểm khác biệt là các gói được giới hạn kích thước tối đa sao cho các nút mạng có thể xử lý toàn bộ gói tin trong bộ nhớ mà không cần lưu trữ tạm thời trên đĩa (hình 1.3). Do đó mạng chuyển mạch gói chuyển các gói tin đi rất nhanh, bằng nhiều con đường khác nhau và hiệu quả cao hơn mạng chuyển mạch thông báo.
Hình 1.3 Mạng chuyển mạch gói
Vấn đề khó khăn nhất của mạng loại này là việc tập hợp các gói tin để tạo lại thông báo ban đầu của người sử dụng, đặc biệt biệt trong trường hợp các gói tin truyền theo nhiều đường khác nhau.
Chương 2
Cấu trúc mạng
2.1 Điểm - Điểm.
Kiểu cấu trúc điểm - điểm trong đó có các đường truyền nối từng cặp nút với nhau. Khi một tin báo được truyền từ một nút nguồn nào đấy tới sẽ được tiếp nhận và lưu trữ đầy đủ ở các nút mạng trung gian cho đến khi đường truyền rỗi thì nó được gửi tiếp đi. Cứ như thế cho đến tận nút đích của tin báo đó. Do cách thức làm việc này người ta gọi mạng này là mạng lưu–gửi tiếp ở (hình 2.1 ) dưới đây cho ta thấy một số ví dụ về kiểu mạng điểm - điểm.
Hình 2.1 Một số kiểu dạng mạng điểm-điểm
(A) Hình sao (B) Chu trình (C) Hình cây (D) Đầy đủ
2.2 Kiểu Khuếch tán.
Đối với kiểu này tất cả các nút phân chia chung một đường truyền vật lý. Dữ liệu được gửi đi từ một nút nào đó sẻ có thể được tiếp nhận bởi các nút còn lại, bởi vậy cần chỉ ra địa chỉ đích của dữ liệu đến mỗi nút căn cứ vào đó để kiểm tra thêm dử liệu có phải dành cho mình không.
Hình 2.2 Một số dạng mạng kiểu quảng bá
Trong cấu trúc mạng BUS và vòng, cần một cơ chế trọng tài để giãi quyết các đụng độ khi có nhiều nút muốn truyền thông tin đồng thời
Các mạng khuyếch tán có thể được chia ra làm hai loại (Tỉnh và động) tuỳ thuộc vào việc cấp phát đường truyền
Một kiểu cấp phát tỉnh điển hình là chia thời gian thành các khoảng rời rạc, mà dùng cơ chế tỉnh điển hình là chia thời gian thành các khoảng rời rạc, và dùng cơ chế quay vòng để cấp phát đường truyền. Mỗi nút chỉ được phát tin đi tới cửa của thời gian của nó. Tuy nhiên nếu nút được cấp phát đường truyền mà không có gì để truyền thì sẽ gây ra lãng phí vô ích. Vì thế trong một số hệ thống người ta cố gắng cung cấp phát động (cấp đường truyền theo yêu cầu) của kênh truyền cho các nút, các phương pháp cấp phát động có thể tập trung hay phân tán.
Theo kiểu tập trung thì chỉ có một bộ phận duy nhất (như trọng tài BUS chẳng hạn) có quyền xác định ai được cấp phát bằng cách nhận các yêu cầu và quyết định theo một giải pháp nào đấy. Còn kiểu phân tán thì không có bộ phận tập trung. Như thế mỗi nút sẽ tự quyết định quyền được truyền hay không và người ta đã thiết kế được giải thuật để khắc phục những tình trạng hổn loạn tiềm năng khi trong một khoảng thời gian một số nút yêu cầu truyền.
2.3 Kiến trúc mạng phân tầng và mô hình OSI.
2.3.1. Kiến trúc mạng phân tầng.
Hình 2.3 Minh hoạ kiến trúc phân tầng
Phần lớn các loại máy hiện nay đều được phân tích thiết kế theo quan điểm phân tầng. Mỗi hệ thống thành phần của mạng được xem như là một cấu trúc đa tầng trong đó mỗi tầng được xây dựng trên tầng trước nó, số lượng các tầng cũng như trên và chức năng của mỗi tầng tuỳ thuộc vào nhà thiết kế. Tuy nhiên trong hầu hết các mạng mục đích các tầng là để cung cấp một số dịch vụ nhất định cho tầng cao hơn jjjjjjjj.
2.3.2 Mô hình OSI.
Để xây dựng mô hình OSI, OSI cũng xuất phát từ kiến trúc phân tầng trình bầy ở mục trên dựa trên nguyên tắc sau đây.
- Đễ đơn giản cần hạn chế số tầng.
- Tạo tương tác giữa các tầng sao cho các tương tác và mô tả các dịch vụ tối thiểu.
- Chia các tầng sao cho các chức năng khác nhau được tách biệt với nhau, và các tầng ứng dụng các loại công nghệ khác nhau cũng được khác biệt.
- Chọn danh giới các tầng theo kinh nghiệm đã được chứng tỏ là thành công.
- Các chức năng được định vị sao cho có thể thiết kế lại tầng mà ảnh hưởng ít nhất tới các tầng kế nó.
- Tạo danh giới các tầng sao cho có thể chuẩn hoá giao diện tương ứng.
- Tạo một tầng dữ liệu được xử lý một cách khác biệt.
- Cho phép thay đổi chức năng hoặc giao thức trong một tầng không làm ảnh hưởng đến tầng khác.
- Mỗi tầng chỉ có các danh giới với các tầng kế trên hoặc dưới nó, các nguyên tắc tương tự khi chia các tầng con.
- Có thể chia một tầng thành các tầng con khi cần thiết.
- Tạo các tầng con để cho phép giao diện với các tầng kế cận.
Cho phép huỷ bỏ các tầng con khi không cần thiết.
Hình 2.4 Mô hình OSI bảy tầng
Tầng vật lý.
Tầng này có chức năng thực hiện việc kết nối các thành phần của mạng bằng liên kết vật lý, nhằm đảm bảo cho việc truy nhập đường truyền và các chuỗi bit không cấu trúc nên các đường truyền vật lý. Cung cấp các phương tiện điện, cơ, chức năng, thủ tục để kích hoạt, duy trì và đình chỉ liên kết vật lý giữa các hệ thống.
Tầng liên kết dữ liệu.
Nhiệm vụ của tầng này bao gồm.
- Định địa chỉ cho các thiết bị trên mạng.
- Điều khiển truy nhập đường truyền.
- Tính toán giá trị kiểm tra của từng frame trước khi truyền.
- Truyền dữ liệu, truyền lại các frame bị mất và thất lạc.
- Khôi phục quá trình xử lý khi lỗi được phát hiện.
- Điều khiển lưu lượng để điều chỉnh khung được truyền.
Tầng mạng.
Tầng mạng cung cấp các phương tiện để truyền các đơn vị dữ liệu qua mạng, thậm chí qua một mạng của các mạng. Bởi vậy nó cần phải đáp ứng nhiều kiểu mạng và nhiều kiểu dịch vụ cung cấp bởi mạng khác nhau. Hai chức năng thông tầng mạng là chọn đường và chuyển tiếp dữ liệu.
Tầng giao vận.
Tầng này là tầng cao nhất của nhóm các tầng thấp, mục đích của nó là cung cấp các dịch vụ truyền dữ liệu sao cho các chi tiết cụ thể truyền thông ở bên dưới trở nên trong suốt đối với các tầng cao. Nhiệm vụ của tầng giao vận rất phức tạp, nó phải tính đến khả năng thích ứng với một phạm vi rất rộng các đặc trưng của mạng, mạng có thể là có liên kết hoặc không liên kết, có thể có tin cậy hoặc chưa đảm bảo tin cậy... Nó phải biết được yêu cầu và chất lượng dịch vụ của người sử dụng, đồng thời biết được khả năng cung cấp dịch vụ của mạng bên dưới.
Tầng phiên.
Tầng này là tầng thấp nhất trong nhóm các tầng cao cụ thể là điều phối việc trao đổi dữ liệu giữa các ứng dụng bằng cách lập và giải phóng các phiên. Cung cấp các điểm đồng bộ hoá đẻ kiểm soát việc trao đổi dữ liệu. áp đặt các quy tắc cho các tương tác giữa các ứng dụng của người sử dụng. Cung cấp cơ chế lấy lượt trong quá trình trao đổi dữ liệu.
Tầng trình diễn.
Mục đích của tầng này là đảm bảo các hệ thống cuối có thể truyền thông có kết quả ngay cả khi chúng sử dụng các biểu diễn thông tin khác nhau.
- Cấu trúc và mã hoá các đơn vị dữ liệu của giao thức trình diễn dùng để truyền dữ liệu và thông tin điều khiển.
- Các thủ tục để truyền dữ liệu và thông tin điều khiển giữa các thực thể trình diễn của hai hệ thống mở.
- Liên kết giao thức trình diễn với các dịch vụ trình diễn và dịch vụ phiên.
Tầng ứng dụng.
Tầng này có một số đặc điểm khác với các hệ thống mở và các tiến trình sử dụng các AP sử dụng môi trường OSI để trao đổi dữ liệu trong quá trình thực hiện của chúng. Tầng ứng dụng là tầng cao nhất trong mô hình OSI 7 tầng.
Tầng ứng dụng bao gồm các thực thể ứng dụng, các thực thể này dùng các giao thức ứng dụng và các dịch vụ trình diễn để trao đổi thông tin. Các AE cung cấp cho các AP các phương tiện cần thiết để truy nhập môi trường OSI. Tuy nhiên tầng ứng dụng chủ yếu để giải quyết vấn đề ngữ nghĩa là không giải quyết vấn đề cú pháp như tầng trình diễn.
2.4 Một số phương pháp truy nhập đường truyền.
2.4.1 Phương pháp CSMA/CD.
Phương pháp truy nhập ngẫu nhiên này, được sử dụng cho TOPO dạng BUS. Mọi trạm đều có thể truy nhập vào BUS chung (đa truy nhập ) một cách ngẫu nhiên do vậy rất có thể dẫn đến xung đột (Hai hoặc nhiều hơn hai trạm đồng thời cùng truyền dữ liệu ).
CSMA/CD là phương pháp cải tiến từ phương pháp CSMA hay còn gọi là LPT. Một trạm cần truyền dữ liệu trước hết phải nghe xem đường truyền đang bận hay rỗi, nếu rỗi thì truyền dữ liệu đi ngược lại, nếu đường truyền bận thì trạm phải thực hiện theo một trong 3 phương pháp sau.
- Trạm rút lui: chờ đợi trong một thời gian ngẫu nhiên nào đó rồi lại bắt đầu nghe đường truyền.
- Trạm tiếp tục nghe đến khi đường truyền rỗi thì truyền dữ liệu đi với xác suất bằng 1.
- Trạm tiếp tục nghe đến khi đường truyền rỗi thì truyền đi với xác suất P định trước (0<p<1).
Rõ ràng là đối với phương pháp 1 có hiệu quả trong việc tránh xung đột vì hai trạm cần truyền khi thấy đường truyền bận cùng rút lui và chờ đợi trong các khoảng thời gian ngẫu nhiên khác nhau.
Nhược điểm của nó là có thể sinh ra thời gian “chết” của đường truyền sau mỗi cuộc truyền ngược lại. Phương pháp hai cố gắng giảm thời gian chết bằng cách cho phép một trạm có thể truyền ngay sau khi cuộc truyền kết thúc. Song không may nếu lúc đó có hơn một trạm đang đợi thì khả năng xảy ra xung đột là rất cao. Phương pháp 3 với giá trị phải lựa chọn hợp lý thì có thể tối thiểu hoá được khả năng xung đột lẫn thời gian “chết” của đường truyền. Xảy ra xung đột thường là do trễ truyền dẫn mấu chốt của vấn đề này là ở chỗ-vì các trạm chỉ nghe trước khi nói (mà không nghe trong khi nói) nên thực tế có xung đột nhưng các trạm không hay biết mà vẫn tiếp tục truyền dữ liệu đi, gây ra việc chiếm dụng đường truyền một cách vô ích.
Để có thể phát hiện xung đột CSMA/CD đã bổ xung thêm quy tắc.
- Khi một trạm đang truyền nó vẫn tiếp tục nghe đường truyền. Nếu phát hiện thấy xung đột đường truyền thì nó ngưng ngay việc truyền nhưng vẫn tiếp tục gửi tín hiệu sóng mang thêm một thời gian nữa để đảm bảo rằng tất cả các trạm trên mạng đều có thể nghe được sự xung đột đó. Sau đó trạm chờ đợi thêm một thời gian ngẫu nhiên nào đó rồi thử truyền lại theo quy tắc của CSMA.
- Các phương pháp truy nhập có điều khiển chủ yếu dùng kỹ thuật chuyển thẻ bài để cấp phát quyền truy nhập đường truyền.
2.4.2 TOKEN BUS.
Nguyên lý của phương pháp này là đễ cung cấp phát quyền truy nhập đường truyền cho các trạm đang có nhu cầu truyền dữ liệu. Một thẻ bài được lưu chuyển trên một vòng LOGIC thiết lập bỡi các trạm đó, khi một trạm nhận được thẻ bài thì nó có thễ sử dụng đường truyền trong một thời gian xác định trước trong thời gian đó nó có thể truyền một hoặc nhiều đơn vị dữ liệu. Khi đã hết dữ liệu hoặc hết hạn thời gian cho phép trạm phải chuyển thẻ bài tới trạm tiếp theo trong vòng LOGIC.
Hình 2.5 Vòng Logic trong mạnh BUS
Việc thiết lập vòng logic cụ thễ là phải thực hiện các công việc sau :
- Bỗ sung một trạm vào vòng logic.
- Loại bỏmột trạm khỏi vòng logic.
- Quản lý lỗi.
2.4.3 TOKEN RING.
Phương pháp này cũng dựa trên nguyên lý cấp phát thẻ bài, để cấp phát quyền truy nhập đường truyền. Nhưng ở đây thẻ bài lưu chuyển có thể là theo vòng logic hoặc lưu chuyển theo vòng vật lý.
Thứ tự vòng vật lý dựa trên cơ sở tất cả các trạm được kết nối vật lý trong Ring. Không quan tâm tới việc chúng có tham gia vào chu trình truyền tin hay không. Một trạm khi muốn truyền dữ liệu cho đến khi nhận được thẻ bài rỗi khi đó trạm này sẽ đổi bit trạng thái rỗi thành bận và truyền một đơn vị dữ liệu cùng với thẻ bài đi theo chiều quy định của vòng. Lúc đó sẽ không còn thẻ bài rỗi trên vòng nữa do chiều quy định của vòng. Lúc đó sẽ không còn thẻ bài rỗi trên vòng nữa, do đó tất cả các trạm muốn truyền dữ liệu phải đợi. Dữ liệu khi đến trạm đích sẽ được sao lại rồi lại cùng với thẻ bài đi tiếp cho đến khi quay về nguồn. Trạm nguồn sẽ huỷ bỏ đổi bit trạng thái bận thành trạng thái rỗi và cho lưu chuyển tiếp trên vòng để các trạm khác có thễ nhận được quyền truyền dữ liệu.
Hình 2.6 Token Ring
2.5 So sánh CSMA/CD Với các phương pháp dùng thẻ bài.
Độ phức tạp của phương pháp dùng thẻ bài lớn hơn nhiều so với phương pháp CSMA/CD. Những công việc mà một trạm phải làm trong phương pháp CSMA/CD đơn giãn hơn nhiều so với hai phương pháp dùng thẻ bài. Mặt khác hiệu quả của các phương pháp dùng thẻ bài không cao trong điều kiện tải nhẹ. Một trạm có thể phải đợi khá lâu mới đến lượt.Tuy nhiên ,các phương pháp dùng thẻ bài cũn có những yêu điểm quan trọng. Đó là khả năng điều hoà lưu thông trong mạng, hoặc bằng cách lập chế độ ưu tiên cấp phát thẻ bài cho các tạm cho trước.
Chương III
một số vấn đề quan trọng của mạng máy tính
3.1. Vấn đề kiểm soát lỗi.
Dù trong một hệ thống có độ tin cậy cao hay thấp thì lỗi truyền tin vẫn là một vấn đề không thể tránh khỏi. Lỗi truyền tin xuất hiện bởi nhiều nguyên nhân như chất lượng đường truyền dẫn, thời tiết, khí hậu, tiếng ồn, nhiễu từ các hệ thống khác... Với các hệ thống không đòi hỏi độ tin cậy cao thì một số lỗi có thể chấp nhận được. Nhưng hiện nay, hầu hết các hệ thống đòi hỏi độ chính xác tuyệt đối thì kiểm soát lỗi (Error Control) là vấn đề được quan tâm hàng đầu.Tìm cách định vị và khắc phục lỗi ở mức tối đa, do đó việc kiểm tra,soát lỗi được các nhà thiết kế mạng đưa ra hai phương pháp sau.
*Dùng mã dò lỗi cho phép phát hiện lỗi nhưng không định vị được và yêu cầu bên phát truyền lại.
*Dùng mã sửa lỗi cho phép phát hiện lỗi, định vị được và điều này cho phép sửa được lỗi mà không phải yêu cầu truyền lại.Có nhiều loại mã dò lỗi và kiểm soát lỗi, mỗi phương pháp sẽ có cách dò tìm, phát hiện và sửa lỗi khác nhau.
Nguyên lý chung của tất cả các phương pháp sửa lỗi là thêm vào tập mã cần truyền một tập bit kiểm tra (check bits) nào đó để bên nhận kiểm soát lỗi.
3.1.1. Phương pháp kiểm tra vòng CRC.
Phương pháp này còn gọi là phương pháp mã đa thức.Tên của phương pháp này đã phần nào nói lên nội dung của nó. Thật vậy, với phương pháp này các bit trong một thông báo sẽ được chuyển dịch quay vòng qua một thanh ghi đồng thời có sử dụng một đa thức đại thức sinh.
Một chuỗi bit nào đó có thể biểu diễn tương ứng với một đa thức. Các hệ số của đa thức tương ứng với từng bit của chuỗi. Nếu xâu bit gồm n bit thì đa thức tương ứng có bậc n-1 gồm có n số hạng từ x0 đến xn-1.
Ví dụ:
110010011 1.x8 + 1.x7 + 0.x6 + 0.x5 + 1.x4 + 0.x3 + 0.x2 + 1.x1 + 1.x0 = x8 + x7 + x4 + x + 1.
Khi truyền một xâu bit để bên nhận có thể kiểm soát lỗi thì phải tìm một xâu bit thích hợp để ghép vào xâu bit cần truyền đi. CRC thực hiện quá trình này như thế nào.
* Chọn trước một đa thức sinh G(x) có hệ số cao nhất và thấp nhất đều bằng 1 (xâu bit tương ứng với G(x) có bit cao nhất và thấp nhất bằng 1).
* Tập bit kiểm tra ghép vào phải thoả mãn điều kiện đa thức tương ứng với xâu ghép (gồm xâu gốc và checksum) phải chia hết (modulo2) cho G(x)
* Khi nhận tin, để kiểm soát lỗi, phía thu lấy đa thức tương ứng với xâu bit nhận được chia (modulo2) cho G(x). Nếu không chia hết thì có lỗi. Nếu chia hết thì trường hợp này chưa xác định được.
Giải thuật tính checksum như sau:
Ta chọn đa thức G(x) bậc n, xâu bit cần truyền tương ứng với đa thức M(x) bậc m.
Thêm n bit 0 vào cuối xâu bit cần truyền, lúc này xâu ghép sẽ có m+n bit tương ứng với đa thức xnM(x).
chia (modulo2) xâu bit tương ứng với đa thức xnM(x) cho xâu bit ứng với đa thức sinh G(x).
Lấy số bị chia trong bước trừ (Modulo2) cho số dư. Kết quả sẽ là xâu bit cần truyền đi
-Ta nhận thầy rằng, nếu quá trình truyền đi không bị lỗi thì phía thu sẽ thu xâu bit tương ứng với đa thức T(x). Rõ ràng T(x) chia hết cho G(x).
Nếu phía thu nhận được xâu bit có đa thức sinh tương ứng là T’(x)= T(x) +E(x).
Thì lúc đó,T’(x)/mod 2 G(x) =T(x)/mod 2 G(x)+E(x)/ mod 2 G(x)
= 0 +E(x)/mod 2G(x).
Như vậy, phép chia cho kết quả khác 0 thì có nghĩa là quá trình truyền tin đã bị lỗi. Phép chia cho kết quả bằng 0 thì chưa chắc quá trình truyền tin đã không bị lỗi (vì trong nhiều trường hợp E(x) có thể bằng 0 hoặc có thể khác 0 và chia hết cho G(x). E(x) trong trường hợp này gọi là đa thức lỗi. Mỗi bit 1 trong E(x) tương ứng với một bit của xâu gốc đã bị đảo ngựơc,ta gọi là lỗi bit đơn.
+ Trường hợp lỗi bit đơn thì E(x)=xi với (i<m+n) thì i xác định vị trí của bit lỗi, E(x) chứa 2 hoặc nhiều số hạng thì E(x) không thể nào chia hết (mod2) cho G(x) được nên mọi lỗi đơn đều được phát hiện.
+ Nếu có hai lỗi bit đơn cách nhau, lúc đó.
E(x)= xi +xj với (i>j), thì ta có thể viết : E(x) =xj (xi-j +1)
Để phát hiện lỗi kép này thì ta phải chọn G(x) sao cho xj và xi-j không chia hết cho G(x).
+ Nếu có một số lẻ bit lỗi thì ta phải chọn G(x) có thừa số (x+1) thì có thể phát hiện mọi lỗi.
+ Nếu có lỗi nhóm (một nhóm bit có bit đầu và bit cuối bị lỗi) thì nếu chọn đa thức sinh bậc n thì mỗi lỗi nhóm có độ dài <= r đều được phát hiện được.
Ngày nay, có 3 đa thức sinh được xem như là chuẩn quốc tế
CRT-12= x12+x11+x3+x2+x+1.
CRC-16=x16+x12+x5+1.
CRC-CCITT=x16+x12+x5+1.
3.1.2. Phương pháp kiểm tra chẵn lẻ.
Nội dung phương pháp này như sau.Mỗi xâu bit biễu diễn một ký tự cần truyền đi được thêm vào một bit (gọi là bit parity). Bit này có giá trị là 0 nếu số lượng các bit 1 trong xâu là chẳn, bit này bằng 1 nếu số lượng các bit 1 trong xâu là lẻ.
Ví dụ:
Xâu truyền đi là 11001 b bit parity có giá trị là 1.
101011101 bit parity có giá trị là 0.
Phương pháp kiểm tra chẵn lẻ đơn giản nhất là VRC, phương pháp này tuy đơn giản nhưng không định vị được lỗi, nghĩa là nó không thể sữa được lỗi mà chỉ phát hiện và yêu cầu bên phát truyền đi. Đồng thời, phương pháp này chỉ phát hiện lỗi đơn mà không thể phát hiện nếu hai bit trong cùng một xâu bị lỗi.
Để khắc phục nhược điểm trên thì người ta dùng thêm phương pháp LCR. LCR kiểm tra bit parity cho từng khối các ký tự. Kết hợp đồng thời cả hai phương pháp sẽ cho phép kiểm soát lỗi theo cả hai chiều, nâng cao hiệu quả đáng kể so với việc dùng từng phương phát riêng lẻ.
Bạn muốn hiểu rõ thêm về các phương pháp kiểm soát lỗi thì đọc thêm trong các giáo trình truyền số liệu.
3.2 Kiểm soát luồng dữ liệu.
Cũng như quá trình kiểm soát lỗi, kiểm soát luồng dữ liệu cũng là vấn đề được các nhà thiết kế mạng rất quan tâm. Đặc biệt là do nguyên nhân sau đây.
Quá trình dữ liệu phụ thuộc vào nhiều yếu tố như khả năng và chiến lược cấp phát tài nguyên của mạng.
Trong thực tế thì khả năng tài nguyên của mạng là có hạn, việc cấp phát tài nguyên lại quá tĩnh không thích nghi với trạng thái động của mạng thì sẽ dẫn đến tình trạng các PDU dồn về một mạng nào đó làm tắt nghẽn giao thông. Đồng thời một số trạm thì lưu lượng dữ liệu qua nó quá thấp, gây lãng phí.
Chính vì vậy mà phải có cơ chế kiếm soát luồng dữ liệu cho toàn mạng.
3.2.1. Phương pháp thông thường.
3.2.1.1 Phương pháp giới hạn tải chung của mạng.
Nguyên lý của phương pháp này là duy trì tổng số PDU được lưu chuyển trong mạng luôn luôn nhỏ hơn một giá trị ngưỡng cho phép nào đó. Giá trị ngưỡng này phụ thuộc vào tài nguyên của từng mạng và quá trình hoạt động của mạng. Để làm được điều đó, mỗi mạng phải tạo cho mình N vé, mỗi PDU muốn vào mạng thì phải có “vé”. Vé chính là một thẻ bài hay là một vùng thông tin điều khiển gắn vào PDU. Khi khởi tạo mạng người quản trị mạng sẽ căn cứ vào khả năng thực tế của mạng mà phân chia vé cho mỗi trạm. Mỗi trạm chỉ được phép dùng đúng số vé mình được cấp.
Tuy nhiên, mạng luôn ở trạng thái động nên cần phải có một giao thức điều tiết vé, nghiã là các trạm thừa sẽ cung cấp vé cho các trạm thiếu.
Các vé này sẽ được quản lý chặt chẽ thông qua cơ chế cửa sổ, mỗi thời điểm chỉ cho một số PDU nhất định đi qua.
Nhược điểm .
Phương pháp này rất khó khăn trong việc xác định mức ngưỡng cho phép, việc điều tiết vé theo lưu lượng của mạng sẽ làm cho phần mềm của mạng sẽ rất phức tạp. Ngoài ra, việc trùng lập hay mất vé cũng là một vấn đề phải được xử lý.
3.2.1.2 Phương pháp phân tán chức năng kiểm soát cho các trạm trên mạng.
Tuỳ thuộc vào khả năng tài nguyên cục bộ của từng trạm mà các trạm tự kiểm soát luồng dữ liệu đi qua. Để tránh được hiện tượng ùn tắc giao thông tại các trạm, tài nguyên dùng để chuyển một PDU sẽ được cấp phát trước. Việc cấp phát này được thực hiện thông qua các liên kết lôgic giữa các thực thể truyền thông theo mô hình OSI.
Ưu nhược điểm.
Phương pháp này khắc phục nhược điểm của phương pháp trên nhưng phương tiện tài nguyên khá đắt vì thường phải cấp phát trội lên để nâng cao thông lượng truyền.
3.2.2 Trong giao thức chuẩn ISO, quá trình kiểm soát luồng dữ liệu diễn ra như sau.
Quá trình kiểm soát luồng dữ liệu thường diễn ra ở tầng mạng và tầng giao vận
3.2.2.1 Tầng mạng.
Tầng mạng sử dụng giao thức X25 PLP, kiểm soát luồng dữ liệu được thực hiện theo cơ chế cửa sổ. Kích thước ngầm định của cửa sổ là 2 nhưng ta có thể thay đổi thành 7 hay 127 thông qua thủ tục phụ.
Kiểm soát luồng dữ liệu thực hiện ở cả hai chiều từ DTE đến DCE và ngược lại.
Các tham số P(S) và P(R) tương tự như tham số N(R) và N(S) trong HDLC. P(S) chỉ số thứ tự của gói tin, P(R) chỉ số hiệu gói tin đang chờ để nhận. Chính vì vậy, P(R) chính là vé thông hành cho phép nhận dịch chuyển cửa sổ tương ứng.
3.2.2.2 Tầng giao vận.
Đối với tầng giao vận thì giao thức chuẩn cho tầng này được chia làm 5 lớp như chúng tôi đã đề cập. Thủ tục kiểm soát luồng dữ liệu được cài đặt trong lớp 2,3 và 4.
Các TPDU mang dữ liệu DT được đánh số thứ tự và một giá trị tín dụng gởi đi trong giai đoạn thiết lập liên kết thông qua CR hay CC. Giá trị của thẻ tín dụng chính là số lượng các TPDU dữ liệu tối đa được truyền đi.
3.3. Độ tin cậy .
3.3.1. Định nghĩa.
Độ tin cậy của mạng là xác xuất mà một hay một thành phần của nó đạt hiệu suất làm việc trong một khoảng thời gian cho trước dưới những điều kiện xác định.
+ Xác xuất chính là công cụ dùng để đánh hiệu suất hoạt động và mô tả sự cố khi một số thiết bị của mạng bị sự cố tại những thời điểm khác nhau.
+ Hiệu suất chính là các tính năng kỹ thuật của hệ thống như tỷ suất lỗi, thông lượng, độ trẻ.
+ Thời gian là một yếu tố quan trọng vì ta phải xác định trước xác suất một hệ thống ở trạng thái hoạt động tại thời điểm nhất định khi ta muốn hệ thống.
+ Điều kiện làm việc bao gồm các yếu tố như vị trí địa lý của hệ thống, các tác động của môi trường.
Ta có thể đánh giá độ tin cậy thông qua độ kết nối. Một mạng có độ tin cậy cao là mạng kết nối có độ dư thừa về đường truyền hoặc thiết bị. Khi có sự cố một số đường truyền hay một mạng nút mạng thì vẫn hoạt động bình thường.
Hiện nay, với ứng dụng của lý thuyết xác suất, người ta có thể đánh giá độ tin cậy thông qua các phép đo các thông số như- hàm đo độ tin cậy, hàm đo độ sẵn, thời gian trung bình gặp sự cố, thời gian trung bình để sữa và thời gian trung bình giữa các sự cố.
3.3.2. Phương pháp nâng cao độ tin cậy.
Ta có thể nâng cao độ tin cậy của mạng bằng cách phân tán các thiết bị điều khiển và giảm thiểu số lượng các thiết bị mạng đang hoạt động, tạo ra độ dư thừa về đường truyền và nút mạng. Mạng vòng là mạng hay bị sự cố thì ta vẫn có thể khắc phục bằng hai kỹ thuật cơ bản- kỷ thuật vòng tránh sự cố và sự tuần tự khắc phục.
3.4. An toàn và an ninh trên mạng.
Việc kết nối mạng nhằm mục đích cho nhiều người sử dụng cùng chia sẻ các tài nguyên thông tin.
Trên môi trường phức tạp có nhiều người sử dụng phân tán về mặt địa lý nên việc an toàn thông tin trên mạng là cần thiết để tránh sự xâm phạm và mất mát dữ liệu. Với một số dữ liệu sẽ gây ra những hậu quả khôn lường về vi phạm tài nguyên và được chia làm hai loại- thụ động và chủ động.
Vi phạm thụ động chỉ là việc nắm bắt thông tin, biết được gởi người nhận và các thuộc tính của dữ liệu. Vi phạm này không làm sai lệch, huỷ hoại nội dung và luồng thông tin trao đổi trên mạng. Vi phạm này rất khó phát hiện nhưng có thể ngăn chặn được.
Vi phạm chủ động là loại vi phạm có thể làm biến đổi, xoá bỏ, sai lệch, làm trễ hay thay đổi trật tự các gói thông tin. Ngoài ra, có thể có các gói tin nào đó chèn vào mạng nội dung xấu. Vi phạm này rất dễ phát hiện nhưng lại khó ngăn chặn.
Kẻ vi phạm luôn quan tâm đến vấn đề săn lùng thông tin, chúng có thể thâm nhập vào bất cứ lúc nào mà thông tin kẻ vi phạm cần đi qua hay đang được lưu trữ. Điểm thâm nhập có thể trên đường truyền, t._.rên máy chủ hay có thể trên các thiết bị như hub, router... Ngoài ra còn có thể bị thâm nhập qua các thiết bị ngoại vi như - bàn phím, màn hình. Hiện nay các kẻ vi phạm còn có thiết bị hiện đại có thể thu các tia phát xạ từ các thiết bị mạng giải mã chúng, hay có thể sử dụng các tia bức xạ tác động lên máy gây lỗi và các sự cố đối với các thiết bị mạng.
Với những kẻ phá hoại có đủ kỷ sảo và thời gian, chúng có khả năng để phá hoại vì an toàn vẫn là vấn đề mà người thiết kế và quản trị mạng luôn luôn phải trăn trở. Cho dù hệ thống bảo vệ có chắc chắn đến đâu đi nữa thì đến một lúc nào cũng có thể bị phá vỡ.
Mọi vấn đề đều có tính tương đối, nên giải pháp an toàn cũng có tính chất tương đối. Hiện nay, người ta thường sử dụng đồng thời nhiều mức bảo vệ khác nhau, chủ yếu là bảo vệ thông tin cất giữ trong các server của mạng.
Các lớp bảo vệ như sau.
+ Lớp bảo vệ ngoài cũng thường gọi là tường lửa. Đó là một hệ thống có thể phần cứng, phần mềm hay cả cứng và mềm. Hệ thống này dùng để bảo vệ từ xa một máy tính hay một mạng. Tường lửa dùng để ngăn chặn các thâm nhập trái phép và có thể lọc bỏ các gói tin mà không muốn gởi đi hay nhận . Trong môi trường liên mạng Internet, tường lửa đặt giữa mạng nội bộ và Internet dùng để ngăn cách tài nguyên của mạng nội bộ và thế giới Internet bên ngoài.
+ Lớp bảo vệ vật lý dùng để ngăn chặn các thâm nhập vật lý bất hợp phát vào hệ thống.
+ Mã hoá dữ liệu là phương pháp biến đổi từ một dạng nhận thức được sang một dạng không nhận thức được theo thuật toán nào đó tại trạm phát và sẽ biến đổi ngược lại tại trạm thu. Đây là một lớp bảo vệ quan trọng và rất có hiệu quả vấn đề an toàn mạng.
+ Lớp đăng ký tên/mật khẩu là lớp kiểm soát quyền truy nhập hệ thống. Đây là phương pháp bảo vệ phổ biến trong tất cả hệ thống mạng vì nó đơn giản, ít phí tổn và cũng rất có hiệu quả. Mỗi người sử dụng muốn vào mạng phải đăng ký, tên và mật mã trước. Người quản lý mạng có trách nhiệm quản lý, kiểm soát mọi hoạt động của mạng và xác định quyền truy nhập của người sử dụng khác tuỳ theo không gian và thời gian.
+ Quyền truy nhập là lớp bảo vệ nhằm kiểm soát tài nguyên của mạng và quyền hạn của tài nguyên đó.
Tường lửa
Bảo vệ vật lý
Mã hoá dữ liệu
Đăng ký tên
Quyền truy nhập
Thông tin
(Information)
Hình3.1 Mô hình lớp bảo vệ thông tin
3.5 Quản trị mạng.
Dựa trên quan điểm chức năng đơn thuần thì người quản trị mạng thông qua một hệ thống quản trị mạng có nhiệm vụ đảm bảo sự hoạt động hoàn hảo của hệ thống. Có nghĩa rằng phải cài đặt và cấu hình các thiết bị phần cứng cũng như phần mềm làm cho mạng hoạt động đúng yêu cầu của người sử dụng. Như vậy hệ thống quản trị mạng là gì.
Hệ thống quản trị mạng bao gồm:
- Hệ quản trị.
- Hệ bị quản trị.
- Cơ sở dữ liệu chứa thông tin quản trị.
- Giao thức quản mạng.
Hệ quản trị có tiến trình quản trị.
Cung cấp giao diện giữa người quản trị mạng và các thiết bị được quản trị. Bên cạnh đó, nó còn đo lưu lượng đường truyền, tốc độ truyền của địa chỉ vật lý của giao diện LAN trên một router. Hệ quản trị còn hiển thị các dữ liệu quả trị, thống kê...
Hệ bị quản trị gồm có.
Tiến trình Agent thực hiện các thao tác quản trị mạng như cài đặt các tham số cấu hình và các thống kê hoạt động hiện hành cho một router và các đối tượng quản trị như các trạm làm việc, các hub..
Cơ sở dữ liệu.
Bao gồm thông tin quản trị gắn liền với hệ thống quản trị và hệ thống bị quản trị. Cấu trúc của một hệ thông tin quản trị có dạng hình cây.
Giao thức quản trị mạng.
Giao thức này cung cấp phương tiện liên lạc giữa hệ quản trị, các đối tượng bị quản trị và các Agent. Giao thức này có nhiệm vụ xác định các đơn vị dữ liệu thể hiện các thủ tục như: Command, Rerponse, Notification.
Trong một mạng máy tính thì một máy tính mạnh sẽ thực hiện các chức năng của hệ quản trị cón các thiết bị liên mạng chưa các chương trình Agent. Các thiết bị liên mạng có chức năng khác nhau và do nhiều hãng sản xuất khác nhau nên các Agent cũng khác nhau.
chương IV
các thiết bị kết nối chính
4.1. Card mạng .
Các bộ giao tiếp này được thiết kế ngay trong bảng Mainboard của máy tính, hoặc dưới dạng giao tiếp mạng (Network Iterface Card) hay là các bộ thích nghi đường truyền (Transmision Media Adapter) NIC là thiết bị phổ dụng nhất để nối máy tính với mạng, nó có thể được cài vào một khe cắm của máy tính. Trong NIC có một bộ thu phát với một số kiểu đấu nối (Connector) dùng để chuyển đổi tín hiệu bên trong máy tính thành tín hiệu phù hợp với đường truyền của mạng.Bộ thích nghi đường truyền là thiết bị có chức năng làm thích nghi một kiểu đối nối nào đó tên máy với một kiểu đấu khác mà mạng đòi hỏi.
4.2. Bộ tập trung HUB.
HUB là một trong những yếu tố quan trọng nhất của LAN, đây là điểm kết nối trung tâm của mạng, tất cả các trạm trên mạng LAN được kết nối thông qua HUB. Một HUB thông thường có nhiều cổng nối với người sử dụng để gắn máy tính và các thiết bị ngoại vi. Mỗi một cổng hỗ trợ một bộ kết nối dùng cặp dây xoắn 10 BASET từ mỗi trạm của mạng. Khi đó tín hiệu Ethernet được truyền từ một trạm tới HUB, nó được lặp lại trên tất cả các cổng khác của HUB. Các HUB thông minh có thể định dạng, kiểm tra, cho phép hoặc không cho phép bởi người điều hành mạng từ trung tâm quản lý HUB.
HUB là bộ chia hay còn gọi là bộ tập trung, với một bộ tập trung mỗi một điểm hay một thiết bị đều được đấu lại với maý HUB theo một kiểu mẫu hình sao. Có bốn loại HUB cơ bản:
+ HUB bị động: Hub không chứa các linh kiện điện tử và cũng không xử lý các tín hiệu này. Mà chúng chỉ có chức năng tổ hợp các tín hiệu từ một số đoạn cáp mạng. Khoãng cách từ một máy tính đến một Hub phải nhỏ hơn nữa khoảng cách tối đa cho phép giữa hai máy tính trên mạng.
+ Hub chủ động: Hub này có chứa các linh kiện điện tử có thể khuyết đại và xử lý các tín hiệu truyền giữa các thiết bị mạng. Trong quá trình truyền các tín hiệu có thể bị suy giảm, Hub có tác dụng tái sinh lại các tín hiệu làm cho nó khoẻ hơn, ít lỗi và có thể truyền đi xa hơn.
+ HUB thông minh.
Hub thông minh chính là Hub chủ động kèm theo một số chức năng mới như: Quản trị Hub nó cho phép gởi các gói tin về trạm điều khiển mạng trung tâm, và nó cũng cho phép mạng trung tâm quản lý Hub.
+ HUB chuyển mạch.
HUB chứa các mạch cho phép chọn nhanh các tín hiệu giữa các cổng trên Hub. Hub chuyển tiếp gói tin tới cổng nối với trạm đích của gói tin thay vì chuyển gói tin tới tất cả các cổng của Hub.
Hình 4.1- Nối mạng qua HuB
4.3. Bộ chuyển tiếp.
Repeater có chức năng tiếp nhận và chuyển tiếp các tín hiệu. Nó thường được dùng để nối hai đoạn cáp mạng Ethernet. có một số Repeater chỉ có chức năng đơn giản là khuyết đại tín hiệu nên khi tín hiệu bị méo thì Repeater này chẳng những không khắc phục được mà làm cho độ méo tăng lên.
Sau đó một số loại Repeater tiên tiến hơn có thể mở rộng phạm vi của đường truyền bằng cách khuyếch đại tín hiệu và tái tạo lại tín hiệu. Chúng định danh dữ liệu trong tín hiệu nhận được và dùng tín hiệu đó để tái tạo lại tín hiệu gốc. Chính vì thế mà chúng có thể khuyếch đại lại tín hiệu, giảm được méo và ồn.
Chúng ta chỉ dùng Repeater để mở rộng một cách giới hạn một mạng nào đó do độ trễ truyền dẫn.
Thiết bị lặp (Repeater) truyền mỗi bit dữ liệu từ đoạn cáp này tới đoạn cáp khác, ngay cả khi dữ liệu bị hỏng. Bởi vậy thiết bị lặp không đóng vai trò như một bộ lọc dữ liệu.
Bộ chuyển tiếp hoạt động tại tầng vật lý trong mô hình OSI. Bộ chuyển tiếp không dịch hoặc lọc bất kỳ tín hiệu nào. Để một bộ chuyển tiếp hoạt động cả hai đoạn mạng nối bộ chuyển tiếp là cách mở rộng ít tốn kém nhất, tuy nhiên không nên sử dụng chúng nếu lưu lượng thông tin trên mạng là quá lớn.
Hình 4.2- Mở rộng mạng bằng Repeater
4.4. Cầu nối (Bridge ).
So với Repeater thì Bridge linh động hơn, nếu Repeater chuyển tiếp tất cả các tín hiệu mà Nó nhận được thì Bridge chỉ chọn lọc và chuyển đi các tín hiệu có đích ở phần mạng phía bên kia. Bridge làm được điều này vì mỗi thiết bị mạng có một địa chỉ duy nhất mà địa chỉ đích luôn được đặt trong phần gói tin được truyền.
Bridge thường được dùng để nối các mạng cục bộ và nó làm việc như sau:
- Nhận tất cả các gói tin trên hai mạng và kiểm tra địa chỉ đích của tất cả các gói tin.
- Nếu nguồn và đích cùng địa chỉ (Tức trên cùng một mạng) thì gói tin sẽ được huỷ bỏ.
- Nếu nguồn và đích trên hai mạng thì gói tin sẽ được truyền tới đích.
- Khi các thiết bị được thêm vào hoặc bớt đi thì bridge sẽ tự động cập nhật lại các bản địa chỉ. với các Bridge đời cũ thì ta phải cập nhật lại bản địa chỉ này.
Bridge hoạt động tại tầng Data link trong mô hình OSI, dược dùng để liên kết các LAN có cùng giao thức tầng liên kết dữ liệu. Các LAN này có thể khác nhau về môi trường truyền dẫn vật lý. Bridge được sử dụng để mở rộng khoảng cách giữa phân đoạn mạng, tăng số lượng máy tính trên mạng, làm giảm hiện tượng tắc nghẽn khi số lượng máy tính nối mạng là quá lớn. Bridge có thể tiếp nhận một mạng quá tải và chia nó thành hai mạng riêng biệt nhằm giảm bớt lưu lượng truyền trên mỗi mạng.
Hình 4.3 Nối hai mạng bằng Bridge
4.5. Bộ điều chế và giải điều chế ( Modem).
Modem là một thiết bị được máy PC sử dụngđể truyền thông qua đường dây điện thoại. Nó được sử dụng để biến đổi tín hiệu số của máy tính thành tín hiệu tương tự cho thích hợp với đường dây điện thoại và biến đổi tín hiệu tương tự từ đường truyền thành tín hiệu số cho máy tính.
Modem cho phép trao thư điiện tử, truyền tệp, truyền fax và trao đổi dữ liệu theo yêu cầu. Các Modem có thể thực hiện việc nén dữ liệu để tăng tốc độ truyền tải và thực hiện việc hiệu chỉnh lỗi để đảm bảo tính toàn vẹn của dữ liệu.
Modem có thể dùng để lắp ngoài hay trong, nó phải là một thiết bị liên mạng, không thể dùng để nối các mạng xa nhau và truyền dữ liệu trực tiếp được, chúng phải kết hợp với bộ chọn đường để nối các mạng qua mạng chuyển điện thoại, chuyển mạch công cộng.
4.6. Bộ dồn kênh.
Là thiết bị có chức năng tổ hợp một số tín hiệu để chúng cùng truyền trên một đường truyền với nhau, và sau đó lại tách ra troẻ lại tín hiệu gốc ban đầu. Chức năng ghép các tín hiệu lại với nhau gọi là chức năng ghép kênh và chức năng tách các tín hiệu ra gọi là phân kênh.
4.7. Bộ chọn đường cầu.
Brouter là thiết bị có thể đóng vai trò của cả Router lẫn Bridge. Khi nhận các gói tin nó bắc cầu cho các gói tin mà nó không hiểu giao thức và nó chọn đường cho các gói tin mà nó hiểu.
4.8. Bộ chọn đường.
Nếu như Bridge chỉ thực hiện việc chuyển tiếp các gói tin nhận được thì ngoài chức năng trên Router còn có thể thực hiện việc chọn đường đi nào đó cho tối yêu nhất đối với các gói tin theo một chỉ tiêu nào đó. Bridge có chức năng như hai tầng thấp nhất (Tầng vật lý và tầng liên kết dữ liệu) của mô hình OSI, router còn có thêm chức năng của tầng mạng. Router cho phép ta nối các kỉểu mạng lại với nhau thành liên mạng. Router phải hiểu giao thức nào đó trước khi thực hiện việc chọn đường theo giao thức đó. Các Router luôn phụ thuộc vào giao thức của mạng được nối kết. Dựa trên những giao thức, Router cung cấp dịch vụ mà trongđó những packet dữ liệu được đọc và chuyển đến đích một cách độc lập. Khi số kết nối tăng thêm, mạng theo dạng router trở nên kém hiệu quả và cần suy nghĩ đến sự thay đổi.
R2
R1 R4
R3
Hình 4.4 Bộ định tuyến Router
4.9. CSU/DSU.
Thiết bị này dùng để nối mạng LAN thành mạng WAN thông qua mạng điện thoại công cộng. CSU/DSU có nhiệm vụ chuyển đổi các tín hiệu LAN thành tín hiệu đòi hỏi bởi các nhà cung cấp dịch vụ mạng công cộng. CSU/DSU còn có nhiệm vụ cho mạng cục bộ tránh nhiễu từ mạng công cộng.
4.10. Cổng nối.
Là thiết bị để nối hai mạng vốn sử dụng các giao thức khác nhau. Chúng đóng gộp lại và biến đổi dữ liệu truyền từ môi trường này sang môi trường khác, sao cho các môi trường có thể hiểu được dữ liệu của nhau. Cổng giao tiếp có thể thay đổi một một dạng thức thông điệp sao cho phù hợp với chương trình ứng dụng tại nơi nhận của quá trình truyền. Một cổng liên kết hai hệ thống cùng sử dụng.
+ Giao thức truyền thông.
+ cấu trúc dạng dữ liệu.
+ Ngôn ngữ.
+ Kiến trúc mạng.
Phần II
mạng cục bộ LAN
chương I
Tổng quan về mạng cục bộ LAN
Loại mạng cục bộ đầu tiên được triển khai là Ethernet do trung tâm nghiên cứu ở Palo Alto của hãng Xero tiến hành vào giữa những năm 1970.
Mạng LAN được phân biệt với các mạng khác thông qua những đặc trưng sau đây.
- Đặc trưng về địa lý- mạng cục bộ thường được cài đặt trong một phạm vi tương đối nhỏ như trong một toà nhà, một cơ quan, một khu hành chính nào đó,... Khoảng cách giữa hai trạm xa nhất từ vài chục mét đến vài chục km. Rõ ràng là đặc trưng về mặt địa lý chỉ có tính chất tương đối nên ta khó phân biệt mạng LAN với các mạng khác thông qua đặc trựng này.
- Đặc trựng về tốc độ truyền- tốc độ truyền của mạng cục bộ thường cao hơn so với các mạng diện rộng có thể lên đến 100Mbps.
- Đặc trưng độ tin cậy- tỷ suất lỗi của mạng cục bộ thấp hơn nhiều so với các mạng khác, có thể từ 10 -8 đến 10-11 .
- Đặc trưng quản lý- mạng cục bộ thường là sở hữu riêng của một tổ chức nào đó nên việc quản lý khai thác mạng hoàn toàn tập trung thống nhất.
Ngày nay mạng cục bộ là những hệ thống con hoàn toàn tách biệt với nhau và có thể được tích hợp với nhau như một phương tiện nối kết chung giữa các máy tính. Tuy nhiên công nghệ LAN vẫn còn là một mớ hỗn độn không cho phép các nhà sản xuất tách LAN như một ngành kỹ nghệ riêng biệt so với các phần mềm và hệ điều hành mạng. Như vậy ta có thể xem mạng LAN như là một hệ thống con riêng biệt trong mạng máy tính.
Có hai loại mạng LAN được quan tâm nhiều nhất là- Ethernet và Token Ring. Để bạn có thể hiểu sâu hơn về mạng LAN, mạng LAN gồm 4 thành phần.
* Hệ thống cáp nối (hay còn gọi là phương tiện nối mạng)
* Topology.
* Phương pháp truy xuất cáp.
* Các giao thức.
1.1 Các loại cáp truyền.
1.1.1. Cáp đôi dây xoắn (Twisted pair cable)
Cáp đôi dây xoắn là cáp gồm hai dây đồng xoắn để tránh gây nhiễu cho các đôi dây khác, có thể kéo dài tới vài km mà không cần khuyếch đại. Giải tần trên cáp dây xoắn đạt khoảng 300–4000Hz, tốc độ truyền đạt vài kb/s đến vài Mb/s. Cáp xoắn có hai loại:
Loại có bọc kim để tăng cường chống nhiễu gọi là cap STP ( Shield Twisted Pair). Loại này trong vỏ bọc kim có thể có nhiều đôi dây. Về lý thuyết thì tốc độ truyền có thể đạt 500 Mb/s nhưng thực tế thấp hơn rất nhiều (chỉ đạt 155 Mb/s với cáp dài 100 m)
Loại không bọc kim gọi là UTP (UnShield Twisted Pair), chất lượng kém hơn STP nhưng rất rẻ. Cap UTP được chia làm 5 hạng tuỳ theo tốc độ truyền. Cáp loại 3 dùng cho điện thoại. Cáp loại 5 có thể truyền với tốc độ 100Mb/s rất hay dùng trong các mạng cục bộ vì vừa rẻ, vừa tiện sử dụng. Cáp này có 4 đôi dây xoắn nằm trong cùng một vỏ bọc
Hình 1.1 Cáp UTP Cat.5
1.1.2. Cáp đồng trục (Coaxial cable) băng tần cơ sở.
Là cáp mà hai dây của nó có lõi lồng nhau, lõi ngoài là lưới kim loại. , Khả năng chống nhiễu rát tốt nên có thể sử dụng với chiều dài từ vài trăm met đến vài km. Có hai loại được dùng nhiều là loại có trở kháng 50 ohm và loại có trở kháng 75 ohm
Hình1.2 Cáp đồng trục cơ sở
Giải thông của cáp này còn phụ thuộc vào chiều dài của cáp. Với khoảng cách1 km có thể đạt tốc độ truyền tư 1– 2 Gbps. Cáp đồng trục băng tần cơ sở thường dùng cho các mạng cục bộ. Có thể nối cáp bằng các đầu nối theo chuẩn BNC có hình chữ T. ở VN người ta hay gọi cáp này là cáp gầy do dịch từ tên trong tiếng Anh là ‘Thin Ethernet”.
Một loại cáp khác có tên là “Thick Ethernet” mà ta gọi là cáp béo. Loại này thường có màu vàng. Người ta không nối cáp bằng các đầu nối chữ T như cáp gầy mà nối qua các kẹp bấm vào dây. Cứ 2m5 lại có đánh dấu để nối dây (nếu cần). Từ kẹp đó người ta gắn các tranceiver rồi nối vào máy tính. (Xem hình 1)
Hình 1.3 Kết nối bằng Traceiver.
1.1.3. Cáp đồng trục băng rộng (Broadband Coaxial Cable)
Đây là loại cáp theo tiêu chuẩn truyền hình (thường dùng trong truyền hình cap) có giải thông từ 4 – 300 Khz trên chiều dài 100 km. Thuật ngữ “băng rộng” vốn là thuật ngữ của ngành truyền hình còn trong ngành truyền số liệu điều này chỉ có nghĩa là cáp loại này cho phép truyền thông tin tuơng tự (analog) mà thôi. Các hệ thống dựa trên cáp đồng trục băng rộng có thể truyền song song nhiều kênh. Việc khuyếch đại tín hiệu chống suy hao có thể làm theo kiểu khuyếch đại tín hiệu tương tự (analog). Để truyền thông cho máy tính cần chuyển tín hiệu số thành tín hiệu tương tự.
1.1.4. Cáp quang.
Dùng để truyền các xung ánh sáng trong lòng một sợi thuỷ tinh phản xạ toàn phần. Môi trường cáp quang rất lý tưởng vì
Xung ánh sáng có thể đi hàng trăm km mà không giảm cuờng độ sáng.
Giải thông rất cao vì tần số ánh sáng dùng đối với cáp quang cỡ khoảng 1014 – 1016
An toàn và bí mật
Không bị nhiễu điện từ
Chỉ có hai nhược điểm là khó nối dây và giá thành cao.
Hình 1.4 Truyền tín hiệu bằng cáp
Để phát xung ánh sáng người ta dùng các đèn LED hoặc các diod laser. Để nhận người ta dùng các photo diode , chúng sẽ tạo ra xung điện khi bắt được xung ánh sáng
Cáp quang cũng có hai loại
Loại đa mode (multimode fiber): khi góc tới thành dây dẫn lớn đến một mức nào đó thì có hiện tượng phản xạ toàn phần. Nhiều tia sáng có thể cùng truyền miễn là góc tới của chúng đủ lớn. Các cap đa mode có đường kính khoảng 50 m
Loại đơn mode (singlemode fiber): khi đường kính dây dẫn bằng bước sóng thì cáp quang giống như một ống dẫn sóng, không có hiện tượng phản xạ nhưng chỉ cho một tia đi. Loại nàycó cường kính khoản 8 m và phải dùng diode laser. Cáp quang đa mode có thể cho phép truyền xa tới hàng trăm km mà không cần phải khuyếch đại.
Các thông số kỹ thuật mạng rất quan trọng, các giao thức truy xuất cáp đều đòi hỏi các tính chất kĩ thuật cáp phải tốt và nằm trong giới hạn cho phép về loại và chiều dài của cáp thì mới có thể làm việc được. 5 thông số kĩ thuật của cáp như sau :
+ Chiều dài cáp.
+ Hệ số suy giảm.
+ Nhiễu chen ngang đầu cáp .
+ Tạp nhiễu.
+ Độ thất thoát .
Nếu bạn sử dụng mạng không dây cáp hay cáp điện thoại có sẵn thì chúng ta mặc nhiên không cần quan tâm đến việc lắp đặt. Nếu bạn cần lắp đặt cáp mới thì sẽ có các yếu tố mà bạn phải quan tâm.
Khi chọn cáp, bạn cũng nên chú ý đến tầm quan trọng của việc bọc cáp và tính chất bảo mật của nó. Những mạng dùng cáp đôi xoắn trần phổ biến hơn vì chúng dễ lắp đặt, cung cấp tốc độ truyền cao, giá lại rẻ nhưng cho phép truyền đi ở những khoảng cách rất ngắn, cáp đồng trục thì đáng tin cậy hơn nhưng giá thành đắt hơn cáp đôi. Cáp quang thì an toàn nhất với lại kẻ lạ không thể nào thu lấy tín hiệu được mà nó cũng không cần sự bao bọc .
1.2. TOPOLOGY của mạng cục bộ.
Mọi Topology của máy tính đều sử dụng được cho mạng cục bộ. Nhưng trong thực tế thì chỉ có các Topology thường sử dụng hình sao (star), vòng (ring), bus.
1.2.1 Topo hình sao (star) .
Dạng hình sao thì tất cả các trạm được nối vào một thiết bị trung tâm có nhiệm vụ nhận tín hiêụ từ các trạm truyền nguồn và chuyển đến trạm đích. Phụ thuộc vào yêu cầu truyền thông mà thiết bị trung tâm có thể là một bộ chuyển mạch, một bộ phận kênh, một bộ chọn đường. Chức năng của thiết bị trung tâm chính là nối kết các cặp trạm cần trao đổi thông tin với nhau, thiết lập các liên kết giữa chúng.
:
:
:
:
:
:
Hình 1.5 Topology hình sao với Hub là thiết bị trung gian.
Ưu điểm của Topology dạng này là lắp đặt đơn giản, dễ dàng cấu hình lại có thể bớt trạm, dễ dàng kiểm soát và khắc phục sự cố. Tốc độ của đường truyền vật lí sẽ được tận dụng tối đa do sử dụng liên kết điểm.
Nhược điểm là hạn chế độ dài đường truyền nối một trạm với thiết bị trung tâm.
1.2.2 Topo dạng vòng ( ring).
Dạng vòng thì mỗi trạm của mạng được nối với vòng qua một bộ chuyển tiếp, bộ chuyển tiếp có nhiệm vụ nhận tín hiệu rồi chuyển đến trạm kế tiếp trên vòng. Tín hiệu được lưu chuyển trên vòng theo một chiều duy nhất giữa các repeater. Cần phải có một giao thức điều khiển việc trao quyền được truyền dữ liệu trên vòng cho các trạm có nhu cầu.
Reoeater
: :
: :
:
Hình 1.6 Topology Ring.
Ưu và nhược điểm của Ring tương tự như hình sao nhưng dạng này có giao thức truy cập đường truyền khá phức tạp.
1.2.3 Topo dạng Bus.
Dạng Bus tất cả các trạm được phân chia một đường truyền chính (Bus). Đường truyền này được giới hạn hai đầu bởi một loại đầu mối đặc biệt gọi là Terminato, các trạm được nối vào Bus thông qua một đầu nối chữ T hay một thiết bị thu phát.
Khi một trạm truyền dữ liệu, tín hiệu được quảng bá trên hai chiều của Bus, mọi trạm còn lại đều được nhận tín hiệu trực tiếp. Nếu BUS là một chiều tín hiệu chỉ đi về một phía thì terminator có tác dụng dội ngược tín hiệu trở lại để tín hiệu có thể đi đến các trạm còn lại của mạng. Việc truyền dữ liệu trong Topology dạng này dựa vào liên kết điểm- nhiều điểm hay quảng bá.
Terminator : T-connector Terminator
Bus
: :
Hình1.7 Topology Bus.
Trường hợp này cũng phải có một giao thức để quản lí việc truy cập đường truyền. Có thể truy cập đường truyền theo phương pháp truy cập ngẫu nhiên hay truy cập có điều khiển.
Trên đây là 3 kiểu Topology cơ bản nhất. Trong thực tế tuỳ thuộc vào địa hình mà ta có thể phối hợp các kiểu cơ bản trên thành Topology lai ví dụ như :
MAU
:
-Topology vòng đấu sao :
:
: :
: :
Hình 1.8 Topology lai dạng vòng đấu sao.
MAU : hộp xử lí đa trạm
-Topology bus dạng sao :
: : :
: : :
Hình 1.9 Topology dạng bus - Sao.
1.2.4 Topo kết nối hỗn hợp.
Là sự phối hợp các kiểu kết nối khác nhau ví du hình cây là cấu trúc phân tầng của kiểu hình sao hay các HUB có thể được nối với nhau theo kiểu bus còn từ các HUB nối với các máy theo hình sao.
Hình 1.10 Kết cấu hổn hợp
1.3 Card giao tiếp mạng.
Một card giao tiếp mạng được cắm vào một khe mở rộng trên bo mạch hệ thống và cung cấp một số cổng phía sau dành để kết nối tới một mạng. Card mạng xử lí việc trao đổi thông tin giữa các máy tính trên mạng theo chồng các giao thức và qui tắc truy xuất các cáp định được card đó dùng. Một card được thiết kế phù hợp với tính chất cơ bản và hỗ trợ cho các loại mạng khác nhau như- Ethernet, Token Ring, ARCnet hoặc FDDI. Các loại card này không đưa ra những tính năng đặc biệt để cải thiện hiệu năng làm việc của máy trên mạng. Tuy nhiên nó có thể được thiết kế để quản lý nhiều hơn hệ thống dây cáp, có những tính năng thực sự độc đáo như làm chủ bus, có vùng đệm lớn, có cả chíp vi xử lý gắn trên card. Card mạng và trình điều khiển nó là những thành phần trong máy biết rõ về kiểu mạng đang được sử dụng. Nói cách khác, kiểu mạng đang được sử dụng là vô hình đối với phần mềm ứng dụng đang sử dụng mạng.
Giai đoạn chuẩn bị cho việc truyền dữ liệu, một quá trình bắt tay nhau (handshaking) diễn ra giữa hai trạm làm việc. Quá trình này thiết lập những thông số liên lạc giữa hai trạm làm việc. Quá trình này thiết lập những thông số liên lạc chẳng hạn như tốc độ truyền, kích thước gói dữ liệu, thông số hết giờ truyền và kích thước vùng đệm. Việc bắt tay đặc biệt quan trọng khi hai card có liên quan trong phiên truyền dữ liệu đó có thiết kế phần cứng hoặc đặc tính kỹ thuật hơi khác nhau. Khi các thông số liên lạc được thiết lập thì việc chuyển giao các gói dữ liệu mới bắt đầu. Một card mạng sẽ gửi và tiếp nhận các dữ liệu tới từ bus hệ thống theo kiểu song song, gởi và tiếp nhận các dữ liệu tới tử mạng theo kiểu tuần tự nghĩa là một sự biến đổi từ song song ra nối tiếp làm biến chất dữ liệu dữ liệu để vận chuyển đi dưới dạng một dòng bit tín hiệu điện trên cáp. Sau đó dữ liệu thường được mã hoá và nén lại để tăng tốc độ truyền. Ngoài ra card mạng còn có nhiệm vụ chuyển đổi dữ liệu và nó đang truyền tải thành một tín hiệu vốn mang một dạng thức thích hợp với mạng. Trên card mạng thành phần có trách nhiệm chuyển đổi tín hiệu được gọi là bộ phận thu. Có những loại card có nhiều hơn một bộ phận thu phát, mỗi bộ cung cấp các cổng phía sau card để thích nghi với các phương tiện dây card khác nhau. kiểu card này gọi là một card kết hợp.
Sự khác biệt trong thiết kê phần cứng giữa các NIC trên một mạng có thể làm hạn chế tốc độ truyền dữ liệu. Để giảm ảnh hưởng này người ta thiết kế một bộ nhớ đệm trên các card 8 bit để tạm giữ lại những tín hiệu được máy khác đưa đến. Điều này cho phép các card hoàn tất việc truyền dữ liệu của chúng nhanh hơn nhiều. Tuy nhiên tình trạng này cũng hay xảy ra khi di chuyển thông tin từ vùng đệm của card mạng và bộ nhớ. Để khắc phục điều đó có 4 phương pháp hữu hiệu sau.
- Truy xuất bộ nhớ trực tiếp (DMA: Direct Memory Access) - một bộ điều khiển trên máy tính sẽ nắm quyền điều khiển bus và chuyển dữ liệu từ vùng đệm của card mạng thẳng vào vùng nhớ đã đăng ký trên máy.
Chia sẻ dùng chung bộ nhớ card, các card để bộ xử lý của máy truy xuất trực tiếp bộ nhớ riêng của nó.
- Chia sẻ dùng chung bộ nhớ hệ thống. Bộ nhớ hệ thống sẽ chia một khối nhớ cho bộ xử lý đặc biệt trên card mạng xử lý nó. Card mạng sẽ chuyển dữ liệu từ vùng đệm của nó vào vùng nhớ này nơi bộ xử lý cả máy có thể truy xuất trực tiếp.
- Làm chủ bus- với phương pháp này, card mạng có thể chuyển thông tin trực tiếp vào bộ nhớ hệ thống mà không ngắt quá trình xử lý của CPU. Như vậy card mạng cung cấp một kỹ thuật DMA tăng cường bằng cách chiếm lấy quyền điều khiển bus hệ thống.
Tất cả card mạng đều được bán kèm theo một đĩa mềm drive để cài đặt nó vào máy và làm cho hệ điều hành mạng có thể nhận biết được nó.
Các mạng khác nhau sử dụng các cách khác nhau để nhận diện trên mỗi nút mạng. Việc định địa chỉ trên toàn cầu này đảm bảo mỗi card mạng đều có một địa chỉ nút duy nhất để nhận diện. Các card Ethernet và Token ring được hãng sản xuất khắc mã các địa chỉ duy nhất ngay trên card được gọi là các địa chỉ MAC (kiểm soát truy xuất đường truyền) hay địa chỉ điều hợp.
Các card mạng đòi hỏi một IRQ, một địa chỉ I/O, đối với DOS và chế độ thực của Windows 9x. Chúng cũng có thể đòi hỏi các địa chỉ bộ nhớ trên. Nếu card mạng nằm trên bus PCI, bộ kiểm soát bus PCI sẽ quản lý các yêu cầu IRQ và địa chỉ I/O. Khi lựa chọn một card mạng bạn phải chú ý đến kiểu của mạng mà bạn sẽ nối vào máy tính của mình, kiểu phương tiện truyền thông mà mạng đó đang sử dụng, và kiểu của bus I/O mà bạn đang sử dụng cho mạng.
Chương II
Các phương pháp truy cập đường truyền vật lý
Trong mạng cục bộ, tất cả các trạm kết nối trực tiếp vào đường truyền chung. Vì vậy tín hiệu từ một trạm đưa lên đường truyền sẽ được các trạm khác “nghe thấy”. Một vấn đề khác là, nếu nhiều trạm cùng gửi tín hiệu lên đường truyền đồng thời thì tín hiệu sẽ chồng lên nhau và bị hỏng. Vì vậy cần phải có một phương pháp tổ chức chia sẻ đường truyền để việc truyền thông đựơc đúng đắn.
Có hai phương pháp chia sẻ đường truyền chung thường được dùng trong các mạng cục bộ:
Truy nhập đường truyền một cách ngẫu nhiên, theo yêu cầu. Đương nhiên phải có tính đến việc sử dụng luân phiên và nếu trong trường hợp do có nhiều trạm cùng truyền tin dẫn đến tín hiệu bị trùm lên nhau thì phải truyền lại.
Có cơ chế trọng tài để cấp quyền truy nhập đường truyền sao cho không xảy ra xung đột
2.1 Phương pháp đa truy nhập sử dụng sóng mang có pháp hiện xung đột CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
Giao thức CSMA (Carrier Sense Multiple Access) - đa truy nhập có cảm nhận sóng mang được sử dụng rất phổ biến trong các mạng cục bộ. Giao thức này sử dụng phương pháp thời gian chia ngăn theo đó thời gian được chia thành các khoảng thời gian đều đặn và các trạm chỉ phát lên đường truyền tại thời điểm đầu ngăn.
Mỗi trạm có thiết bị nghe tín hiệu trên đường truyền (tức là cảm nhận sóng mang). Trước khi truyền cần phải biết đường truyền có rỗi không. Nếu rỗi thi mới được truyền. Phương pháp này gọi là LBT (Listening before talking). Khi phát hiện xung đột, các trạm sẽ phải phát lại. Có một số chiến lược phát lại như sau:
Giao thức CSMA 1-kiên trì. Khi trạm phát hiện kênh rỗi trạm truyền ngay. Nhưng nếu có xung đột, trạm đợi khoảng thời gian ngẫu nhiên rồi truyền lại. Do vậy xác suất truyền khi kênh rỗi là 1. Chính vì thế mà giao thức có tên là CSMA 1-kiên trì. (1)
Giao thức CSMA không kiên trì khác một chút.Trạm nghe đường, nếu kênh rỗi thì truyền, nếu không thì ngừng nghe một khoảng thời gian ngẫu nhiên rồi mới thực hiện lại thủ tục. Cách này có hiệu suất dùng kênh cao hơn. (2)
Giao thức CSMA p-kiên trì. Khi đã sẵn sàng truyền, trạm cảm nhận đường, nếu đường rỗi thì thực hiện việc truyền với xác suất là p < 1 (tức là ngay cả khi đường rỗi cũng không hẳn đã truyền mà đợi khoảng thời gian tiếp theo lại tiếp tục thực hiện việc truyền với xác suất còn lại q=1-p. (3)
Ta thấy giải thuật (1) có hiệu quả trong việc tránh xung đột vì hai trạm cần truyền thấy đường truyền bận sẽ cùng rút lui chở trong những khoảng thời gian ngẫu nhiên khác nhau sẽ quay lại tiếp tục nghe đường truyền. Nhược điểm của nó là có thể có thời gian không sử dụng đường truyền sau mỗi cuộc gọi.
Giải thuật (2) cố gắng làm giảm thời gian "chết" bằng cách cho phép một trạm có thể được truyền dữ liệu ngay sau khi một cuộc truyền kết thúc. Tuy nhiên nếu lúc đó lại có nhiều trạm đang đợi để truyền dữ liệu thì khả năng xẩy ra xung đột sẽ rất lớn.
Giải thuật (3) với giá trị p được họn hợp lý có thể tối thiểu hoá được cả khả năng xung đột lẫn thời gian "chết" của đường truyền.
Xẩy ra xung đột thường là do độ trễ truyền dẫn, mấu chốt của vấn đề là : các trạm chỉ "nghe" trước khi truyền dữ liệu mà không "nghe" trong khi truyền, cho nên thực tế có xung đột thế nhưng các trạm không biết do đó vẫn truyền dữ liệu.
Để có thể phát hiện xung đột, CSMA/CD đã bổ xung thêm các quy tắc sau đây :
Khi một trạm truyền dữ liệu, nó vẫn tiếp tục "nghe" đường truyền . Nếu phát hiện xung đột thì nó ngừng ngay việc truyền, nhờ đó mà tiết kiệm được thời gian và giải thông, nhưng nó vẫn tiếp tục gửi tín hiệu thêm một thời gian nữa để đảm bảo rằng tất cả các trạm trên mạng đều "nghe" được sự kiện này.(như vậy phải tiếp tục nghe đường truyền trong khi truyền để phát hiện đụng độ (Listening While Talking))
Sau đó trạm sẽ chờ trong một khoảng thời gian ngẫu nhiên nào đó rồi thử truyền lại theo quy tắc CSMA.
Giao thức này gọi là CSMA có phát hiện xung đột (Carrier Sense Multiple Access with Collision Detection viết tắt là CSMA/CD), dùn._.
Các file đính kèm theo tài liệu này:
- DAN232.doc