Khaosatphuongtrinhparabolicphi tuyin
trongmi€n hinhcdu
trang17
CHUONG3
sV TON T~I vA DUY NHAT NGHlt:M CUA PHUONG TRINH
NHIET Val tUEU KIEN DAu. .
TrongchuangmlY,chungtoinghienClmbaitoangiatrtbienvaban
d~u(1.1)-(1.3)nhusau:
(3.1)
(3.2)
(3.3)
(3.4)
Ut-a(t{urr+~Ur)+F(U)=f(r,t), O<r<l, O<t<T,
I
limrUr(r,t)
1
<+00,ur(l,t)+h(t)(u(l,t)-lIo)=O'r-+O+
u(r,O)=uo(r),
II
P-2
F(u) =u u,
trongdo 2~p <3, lIo la cach&ngs6chotruac,aCt),her),f(r,t), uo(r)lacac
hams6chotruact
11 trang |
Chia sẻ: huyen82 | Lượt xem: 1450 | Lượt tải: 0
Tóm tắt tài liệu Khảo sát phương trình Parabolic phi tuyến trong miền hình cầu, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
hoacacdiSuki~nsau:
Nghi~mySucuabaitoangiatrtbienvaband~u(3.1)-(3.4)duQ'c
thanhl~pnhusau:
Tim uEL2(0,T;V)nLoo(0,T;H)saochou(t)thoabaitoanbiSnphan
sau
d
-(u(t), v)+a(t)(ur(t),vr)+a(t)h(t)u(l,t)v(l)+(F(u(t)),v)dt
=(f(t),v)+lIoa(t)h(t)v(l),VvEV,a.e.,t E(O,T),
vadiSuki~nd~u
(3.5)
(3.6) u(O)=UO'
H9CvienNguyen Vii Dziing
(HI) UoEH,
(HJ lIo E JR,
(HJ a, hE W1,oo(0,T),aCt) ao>0,
(H4) f E L2(0,T;H).
Khao satphuangtrinhparabolicphi tuyin
trongmi~nhinhcdu
trang18
Khi dotacodinhly sau
Dinhly3.1.ChoT>O va(H)-(H4)i/ung.Khii/o,battoim(3.1)-(3.4)co
duynhdtmr}tnghi?myiu UELZ(O,T;V)nL"'(O,T;H),saocho
(3.7) tu E Loo(o,r; v), tu'E L2(0,r; H), r2/P E LP(Qr).
Chungminh.ChUngminhg6mnhiSubu6c.
Bmyc1.PhuO'ngphapGalerkin.Ky hi~ubai {wJ j =1,2,...la mQtca So'
tr\Icchu~ntrongkh6nggianHilberttachduQ'CV. Ta tim Um(t) theod~ng
(3.8)
m
Um (t)=2:>m/t)Wj'
j=l
trongdoCmj(t),1~j ~m thoah~phuangtrinhvi phanphituySn
(u~(t),Wj)+a(t)(umr,Wjr)+a(t)h(t)um(1,t)w/1)
+(F(um(t)),Wj) =(J(t), Wj) +uoa(t)h(t)wj(1),1~j ~m,
(3.9)
(3.10) um(O)=uOm'
trongdo
(3.11) UOm~ Uom~nhtrong H.
DSthfiyr~ngv6i mQim t6nt~imQtnghi~mum(t)theod~ng(3.8)thoa(3.9)
va(3.10)hAukh~pnaitren0~t ~Tmv6i mQtTm'0<Tm~T. Cac danhgia
tiennghi~msaudaychopheptalfiyTm=T v6i mQim.
BU'O'c2.Danhgia tieDnghi~m.
TaseIAnluQ'thiStl~phaidanhgiatiennghi~mdu6iday.Khokhanchinh
a dayla s6h~ngphi tuySnF(um(t))=Ium(tf-zUm(t) thalligiavaophuang
trinh,dodovi~cdanhgiatinhbi ch~nvasaudoquagi6ih~ncuas6h~ng
phi tuySnnaylamQtkhokhan.
a)DanhgiGthunhdt.Nhanphuangtrinhthu j cuah~(3.9)bai Cmj(t)va
t6ngtheoj, taco
H9CvienNguyln VflDzflng
Khaosatphuongtrinhparabolicphi tuyin
trongmiJn hinhcdu
trang19
1
~llum(t)112+2a(t)llumr(t)112+2u;(1,t)+2 fr2Ium(t)IPdr
(3.12) dt 0
=2(1-a(t)h(t)u;(l,t)+2(f(t),um(t))+2uoa(t)g(t)um(l,t).
Tirb~tdingthuc(2.9),tasurradng
2a(t)lIumr(t)112+2u; (l,t) ~2aollumr(t)1I2+2u; (l,t)
(3.13) ~2mill{I,ao}~Iumr(t)112+u; (1,t))~allium(t)II~,
,. 4.
{ }val al =-mm 1,aa .3
Ta sur tir(2.6)-(2.8),(3.12),(3.13)r~ng
:tIIUm(t)112+aIIIUm(t)II~+2fr2Ium(r,t)IP dra
~ 211- a(t)h(t)1 ~llumr(t)112+ (3+ 1/ fJ ~Ium(t)II2]
+ 211f(t)llllum(t)11+ 4Iuaa(t)h(t)1 IIum(t)llv
~ 2(1+IlahllJ~llumr(t)II~+(3+1/ fJ~lum(t)112]
+11/(t)112+Ilum(t)II2 +~IuDnahll: +2fJllum(t)II~
~ ~/uanah!l: +Ilf(t)112+2fJ(2 +liGht )llum(t)II~
+ [1+ 2(3 + 1/ fJ Xl + Ilahll",)]llum(t)112,V fJ > 0,
trong doky hi~uIHI",= II-llroo(a,T) dSchichu~ntrongL"'(O,r).
(3.14)
ChQnfJ >0 saocho
(3.15) 2fJ(2+lIahIIJ~ al'
Do do,tir(3.14),(3.15)tathuduQ'c
I
~llum(t)1I2+~alllum(t)II~+2fr2Ium(r,t)IPdr
(3.16) dt 2 a
~~IUanah!l: +IIf(t)112+[1+2(3+1/fJX1+IIahIIJ]llum(t)112.
Tir (3.16),l~ytichphantheot,vasud\lng(3.10),(3.11)taduQ'c
H9CvienNguyin VuDzung
Khiw satphuongtrinhparabolicphi tuyin
trongmi~nhinhcdu
trang20
(3.17)
1 t t I
Ilum (t)112 +-al filum(s)ll~ds+2Ids fr21um(r,s)IPdr
2 0 0 0
~lluomll'+~luol'llahll:+~lf(S)II'ds
t
+ [1 + 2(3 +1/ fJ Xl + lIaht)] filum(s )112ds
0
t
~M}2)+M~) filum(s)112ds,
0
trong doM j1) ,M i2) la cach~ngs6chiph\!thuQcvaoT vaduQ'chQnnhu
sail
Mil) =1+2(3+lIfJX1 +Ilaht),
M;""llao.II'+(~lu,I'llahll:)T+pli(s)II'ds, ';1m.
Ap d\!ngb6dSGronwall,tathuduQ'ctir(3.17)r~ng
1 t t I
Ilum(t)112+-al fllum(s)ll~ds+2Ids fr2Ium(r,sf dr(3.18) 2 0 0 0
~Mi2) exp(tMil»)~ M T'
\;fm,\;ft,O~t~Tm~T, i.e.,Tm=T.
b)Danhgia thuhaloNhan(3.9)b6i t2C~j(t)vat6ngtheoj, taco
21[tu~(t)112+~
[
a(t)lltumr(t)112+a(t)h(t)t2u;(1,t)+~t2Jr2IUm(r,t)IPdr
]dt p 0
=Ilu r(t)112~~2a(t)]+u;(1,t)~~2a(t)h(t)]m dt dt
I
+~tfr21um(r,t)IPdr+2(tf(t),tu~(t))
p 0
+2uo~~2a(t)h(t)um(1,t)]- 2uoum(1,t)~ ~2a(t)h(t)Jdt ~
Tich phan (3.19)d6i v6'ibiSn thai giantir 0 dSnt, sail do s~pxSp l~icac s6
h~ng,ta thu duQ'c
(3.19)
H9CvienNguyln VflDzflng
Khao satphuongtrinhparabolicphi tuyin
trangmi~nhinhcdu
trang21
t 1
2 fllsu~(s)112ds +a(t)lltumr(0112+t2u~(l,t) +3..t2fr21um(r,tf dr
0 p 0
=[1- a(t)h(t) ]t2u~(l,t) + f[S2a(s) J IJumr(S)112ds
0
(3.20)
t
J
t 1
+f[s2a(s)h(s)u~(l,s)ds+i fsdsfr2Jum(r,sfdr
0 Po 0
t
+2f(sf(s),su~(s))ds+2uot2a(t)h(t)um(l,t)
0
t
-2uo f[s2a(s)h(s)Jum(l,s)ds.
0
Dungb~td~ngthuc(2.9),taco
(3.21) a(t)/itumr(t)112+t2u~(l,t)~~/ltum(t)II~,VtE[o,rl Vm.2
Dungcaeb~td~ngthuc(2.6),(2.8),(2.9)vav6i 13>0 nhutrong(3.15),ta
danhgiakhongkhokhancaes6h~ngavSphaicua(3.20)nhusau
[1- a(t)h(t)] t2u~(1,t) ::;(1+ Ilahll ) (.alltumr(0112+ (3 + 1/ 13~Itum(0112)
(3.22) 00
::;(1 +lIGht )~lltum(Oll~+(3+1/ fJ)t2M T )
f[S2a(s)]'/lumrCs)1I2ds+f[S2a(s)h(s)J u~(l,s)ds
0 0
(3.23) ~[(t2a)ro +4&2ah)J}IUm(S)II~£i,
2
[
' ,
]~-MT (t2a) +4 (t2ah) ,a] 00 00
(3.24)
21uofiB' a(s)h(s) J u. (l,s)ds ,; ~uolll{t'ahfII. ~Iu. (S)II,ds
,; 4juolllV'ahfll.~Olu.(s)ll~dSr
';~UoIIIV'ahfll..JT~,
HQcvienNguyin ViiDziing
KhilOsatphuongtrinhparabolicphi tuyin
trongmi~nhinhcdu
trang22
(3.26)
4 t 1 4 t 1
- fsdsfr2Ium(r,s)IPdr5,-t Idsfr2Ium(r,s)IPdr
(3.25) PooP 0 0
4 Mr 2TMr5,-T-= ,
P 2 P
2Iuot2a(t)h(t)um(1,t)/5,2IuoltllahIIJtum(1,t)/
5,41uoItllaht Iitum(t)llv
5,plltum(t)II~+;(uotjjaht)2,
t t t
(3.27) 12f(sf(s),su~(s»)ds5,fllsf(s)112ds+ fllsu~(s)112ds. .
0 0 0
(3.28)
Dodo,tasuytu(3.20)-(3.27)f~ng
t
~Isu~(s)112ds+~al11tum(t)II~
0 4
5, (1+liGhtX3+1/p)T2M?)
+~M,[11&2aill.+411&'ahill.J+2T;,
+Fls!(s)1I"b +41u,IIIV'ahfII. § ~: MT
4
( )
2 ~
+pT2 uollhlL 5,Mp
trongdo if r la cach~ngsachiph\!thuQCvaoT.
M~itkhactu (3.18),tacodanhgia
t 1 ,t 1 ,
Ids]r2/P'F(um(r,s)fdr=Idsfr21Ium(r,s)IP-rdr
(3.29) 0 0 0 0
t 1 1
=Ids fr2Ium(r,sf dr 5,-Mr 5,Mr,
0 0 2
BU'o-c3.Qua gio-ih~n.
Do (3.18),(3.28),(3.29)tasuyfa f~ng,tant~iillQtdayconcuaday {uJ,
v~nky hi~ula {um}saocho
H9CvienNguyln ViiDzfmg
KhilOsatphu:angtrinhparabolicphi tuyin
trongmiJn hinhc6u
trang23
(3.30)
(3.31)
(3.32)
Urn ~ U trongLOO(O,T;H) ySu*,
Urn~ U trong L2(O,T;V) ySu,
turn~ tu trong Loo(O,T;V)ySu *,
" ,
(3.33) (tuJ ~ (tu)trongL2(O,T;H)yell,
(3.34) r2/PUrn~ r2/Pu trong Y (Qr) ySu.
Dungb6dS2.11vStinhcompactcuaLions[3],apd\mgvao(3.32),(3.33)
tacothStrichfa tuday {urn}mQtdayconvankyhi~ula {urn} saocho
(3.35) turn~ tu m(;lnhtrong L2(O,T;H).
Theodinhly Riesz-Fischer,tu (3.35)tacothStrichramQtdayconcuaday
{urn}vankyhi~ula {urn}saocho
(3.36) Urn(r,t) ~ u(r,t) a.e (r,t) trong Qr =(O,l)x(O,T).
Do F(u) =lujP-2u lien t1,1C,ta co
(3.37) F(urn(r,t))~ F(u(r,t)) a.e (r,t) trong Qr'
Ap d1,1ngb6 dS2.12vS S\l'hQit1,1ySutrong Lq(Qr) v6i
, 2/ ' 2/ '
I I
P-2 2/ ' 2/ '
1I
P-2
N =2, q=p, Grn=r P F(urn)=r P urn urn' G =r P F(u) =r P u U.
Tasuytu(3.29),(3.37)r~ng
Grn~ G trongLP'(Qr) ySu,
hay
(3.38) r2/P'lurnIP-2urn~r2/P'luIP-2utrongLP'(Qr)ySu.
Gia sir rpEC1([O,TJ),rp(T)=o. Nhanphuongtrinh(3.9)v6i rp,r6i tichphan
haivStheobiSnt, taduqc
KhilOsatphuangtrinhparabolicphi tuyin
trongmi~nhinhcdu
trang24
(3.39)
T T
- (Uorn,wi )rp(O)- f(Urn(t), Wi)rp'(t)dt+ fa(t)( Urnr (t),Wir)rp(t)dt
0 0
T T
+fa(t)h(t)urn(l,t)w/l)rp(t)dt + f(F(urn(t)),Wi)rp(t)dt
0 0
T T
= f(/(t), Wi)rp(t)dt+ fa(t)h(t)w/l)rp(t)dt, 1:5,j :5,m.
0 0
DS quagi6i h~ncuasf>h~ngphi tuySnF(urn(t))=Iurn(t)IP-2Urn(t) trong (3.39),
tasud\lngb6dSsail
nBd~3.1
T T
l~~oof(F(urn(t)),wi )rp(t)dt= f(F(u), Wi)rp(t)dt.
0 0
ChUngminhb6d~3.1.
Chuyr~ng(3.38)tUOTIgdUOTIgv6i
TIT 1
f fr2/P'IUrn(t)IP-2Urn(t)(r,t)dtdr~ f fr2/P'lu(t)IP-2u(t)(r,t)dtdr,
(3.40) 00 00
V E (U' (QT))' =U(QT)'
M~tkhac,taco
T T 1
f(F(urn(t)),Wi)rp(t)dt= ffr21urn(t)IP-2Urn(t)Wi (r)rp(t)drdt
(3.41) 0 00
= ff~2/ p'IUrn(tW-2 Urn(t)~r2/Pwi(r)rp(t) }irdt.
0 0
Do (3.40),b6 dS3.1seduQ'chungminhnSutanghi~ml~iduQ'cr~ng
(r,t)=r2/Pwi(r)rp(t)ELP(QT)'Th~tv~y,dob~td~ngthuc(2.7),taco
(3.42)
TIT 1
ffl(r,t)IPdrdt =ffr2Iwi(r)rp(tfdrdt
0 0 0 0
1 T
=fr2-plrwi(rf dr ]rp(t)IPdt
0 0
I T
:5,(FsIIWillv! fr2-Pdr flrp(tWdt
0 0
H9CvienNguyln ViiDziing
KhilOsatphuO'ngtrinhparabolicphi tuyin
trongmiJn hinhcdu
trang25
T
~ 3 ~ p (~IIWjllvr flqJ(t)la+ldt < +00.
V~ybE>d@3.1 duQ'cchungminh ho~mt~t.
Cho m~ +00trong (3.39), ta sur ra tir (3.11), (3.30), (3.31) va bE>d@3.1,
r&ngu thoaphuangtrinhbiSnphan
(3.43)
T T
- (uo,Wj}qJ(O)- f(u(t), Wj}qJ'(t)dt+ fa(t)(ur(t), Wjr}qJ(t)dt
0 0
T T
+ fa(t)h(t)u(l,t)wj(1)qJ(t)dt+ f(F(u(t)), Wj}qJ(t)dt
0 0
T T
= f(f(t), Wj}qJ(t)dt+liofa(t)h(t)wj(l)qJ(t)dt,
0 0
1~j ~m, \tqJE c1([0,T]), qJ(T)=O.
Dodotaco
(3.44)
T T
- (uo,v)qJ(O)- f(u(t), v)qJ'(t)dt+fa(t)(ur (t),Vr)qJ(t)dt
0 0
T T
+fa(t)h(t)u(l,t)v(l)qJ(t)dt+f(F(u(t)),v)qJ(t)dt
0 0
T T
= f(f(t), v)qJ(t)dt.+liofa(t)h(t)v(l)qJ(t)dt,
0 0
\t qJE C1([0,T]), qJ(T) = 0, \tv E V.
L~yqJE D(O,T), tir(3.44)tasurra
T d T
f- [(u(t),v)}P(t)dt+ fa(t)(ur(t),Vr)qJ(t)dt
0 dt 0
T T
+fa(t)h(t)u(l,t)v(l)qJ(t)dt+f(F(u(t)),v)qJ(t)dt
0 0
T T
= f(f(t), v)qJ(t)dt+liofa(t)h(t)v(l)qJ(t)dt,
0 0
\tqJED(O,T),\tVEV.
Do do,taco
(3.45)
KhilOsatphuongtrinhparabolicphi tuyin
trangmiJn hinhcdu
trang26
(3.46) ~[(u(t),v)]+a(t)(ur(t),vr)+a(t)h(t)u(l,t)v(l)+(F(u(t)),v)
=(J(t),v)+uaa(t)h(t)v(l),Vv E V,
dungtrongD(O,T)vadodohAllhSttrong(O,T).
Cho q>E C1([0,TJ),q>(T)=o. Nhan phuangtrinh (3.46)cho q>,saudo tich
phanhaivStheobiSnthaigiantathuduQ'c
(3.47)
T T
- (u(O),v)q>(O)- f(u(t), v)q>'(t)dt+ fa(t)(ur (t),Vr)q>(t)dt
a a
T T
+fa(t)h(t)u(l,t)v(l)q>(t)dt+f(F(u(t)),v)q>(t)dt
a a
T T
= f(J(t), v)q>(t)dt+uafa(t)h(t)v(l)q>(t)dt,
a a
v q>Eel ([O,TJ), q>(T)=0, Vv E V.
SOsanh(3.44)v6i (3.47),tathuduQ'c
(3.48) - (u(O),v)q>(O)= -(ua, v)q>(O),V q>Eel ([O,T]), q>(T)= 0, Vv E V,
ma(3.48)tuangduangv6idiSuki~ndAti
(3.49) u(O)=Ua'
Ta chuyr~ng,tiT(3.30)-(3.34)taco
u E L2(0,T;V)nD"(0,T;H), tuEL"'(O,T;V),
tu' E L2(0,T; H), r21puE LP(QT}
V~ySlJt6nt~inghi~mduQ'chungminh.
BtrO'c4.Tinh duy nh§t nghi~m.
Tru6chSttacAnb6dSsauday
BB d~3.2.GiGsir w Ia nghi?myiu Gilabai toimsau
(3.50) Wt - a(t)( Wrr +~Wr)=f(r,t), 0<r <1,0<t <T,
(3.51) I;~~rwr(r,t)!<+00,-Wr(l,t)=h(t)w(l,t),
Khao satphuongtrinhparabolicphi tuyin
trongmi~nhinhcdu
trang27
(3.52) w(r,O)=0,
(3.53) WE L2(0,T;V)nL"'(0,T;H), twE L"'(O,T;V), tw'E L2(0,T;H).
Khi d6
(3.54)
~llw(t)112+ fa(s)~IWr(s)112+h(S)W2(1,s)]ds
2 0
t
- f(J(s), w(s))ds=0, a.et E (O,T).
0
Chti thich 2.B6 dS3.2Ii mQtS\ft6ngquathoacuab6dStrongcu6nsach
cuaLions [3]chotruemghQ'PkhonggianSobolevcotrQng.ChUngminhb6
dS3.2co thStimthfiytrong[2].Bay gia, ta sechUngminhtinh duynhfit
nghi~m.
Gicisiru vi v Ii hainghi~mySucuabii toan(3.1)-(3.4).Khi do w=u- v Ii
nghi~mySu cua bii toan (3.50)-(3.52)v6i vS phcii cua (3.50) Ii
J(r,t) =-lu(t)IP-2u(t)+Iv(t)IP-2V(t).Dung b6 dS3.2,ta co ding thuc sau
(3.55)
~llw(t)112+ fa(s)~lwr(s)112+h(S)W2(1,S)]ds
2 0
t
=- f(lu(sf-i u(s) -lv(s)la-iv(s),w(s))ds~O.
0
Do tinhchfitdandi~utangcuahim s6th\fcu~ lulP-2u.TIT(3.55)tasuyra
r&ngw=o. Tinh duynhfitduQ'chungminh.
V~ydinhIy 3.1duQ'chUngminhxong.
H9CvienNguyln ViiDziing
._.