Khảo sát khả năng sinh tổng hợp enzyme chitinase của một số chủng nấm sợi thuộc giống Aspergillus, Trichoderma và ứng dụng

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH LÊ THỊ HUỆ KHẢO SÁT KHẢ NĂNG SINH TỔNG HỢP ENZYME CHITINASE CUA MỘT SỐ CHỦNG NẤM SỢI THUỘC GIỐNG ASPERGILLUS, TRICHODERMA VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ SINH HỌC NGƯỜI HƯỚNG DẪN: PGS.TS. ĐỒNG THỊ THANH THU TP.HCM, 2010 MỞ ĐẦU Vi sinh vật là nhóm sinh vật có số lượng nhiều nhất và có khả năng chuyển hóa vật chất trong thiên nhiên mạnh nhất. Hiện nay người ta khai thác nhiều enzyme từ vi sinh vật và được ứng dụ

pdf70 trang | Chia sẻ: huyen82 | Lượt xem: 3785 | Lượt tải: 5download
Tóm tắt tài liệu Khảo sát khả năng sinh tổng hợp enzyme chitinase của một số chủng nấm sợi thuộc giống Aspergillus, Trichoderma và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ng rất nhiều trong đời sống, sản xuất. So với nguồn khai thác enzyme từ động vật và thực vật, nguồn enzyme từ vi sinh vật có nhiều ưu điểm như hoạt tính enzyme cao, thời gian tổng hợp enzyme từ vi sinh vật rất ngắn (chỉ vài ngày), nguyên liệu sản xuất rẻ tiền, có thể sản xuất hoàn toàn theo qui mô công nghiệp. Nhiều enzyme được khai thác từ vi sinh vật được tập trung nghiên cứu và có nhiều ứng dụng trong thời gian qua như protease, amylase, cellulase, pectinase … Những năm sau này người ta đang chú ý nhiều hơn về một loại enzyme khác nữa là chitinase, đây là enzyme thủy phân chitin. Chitin là một polymer sinh học có thể so sánh với polysaccharide như cellulose. Chitin phân bố rất rộng rãi ở dạng cấu trúc cơ bản trong thành tế bào của nấm và là bộ xương ngoài của tôm cua và côn trùng. Đây là một polymer có trọng lượng phân tử cao, không tan trong nước, chứa các đơn phân là N-acetyl-glucosamine liên kết bởi liên kết 1,4-β-glucoside. Chitin có nhiều công dụng trong nhiều lĩnh vực như y học và công nghiệp… Những enzyme có liên quan đến chuyển hóa và phân giải chitin đang được nghiên cứu nhiều trong những năm gần đây. Chitin bị phân giải bởi hệ enzyme có tên gọi chung là chitinase. Enzyme này được sản xuất bởi các tổ chức sống dưới tế bào để phục vụ nhu cầu chức năng sinh lý của chúng. Sự phân giải chitin dưới tác động enzyme phụ thuộc vào các yếu tố hóa lý (tỉ lệ giữa cơ chất và enzyme, pH, nhiệt độ…). Trong các nguồn thu nhận chitinase thì chitinase từ vi sinh vật là nguồn quan trọng. Những nguồn sinh vật để thu nhận enzyme chitinase đáng kể là các chủng vi khuẩn thuộc các chi Enterobacter và Streptomyces, các chủng nấm sợi thuộc các chi Asperillus, Penicillium, và Trichoderma, và một số động vật nguyên sinh. Những năm gần đây có nhiều công trình nghiên cứu tập trung vào enzyme chitinase do tiềm năng ứng dụng to lớn của enzyme này trong nhiều lĩnh vực khác nhau như trong thu nhận tế bào trần (thể nguyên sinh), sản xuất chitooligosaccharides, glucosamine và N-acetyl glucosamine, sản xuất thuốc trừ sâu sinh học, ứng dụng trong y học, trong việc kiểm soát nấm kí sinh trên cây trồng…v.v… Vì những ứng dụng rộng rãi của chitinase như trên, mục đích đề tài chúng tôi nhằm nghiên cứu sinh tổng hợp chitinase nhằm thu nhận chế phẩm chitinase từ một số chủng nấm sợi và bước đầu khảo sát một số ứng dụng của enzyme này. Chúng tôi thực hiện đề tài: Khảo sát khả năng sinh tổng hợp enzyme chitinase của một số chủng nấm sợi thuộc giống Aspergillus, Trichoderma và ứng dụng. Mục tiêu đề tài: Lựa chọn chủng nấm sợi có khả năng tổng hợp chitinase cao, thu nhận chế phẩm chitinase từ canh trường và bước đầu nghiên cứu một số ứng dụng của chitinase. Nhiệm vụ của đề tài - Khảo sát khả năng sinh tổng hợp chitinase của một vài chủng nấm sợi thuộc giống Aspergillus, Trichoderma. Chọn chủng nấm sợi sinh tổng hợp chitinase cao để nghiên cứu tiếp. - Khảo sát một số yếu tố ảnh hưởng quá trình sinh tổng hợp chitinase của chủng nấm sợi đã chọn và tối ưu hóa bằng phương pháp qui hoạch thực nghiệm. - Thu nhận chế phẩm chitinase. - Khảo sát các điều kiện hoạt động tối ưu của chế phẩm chitinase: nhiệt độ, pH, nồng độ cơ chất, thời gian thủy phân cơ chất. - Bước đầu thử nghiệm một số ứng dụng của chế phẩm chitinase từ nấm sợi. Thời gian và địa điểm nghiên cứu đề tài Thời gian : từ tháng 8/2009 – 7/2010 Địa điểm : Đề tài được thực hiện tại Phòng Thí nghiệm Vi sinh, khoa Sinh Trường Đại học Sư Phạm Thành phố Hồ Chí Minh. Chương 1: TỔNG QUAN TÀI LIỆU 1.1. HỆ ENZYME CHITINASE TỪ NẤM SỢI 1.1.1. Khái quát về enzyme 1.1.1.1. Cấu trúc [1, 23] Enzyme là một loại phân tử protein được sinh vật tổng hợp nên và tham gia xúc tác cho các phản ứng sinh học. Enzyme có phân tử lượng từ 20.000 đến 1.000.000 dalton, được cấu tạo từ các L-acid amin liên kết nhau bởi liên kết peptid. Bộ phận đặc hiệu tham gia phản ứng gọi là trung tâm hoạt động của enzyme. Enzyme gồm hai nhóm: nhóm enzyme một cấu tử gồm những enzyme có thành phần hóa học duy nhất là protein; nhóm enzyme hai cấu tử gồm những enzyme có hai thành phần: phần protein thuần gọi là apoenzyme có vai trò xúc tác, phần thứ hai phi protein là coenzyme là những chất hữu cơ đặc hiệu có vai trò thúc đẩy quá trình xúc tác. Ngoài ra có một số kim loại như Zn, Cu, Mn, Fe ... đóng vai trò liên kết enzyme và cơ chất trong quá trình xúc tác phản ứng, liên kết giữa apoenzyme và coenzyme, tham gia trực tiếp vào quá trình vận chuyển điện tử. 1.1.1.2. Cơ chế hoạt động [16, 23] Trung tâm hoạt động của enzyme (E) có cấu trúc không gian tương ứng với cơ chất mà chúng xúc tác, phản ứng hình thành trong quá trình enzyme tiếp xúc với cơ chất như “chìa khóa-ổ khóa“ tạo phức hợp enzyme-cơ chất. Quá trình tác động của enzyme vào cơ chất để tạo sản phẩm trải qua ba giai đoạn: Giai đoạn 1: Enzyme (E) tương tác với cơ chất (S) nhờ những liên kết tạo phức E-S Giai đoạn 2: Khi cơ chất (S) tạo phức với enzyme (E), cơ chất sẽ bị thay đổi cấu hình không gian và mức độ bền vững các liên kết, liên kết bị phá vỡ tạo sản phẩm. Giai đoạn 3: Enzyme tách ra, được giải phóng nguyên vẹn. Sản phẩm (P) tạo thành. Sơ đồ cơ chế tác động enzyme: E + S  E-S  E + P 1.1.1.3. Phân loại enzyme [16, 23] Có nhiều cách phân loại enzyme, ở đây chúng tôi đề cập đến cách phân loại dựa vào kiểu xúc tác của enzyme. Tại Hội nghị Sinh Hóa học năm 1961 họp tại Moscow đã đề ra một bảng phân loại mới, trong đó enzyme được chia ra làm 6 lớp chính: - Oxydoreductase (lớp enzyme oxy hóa hoàn nguyên sinh học) - Transferase (lớp enzyme vận chuyển) - Hydrolase (lớp enzyme thủy phân) - Liase (lớp enzyme phân giải chất không theo con đường thủy phân) - Ligase hay Synthetase (lớp enzyme tổng hợp chất) - Isomerase hay Mutase (lớp enzyme đồng phân hóa) 1.1.2. Enzyme chitinase [32] 1.1.2.1. Cấu trúc Chitinase [Poly- Beta- 1- 4 – (2-acetalmido-2-deoxy) - D-glucoside glucanohydrolase] thuộc nhóm enzyme thủy phân (hydrolase), là enzyme thủy phân chitin thành chitobiose hay chitotriose qua việc xúc tác sự thủy giải liên kết 1,4 glucoside giữa C1 và C4 của hai phân tử N- acetyl Glucosamine liên tiếp nhau trong chitin. Mã số của enzyme chitinase là EC 3.2.1.14. 3 → Hydrolase 2 → Glycosylase 1 → Glycosidase 14 → Chitinase Chitinase còn có các tên gọi khác (tùy theo xuất xứ enzyme) là chitodextrinase, β-poly-N- acetyl glucosamine, ChiA1 (Bacillus circulans), Chitotriosidase (Homo sapiens), ChiC (Streptomyces griceus) ... Căn cứ vào hệ thống phân loại enzyme, chitinase thuộc ba họ Glycohydrolase 18 và Glycohydrolase 19 và Glycohydrolase 20.  Họ Glycohydrolase 18 Là họ lớn nhất với khoảng 180 chi, được tìm thấy ở hầu hết các loài thuộc Eukaryote, Prokaryote và virus. Họ này bao gồm chủ yếu là enzyme chitinase, ngoài ra còn có các enzyme khác như chitodextrinase, chitobiase và N-acetyl glucosaminidase. Các enzyme chitinase thuộc họ Glycohydrolase 18 có cấu trúc xác định gồm 8 xoắn α/β cuộn tròn, chúng hoạt động thông qua một cơ chế kiểm soát mà trong đó các đoạn β polymer bị phân cắt tạo ra sản phẩm là β anomer. [32] Các chitinase thuộc họ Glycohydrolase 18 được tổng hợp từ các giống như Aeromonas hydrophila, Bacillus circularis, Trichoderma harzianum, Aphanocladium album, Serratia marcescens… Hình 1.1. Cấu trúc không gian của chitinase thuộc họ Glycohydrolase 18 [68]  Họ Glycohydrolase 19 Họ này gồm hơn 130 chi, thường thấy chủ yếu ở thực vật, ngoài ra còn có ở xạ khuẩn Streptomyces griceus, vi khuẩn Haemophilus influenzae… Chúng có cấu trúc hình cầu với một vòng xoắn và hoạt động thông qua cơ chế nghịch chuyển. Họ Glycohydrolase 19 bao gồm những chitinase thuộc nhóm I, II,IV. Hình 1.2. Cấu trúc không gian của chitinase thuộc họ Glycohydrolase 19 [69]  Họ Glycohydrolase 20 Họ Glycohydrolase 20 bao gồm β-N-acetyl-D-Glucosamine acetylhexosaminidase từ vi khuẩn, Streptomyces và người. Ngoài ra, dựa vào trình tự đầu amin (N), sự định vị của enzyme, điểm đẳng điện, peptide nhận biết và vùng cảm ứng, người ta phân loại enzyme chitinase thành 5 nhóm: Nhóm I: là những đồng phân enzyme trong phân tử có đầu N giàu cystein nối với tâm xúc tác thông qua một đoạn giàu glycin hoặc prolin ở đầu carboxyl (C) (peptide nhận biết). Vùng giàu cystein có vai trò quan trọng đối với sự gắn kết enzyme và cơ chất chitin nhưng không cần cho hoạt động xúc tác. Nhóm II: là những đồng phân enzyme trong phân tử chỉ có tâm xúc tác, thiếu đoạn giàu cystein ở đầu N và peptid nhận biết ở đầu C, có trình tự amino acid tương tự chitinase ở nhóm I. Chitinase nhóm II có ở thực vật, nấm, và vi khuẩn. Nhóm III: trình tự amino acid hoàn toàn khác với chitinase nhóm I và II Nhóm IV: là những đồng phân enzyme chủ yếu có ở lá cây hai lá mầm, 41-47% trình tự amino acid ở tâm xúc tác của chúng tương tự như chitinase nhóm I, phân tử cũng có đoạn giàu cystein nhưng kích thước phân tử nhỏ hơn đáng kể so với chitinase nhóm I. Nhóm V: dựa trên những dữ liệu về trình tự, người ta nhận thấy vùng gắn chitin (vùng giàu cystein) có thể đã giảm đi nhiều lần trong quá trình tiến hóa ở thực vật bậc cao. 1.1.2.2. Cơ chế hoạt động của enzyme chitinase [11] Enzyme phân giải chitin bao gồm: endochitinase, chitin 1-4-- chitobiosidase, N-acetyl- - D-glucosaminidase (exochitinase) và chitobiase. Endochitinase là enzyme phân cắt nội mạch chitin một cách ngẫu nhiên tạo các đoạn olygosaccharides, đã được nghiên cứu từ dịch chiết môi trường nuôi cấy nấm Trichoderma harzianum (2 loại endochitinase: M1 = 36kDa, pI1 = 5,3 (± 0,2) và M2 = 40kDa, pI2 = 3,9), Gliocladium virens (M = 41kDa, pI = 7,8). Chitin 1,4- - chitobiosidase là enzyme phân cắt chitin tạo thành các sản phẩm chính là các dimer chitobiose, cụ thể enzyme này được thu từ Trichoderma harzianum (M = 36kDa, pI = 4,4 ± 0,2). N-acetyl –  - D - glucosaminidase (exochitinase) là enzyme phân cắt chitin từ một đầu cho sản phẩm chính là các monomer N-acetyl-D-glucosamine. Chitobiase là enzyme phân cắt chitobiose thành hai đơn phân N-acetyl-D-glucosamine. Hình 1.3. Vị trí phân cắt enzyme chitinase [70] Endochitinase phân cắt ngẫu nhiên trong nội mạch của chitin và chitooligomer, sản phẩm tạo thành là một hỗn hợp các polymer có trọng lượng phân tử khác nhau, nhưng chiếm đa số là các diacetylchitobiose (GlcNAc)2 do hoạt tính endochitinase không thể phân cắt thêm được nữa. Hình 1.4. Cơ chế hoạt động của enzyme chitinase ở Trichoderma [11] Chitin 1,4-chitobiosidase phân cắt chitin và chitooligomer ở mức trùng hợp lớn hơn hay bằng 3 [(GlcNAc)n với n ≥ 3] từ đầu không khử và chỉ phóng thích diacetylchitobiose (GlcNAc)2. β –N- acetyl hexosaminidase phân cắt các chitooligomer hay chitin một cách liên tục từ đầu không khử và chỉ phóng thích các đơn phân N-acetyl glucosamine (GlcNAc). Ngoài ra, để khảo sát kiểu phân cắt, người ta sử dụng N-acetyl-chito-oligosaccharide làm cơ chất. Các oligsaccharide thường được thủy phân bên trong trên một vài vị trí xác định hoặc một cách ngẫu nhiên. Một số enyme chitinase có khả năng thủy phân trisaccharid, một số khác thì không. Có hai dạng chitinase thủy phân pentasaccharide: một phân cắt bên trong tạo disaccharid và trisaccharid; một phân cắt bên ngoài tạo các monosaccharid và tetrasaccharid. Tóm lại chitinase thực chất là enzyme cắt ngẫu nhiên. Endochitinase, chitobiosidase và β –N- acetylhexosaminidase có thể hoạt động trên cơ chất là dịch huyền phù chitin, vách tế bào nấm, chitooligomer và hoạt động kém hơn trên chitin thô thu từ vỏ tôm. Chitin và vách tế bào nấm chứa chitin là những cơ chất thích hợp cho endochitinase hơn là chitobiosidase và -N-acetylhexosaminidase. Chitooligomer (GluNAc)3 và cao hơn nữa là sợi chitin đều là cơ chất của cả 3 loại enzyme trên nhưng -N-acetylhexosaminidase thì hoạt động chậm hơn trong việc làm giảm độ đục của huyền phù chitin. (GlcNAc)2 là cơ chất tốt nhất của -N- acetylhexosaminidase nhưng không là cơ chất của endochitinase hay chitobiosidase. Chính vì thế có thể sử dụng để phân biệt hoạt tính giữa endochitinase, chitobiosidase và -N- acetylhexosaminidase. Sản phẩm sau cùng của sự phân cắt là N-acetyl glucosamine. 1.1.2.3. Các đặc tính cơ bản của hệ enzyme chitinase [11] * Trọng lượng phân tử Enzyme chitinase tìm thấy ở thực vật bậc cao và tảo biển có trọng lượng phân tử khoảng 30kDa (kilodalton). Ở các loài thân mềm, chân đốt, động vật có xương (cá, lưỡng cư, thú), một số chitinase có trọng lượng phân tử khoảng 40-90 kDa hoặc cao hơn cả là khoảng 120kDa. Trọng lượng phân tử của enzyme chitinase thu nhận từ nấm và vi khuẩn có khoảng biến đổi rộng, từ 30 đến 120 kDa. * Điểm đẳng điện, hằng số Michaelis Enzyme chitinase có giá trị điểm đẳng điện pI thay đổi rộng, từ 3- 10 ở thực vật bậc cao và tảo; pI từ 4,7-9,3 ở côn trùng, giáp xác, thân mềm và cá; pI từ 3,5 – 8,8 ở vi sinh vật. Hằng số Michaelis : 0,010 – 0,011 (g/100ml). * Ảnh hưởng của nhiệt độ [32, 63] Theo nhiều nghiên cứu, chitinase hoạt động ở giới hạn nhiệt độ từ 20 – 500C (Frandberg và Schnure, 1994; Huang và cộng sự, 1996; Bhushan và Hoondal, 1998; Wiwat và cộng sự, 1999; Bendt và cộng sự, 2001). Nhìn chung nhiệt độ tối ưu cho hệ enzyme chitinase ở vi sinh vật hoạt động là 400C, ngoại trừ chitinase của Aspergillus niger hoạt động trên cơ chất là glycol chitin có nhiệt độ tối thích là 50OC (Jeuniaux, 1963). Tuy nhiên, tùy theo nguồn gốc thu nhận mà các enzyme chitinase có thể có những giá trị nhiệt độ tối thích khác nhau. Các enzyme chitinase thực vật thuộc nhóm III và chitinase từ Bacillus licheniformis phân lập ở suối nước nóng cho thấy khả năng chịu đựng nhiệt độ cao đến 800C. Bendt và cộng sự (2001) phát hiện hoạt tính thủy phân chitin mạnh nhất của chitinase từ Vibrio sp. Từ 30-450C và chitinase chịu nhiệt từ chủng Bacillus sp. BG-11 hoạt tính cao nhất ở 40-600C. Lorito (1998) đã khảo sát hoạt tính enzyme chitinase từ chủng Trichoderma harzianum Rifai nhận thấy enzyme này có khả năng hoạt động trong khoảng nhiệt độ rộng từ 25-600C, nhiệt độ tối ưu là 400C. * Ảnh hưởng của pH [32] Giá trị pH tối thích (pHop) của hệ enzyme chitinase từ 4-9 đối với các enzyme chitinase ở thực vật bậc cao và tảo; hệ enzyme chitinase ở động vật là 4,8- 7,5 và ở vi sinh vật là 3,5- 8,0. Theo các nhà khoa học, pHop của enzyme chitinase có thể có sự phụ thuộc vào cơ chất được sử dụng. Đa số các enzyme chitinase đã được nghiên cứu có pHop khoảng 5,0 khi cơ chất là glycol chitin nằm trong khoảng pH kiềm yếu. Các nghiên cứu đã chứng tỏ rằng chitinase hoạt động được trong khoảng pH từ 4,0-8,5 (Morrisey và cộng sự, 1976; Wiwat và cộng sự, 1999; Bendt và cộng sự, 2001). Chitinase của nấm hoạt tính cao nhất ở pH = 5, trong khi ở vi khuẩn pH tối thích là 8,0. Theo Bhushan và Hoondal (1998), hoạt tính của chitinase từ Bacillus sp. BG-11 cao nhất ở pH = 8,5. 1.1.2.4. Các nguồn thu nhận enzyme chitinase [11, 27] Enzyme chitinase hiện diện ở hầu hết các sinh vật. Enzyme chitinase được tìm thấy trong vi khuẩn như Chromobacterium, Klebsiella, Pseudomonas, Clostridium, Vibrio, Bacillus và đặc biệt ở nhóm Streptomycetes. Vi khuẩn tổng hợp enzyme chitinase nhằm phân giải chitin trong môi trường nhằm sử dụng nguồn cacbon cho sự sinh trưởng và phát triển. Chitinase cũng được tạo ra bởi các loài nấm sợi thuộc các chi Trichoderma, Aspergillus, Gliocladium, Calvatia ... và cả ở các nấm lớn như Lycoperdon, Coprinus ... Enzyme chitinase được thực vật tổng hợp nhằm mục đích chống lại các nấm kí sinh gây bệnh cho cây trồng. Những thực vật bậc cao có khả năng tạo chitinase như thuốc lá (Nicotiana sp.), cà rốt, đậu nành (hạt), khoai lang (lá) ... và đặc biệt một số loài tảo biển cũng là nguồn cung cấp enzyme chitinase. Từ một số động vật nguyên sinh, từ các mô và tuyến khác nhau trong hệ tiêu hóa của nhiều loài động vật không xương như ruột khoang, giun tròn, thân mềm, chân đốt ... có thể thu nhận được enzyme chitinase. Đối với động vật có xương sống, enzyme chitinase được tiết ra từ tuyến tụy và dịch dạ dày của các loài cá, lưỡng cư, bò sát ăn sâu bọ, trong dịch dạ dày của những loài chim, thú ăn sâu bọ. Ngoài ra, enzyme chitinase còn được thu nhận từ dịch biểu bì của giun tròn trong suốt quá trình phát triển và dịch tiết biểu bì của các loài chân đốt vào thời điểm thay vỏ, lột da. Enzyme chitinase giúp côn trùng tiêu hóa màng ngoài (cuticun) của chúng trong quá trình biến thái hay lột xác. 1.1.3. Chitin (cơ chất của chitinase) 1.1.3.1. Lịch sử nghiên cứu chitin [56] Chitin được mô tả lần đầu tiên bởi Braconnot vào năm 1811, khi nghiên cứu loài nấm Agaricus volvaceus và một vài loài nấm khác xử lý với dung dịch kiềm, ông thu được sản phẩm và đặt tên là chitin (chitin có nguồn gốc từ Hy Lạp là “tunnic” nghĩa là lớp vỏ bọc). Hai năm sau Odier bắt đầu chú ý đến bản chất, cấu trúc của chitin. Năm 1843, Lassaige chứng minh rằng trong chitin có sự có mặt của nitrogen. 1.1.3.2. Chitin trong tự nhiên [30, 57, 58] Chitin là một polysaccharide phổ biến trong tự nhiên, là một polyme sinh học được tổng hợp với số lượng lớn từ sinh vật. Lượng chitin được sản xuất hàng năm trên thế giới chỉ đứng sau cellulose, chúng được tạo ra trung bình 20g trong 1 năm/1m2 bề mặt trái đất. Trong tự nhiên chitin tồn tại ở cả động vật và thực vật. Trong giới động vật, chitin là một thành phần cấu trúc quan trọng trong lớp vỏ của một số động vật không xương sống như côn trùng, nhuyễn thể, giáp xác và giun tròn. Trong giới thực vật, chitin có ở thành tế bào của nấm và một số tảo Chlorophiceae. Chitin tồn tại trong tự nhiên ở dạng tinh thể, đó là cấu trúc gồm nhiều phân tử được nối với nhau bằng các liên kết hydro tạo thành một hệ thống sợi. Trong tự nhiên, chitin hiếm khi tồn tại ở trạng thái tự do mà gần như luôn luôn liên kết dưới dạng phức hợp chitin- protein. Điều này dẫn đến sự đề kháng với các hóa chất và các enzyme thủy phân, gây nhiều khó khăn cho việc chiết tách, tinh chế chúng. Tùy thuộc vào các đặc tính cơ thể và sự thay đổi từng giai đoạn sinh lý mà trong cùng một loài có thể thấy sự thay đổi về lượng và chất của chitin. Trong động vật thủy sản, đặc biệt là trong vỏ tôm, cua ghẹ, mai mực, hàm lượng chitin chiếm khá cao từ 14-35% so với trọng lượng khô. Vì vậy vỏ tôm, cua ghẹ, mai mực là nguồn nguyên liệu chính để sản xuất chitin và các sản phẩm từ chúng. Chitin được tìm thấy từ nhiều nguồn khác nhau với hàm lượng khác nhau [45,51] Bọ cánh cứng 37% Nhện 38% Bò cạp 30% Sâu 20-38% Nấm 5-20% Tôm 33% Cua 70% Mực 3-20% Mặc dù chúng được phổ biến rộng rãi nhưng cho đến nay nguồn thu nhận chính của chitin là từ vỏ cua và tôm. Trong công nghệ chế biến, do chitin tồn tại ở dạng phức hợp với một số chất như: CaCO3, protein, lipid, các chất hữu cơ … nên việc tách chiết còn khó khăn vì phải đảm bảo cả hai yếu tố cùng một lúc là vừa loại hết tạp chất đồng thời không làm biến đổi tính chất của chitin. 1.1.3.3. Cấu trúc phân tử và tính chất của chitin  Cấu trúc phân tử [58, 59] Qua nghiên cứu về sự thủy phân chitin bằng enzyme hay HCl đậm đặc thì người ta thấy rằng chitin là một polymer được tạo thành từ các đơn vị N-acetyl-β-D-Glucosamine liên kết với nhau bởi liên kết 1-4 glucoside. Hình 1.5. Cấu trúc chitin [62] Chitin có cấu trúc lạp thể gồm 3 dạng như : α, β và γ, sự khác nhau này thể hiện ở sự sắp xếp các chuỗi. Các chuỗi α–chitin xếp xuôi, ngược xen kẽ nhau, tuy nhiên, chúng có một cặp xếp cùng chiều, ở chuỗi β – chitin các chuỗi sắp xếp theo một chiều nhất định, còn ở chuỗi γ – chitin có các cặp chuỗi xếp cùng chiều so le với một chuỗi ngược chiều trong cấu trúc. Hình 1.6. Cấu trúc của alpha-chitin [62]  Tính chất của chitin [27, 31] Chitin ở thể rắn, có cấu trúc bền vững nhờ các liên kết hydro trong và giữa các mạch. Chitin không tan trong nước, trong dung dịch acid và kiềm loãng, trong cồn và trong các dung môi thông thường. Nó chỉ tan được trong một số acid vô cơ đặc (HCl, H2SO4, H3PO4…). 1.1.4. Các yếu tố ảnh hưởng đến sự tạo thành enzyme của nấm sợi trên môi trường lên men bán rắn [14, 35, 36] 1.1.4.1 Thành phần môi trường nuôi cấy nấm sợi sinh chitinase [4, 11, 29]  Nguồn dinh dưỡng cacbon Nấm sợi có khả năng đồng hóa nhiều nguồn cacbon khác nhau, trong đó nguồn cacbonhydrat là dễ hấp thu nhất, trong đó glucose là nguồn cacbon duy nhất tham gia vào phản ứng trong ba chu trình chuyển hóa: con đường Embden Meyerhof (1930), Pentose và Entner Doudoroff. Do chitinase vừa là enzyme cấu trúc, vừa là enzyme cảm ứng nên trong môi trường nuôi cấy nấm sợi sinh chitinase, cần có nguồn chitin là chất cảm ứng và là nguồn cacbon nhằm tăng khả năng sinh tổng hợp enzyme chitinase. Cơ chất dùng để cảm ứng nấm sợi sinh enzyme chitinase là chitin (có thể dạng huyền phù, dạng bột hay dạng thô) và các dẫn xuất của chitin. Nghiên cứu của Jesús de la Cruz và cộng sự (1922) chỉ ra rằng Trichoderma harzianum chỉ tạo ra chitinase khi có nguồn cacbon từ chitin chứ không từ nguồn khác như cellulose hay chitosan.  Nguồn dinh dưỡng nitơ Nguồn nitrogen có ý nghĩa lớn đến quá trình sinh tổng hợp enzyme của nấm sợi. Theo Kapat và cộng sự (1996), khi loại ure ra khỏi môi trường nuôi cấy sẽ làm tăng khả năng tổng hợp chitinase. Takashi và cộng sự (2002) nghiên cứu khả năng sinh chitinase từ nấm sợi Aspergillus sp. đã chỉ ra rằng hoạt tính chitinase cao khi sử dụng nguồn nitơ từ (NH4)2SO4. Theo Nampoothiri và cộng sự (2003), khi bổ sung 2,0% (w/w) cao nấm men vào môi trường nuôi cấy bán rắn thì khả năng tạo chitinase ở Trichoderma harzianum tăng đáng kể. Tuy nhiên, theo Kovacs và cộng sự (2003), trong nuôi cấy bán rắn, nguồn nitrogen bổ sung vào môi trường cám gạo-chitin không ảnh hưởng đến khả năng tạo chitinase. Suresh và Chandrasekharan (1999) cũng ghi nhận sự gia tăng sản lượng enzyme này khi môi trường nuôi cấy Trichoderma harzianum được cung cấp muối amonium phosphat và cao nấm men. N. N. Nawani và B. P. Kapadnis trong quá trình nghiên cứu tối ưu hóa bằng phương pháp thiết kế thí nghiệm dựa trên toán thống kê cho thấy đối với Streptomyces sp. NK 1057 khi cung cấp nguồn nitơ từ cả hai nguồn là cao nấm men và (NH4)2SO4 thì sản lượng chitinase tăng từ 4 – 10% so với dùng riêng lẻ các nguồn này. [33]  Nguồn dinh dưỡng khoáng Các chất khoáng như Fe, Mn, Zn, Mo, Cu ... có vai trò quan trọng như tham gia vào quá trình chuyển hóa vật chất qua màng và thành tế bào nấm sợi, tham gia thành phần cấu tạo protein, enzyme, điều hòa pH môi trường nuôi cấy nên ảnh hưởng đến khả năng sinh tổng hợp enzyme nói chung, chitinase nói riêng. 1.1.4.2. Yếu tố môi trường ảnh hưởng đến khả năng sinh enzyme chitinase của nấm sợi - Ảnh hưởng của độ ẩm Độ ẩm có ý nghĩa trong nuôi cấy bán rắn. Theo Matsumoto và cộng sự (2001), với độ ẩm 75%, chủng Verticillium lecanii ATCC 26854 sinh chitinase có hoạt tính cao nhất. Đối với Trichoderma harzianum, hoạt tính chitinase cao nhất ở độ ẩm môi trường là 65% (Nampoothiri và cộng sự, 2003). Takashi và cộng sự (2002) chỉ ra rằng nấm sợi Aspergillus sp. tổng hợp chitinase có hoạt tính cao ở điều kiện độ ẩm môi trường 57%. - Ảnh hưởng của pH Giá trị pH môi trường ban đầu ảnh hưởng quan trọng đến khả năng sinh tổng hợp chitinase của các chủng nấm sợi. Tùy thuộc vào từng loài, từng chủng mà pH môi trường ban đầu thích hợp là acid, trung tính hay kiềm. Aspergillus sp. tổng hợp chitinase có hoạt tính cao nhất ở điều kiện pH = 5-6 (Takashi và cộng sự, 2002). Nhiều nghiên cứu trên Trichoderma harzianum chỉ ra rằng pH thích hợp cho nấm này sinh trưởng tạo chitinase có hoạt tính cao khoảng pH = 4-6 (Nguyễn Thị Hồng Thương và các đồng tác giả, 2003). - Ảnh hưởng của nhiệt độ Nhiệt độ ảnh hưởng lớn đến tốc độ sinh trưởng và khả năng sinh enzyme của nấm sợi. Nhiệt độ tối ưu cho sự sinh trưởng của đa số nấm sợi từ 28-320C, tối đa dưới 500C. Nhiệt độ quá cao hoặc quá thấp có thể kìm hãm sự sinh trưởng, thậm chí có thể giết chết sợi nấm, quá trình tổng hợp enzyme sẽ bị ức chế. Aspergillus sp. tổng hợp chitinase có hoạt tính cao nhất ở điều kiện nhiệt độ 370C (Takashi và cộng sự, 2002) - Ảnh hưởng của cơ chất cảm ứng Chitinase có thể là enzyme cảm ứng hoặc enzyme cấu trúc. Tuy nhiên trong các môi trường nuôi cấy vi sinh vật người ta đều bổ sung thêm cơ chất chitin nhằm tăng khả năng tạo chitinase. Nhìn chung sự hiện diện của chitin trong môi trường nuôi cấy hữu ích cho việc tạo chitinase (Monreal và Reese, 1969; Ulhoa và Peberdy, 1993). Trong số các cơ chất, chitin huyền phù có khả năng kích thích tạo chitinase cao nhất (Bhushan, 2000; Nampoothiri và cộng sự, 2003). Trong hầu hết các trường hợp, khi nồng độ chitin khoảng 1-1,5% là vi sinh vật có khả năng tạo chitinase (Felse và Panda, 2000). Năm 2003, Binod và cộng sự đã sử dụng nhiều cơ chất khác nhau (như vách tế bào nấm, vỏ tôm, cua ...) để tạo chitinase từ nấm sợi nuôi cấy trên môi trường bán rắn. Việc tận dụng phế liệu này vừa đem lại hiệu quả kinh tế, vừa góp phần giảm thiểu ô nhiễm môi trường. Nghiên cứu của Đinh Minh Hiệp và các đồng tác giả (2003) chỉ ra rằng hệ enzym chitinase của Trichoderma sp. có thể được cảm ứng bởi vách tế bào vi nấm (Curvularia oryzae, Phytophthora primulae), vách tế bào nấm lớn (Schizophyllum commune, Trametes versicolor) hoặc chitin vỏ tôm, trong đó vách tế bào nấm cảm ứng quá trình sinh tổng hợp hệ enzyme chitinase của Trichoderma tốt hơn chitin vỏ tôm. 1.1.5. Những ứng dụng của enzyme chitinase [30, 33] 1.1.5.1. Ứng dụng trong việc thu nhận tế bào trần (thể nguyên sinh) Thể nguyên sinh của tế bào nấm đã được sử dụng như một công cụ thí nghiệm có hiệu quả trong việc nghiên cứu quá trình hình thành thành tế bào, quá trình tổng hợp enzyme, quá trình bài tiết chất cũng như việc cải tiến các chủng nấm ứng dụng trong công nghệ sinh học. Do trong thành tế bào nấm có chứa chitin, hệ enzyme thủy phân chitin là một trong những nhân tố có thể sử dụng để phá vỡ thành tế bào, tạo tế bào trần từ tế bào nấm. Dahiya và cộng sự (2005) đã mô tả hiệu quả của enzyme chitinase thu nhận từ chủng Enterobacter sp. NRG 4 trong việc tạo tế bào trần từ nấm Trichoderma reesei, Aspergilllus niger, Pleutotus florida ... Mizuno và cộng sự (1997) tách tế bào trần từ Schizophyllum commune bằng cách sử dụng dịch lọc môi trường nuôi Bacillus circulans KH – 304. Phức hợp enzyme từ Bacillus circulans WL – 12 với hoạt tính chitinase cao đã rất hiệu quả trong việc thu nhận tế bào trần từ Phaffia rhozyme (Johnson và cộng sự, 1979). 1.1.5.2. Ứng dụng trong việc sản xuất chitooligosaccharides, glucosamine và N- acetyl glucosamine Chitooligosaccharides, glucosamine và N- acetyl glucosamine là chất có tiềm năng rộng lớn trong y dược. Chitooligosaccharides có lợi ích tiềm năng đối với sản xuất thuốc cho người. Ví dụ, chitohexaose và chitoheptaose được phát hiện có tính kháng các khối u. Chitinase thu nhận từ Vibrio alginolyticus đã được sử dụng để sản xuất chitopentaose và chitotriose từ cơ chất chitin huyền phù (Murao và cộng sự, 1992). Sự kết hợp giữa các enzyme thủy phân chitin cần thiết để thu nhận những oligomer có chiều dài chuỗi mong muốn. Ví dụ, để tạo chitooligosaccharides cần tỉ lệ endochitinase, tỉ lệ thấp N-acetyl glucosamindase và exochitinase; trong khi để tạo N- acetyl glucosamine thì cần tỉ lệ cao exochitinase và N-acetyl glucosamindase. (Aloise và cộng sự, 1996) nhận thấy khi ủ enzyme chitinase với tetramer hoặc pentamer thu nhận từ Nocardia oritentalis thì thấy có sự hình thành các hexamer. Sashiwa và cộng sự (2002) đã sản xuất N- acetyl glucosamine từ α-chitin bằng cách sử dụng dịch enzym thô từ Aeromonas hydrophila H-2330. 1.1.5.3. Ứng dụng trong việc nghiên cứu thuốc trừ sâu sinh học Chitin có mặt trong lớp vỏ ngoài và ống tiêu hóa của côn trùng. Villagomez-Castro và Lopez- Romero (1996) đã chỉ ra rằng các sự sự kiện thuộc về hình thái học ở nấm luôn có sự tham gia của enzyme chitinase. Allosamidin, một chất ức chế mạnh của enzyme chitinase, được nhận thấy có khả năng kìm hãm sự sinh trưởng của các loài như ve bét, ấu trùng nhặng sau khi chúng ăn vào (Sakuda và cộng sự, 1987). 1.1.5.4. Ứng dụng trong việc ước tính sinh khối nấm Các nhà nghiên cứu đã mô tả một loại phương pháp khác để ước tính lượng nấm có trong đất. Kỹ thuật bao gồm việc quan sát dưới kính hiển vi và ly trích những chất chỉ thị đặc trưng cho nấm như glucosamine ergosterol. Có sự liên quan chặt chẽ giữa hoạt tính của chitinase và lượng nấm có trong đất. Sự liên quan như thế không thấy xuất hiện với vi khuẩn và xạ khuẩn. Chính vì thế, chitinase trở thành yếu tố chỉ thị thích hợp cho mức sinh trưởng của nấm trong đất (Miller và cộng sự,1998). Tương tự, chitinase và protein gắn kết với chitin có thể được sử dụng để dự báo sự lây nhiễm nấm trên con người (Laine và Lo, 1996). 1.1.5.5. Ứng dụng trong việc kiểm soát muỗi Chitinase đóng vai trò quan trọng đối với hình thái nấm men, côn trùng. Kuranda và Robbins (1991) chỉ ra vai trò của chitinase trong sự phân chia tế bào trong suốt quá trình sinh trưởng của nấm men Sacharomyces cerevisiae. Người ta chỉ ra rằng ấu trùng muỗi Aedes aegypti có thể bị giết trong vòng 48 giờ với sự tác động của chế phẩm thô từ nấm Myrothecium verrucaria. Nấm gây bệnh côn trùng như Beauveria bassiana có thể gây nhiễm trứng của muỗi Aedes aegypti. Điều này mở ra tiềm năng trong việc sản xuất chất kiểm soát côn trùng truyền bệnh như muỗi. 1.1.5.6. Ứng dụng trong y học Hiện nay, các nhà khoa học đang nghiên cứu sử dụng enzyme chitinase trong việc chẩn đoán các bệnh truyền nhiễm do nấm gây ra. Chitin hiện diện trong vách hầu hết các nấm gây bệnh, ít nhất là một giai đoạn trong chu trình sống của nấm. Hay ở nấm men thì chitin hiện diện trong những vết chồi. Do đó có thể dùng phương pháp nhuộm chitin đặc hiệu cho nấm, tạo cơ sở xâ._.y dựng một phương pháp chẩn đoán nhanh các loài nấm gây bệnh. Các nhà khoa học đã đề xuất một phương pháp chẩn đoán bệnh truyền nhiễm do nấm bằng cách sử dụng chitinase đã được phân lập tạo dòng từ Vibrio parahemolyticus (đặt tên chitinase VP1), enzyme này kết hợp chặt chẽ với chitin và có thể sử dụng như một mẫu dò trong việc chẩn đoán với độ nhạy cao để nhận diện một cách đặc hiệu các vách tế bào nấm hay những vết chồi nấm men trong những lát cắt mẫu mô bệnh. [32] Ngoài ra, chitinase có tiềm năng trong việc sản xuất các loại kem hay thuốc bôi ngoài da chứa chất chống nấm bệnh thường xảy ra các nước vùng nhiệt đới bởi khả năng phân hủy vách tế bào vi nấm của chúng. 1.1.5.7. Ứng dụng trong việc kiểm soát nấm gây bệnh trên cây trồng Nhiều loài côn trùng và nấm mốc có hại cho cây trồng và vật nuôi do gây ra nhiều loại dịch bệnh, ảnh hưởng trực tiếp đến sản xuất nông nghiệp. Vì chitin không phải là thành phần phổ biến ở thực vật và động vật có xương nên người ta sử dụng các tác nhân kìm hãm sự sinh tổng hợp chitin trong các nấm và côn trùng như 1-(2,6-dichlorobenzoyl)-3-(3,4-dichlorophenol), nikkomycin, polyoxin D ...Khi áp dụng trên cây cảnh, cây lương thực và trên động vật, những tác nhân trên chứng tỏ có nhiều ưu thế trong việc tiêu diệt nấm mốc, côn trùng có hại mà không gây hại đáng kể cho thực vật hoặc động vật có xương sống. Theo Hirohi Ihui, enzyme chitinase luôn có mặt trong cơ thể thực vật mặc dù trong cây không chứa chitin. Chitinase và β-1,3-glucanase được tạo ra trong mô thực vật khi tế bào bị kích thích bởi nấm gây bệnh chứa chitin, xúc tác sự thủy phân vách tế bào nấm và ngăn cản sự phát triển của bệnh. Chitinase sản xuất bởi Enterobacter sp. NRG4 có hoạt tính cao đối với Fusarium moniliforme, Aspergillus niger, Mucor rouxii và Rhizopus nigricans (Dahiya và cộng sự, 2005). Bhushan và Hoodal (1998) nghiên cứu về tính tương thích của những chitinase chịu nhiệt từ Bacillus sp. BG-11 với thuốc diệt côn trùng và thuốc diệt nấm thường được sử dụng. Chitinase từ Bacillus cereus YQ308 ức chế sự phát triển của nấm bệnh thực vật như Fusarium oxyporum, F. Solani, Penicillium ultimum (Change và cộng sự, 2003). CHIT42, CHIT40 và CHIT72 từ Trichoderma harzianum P1 và Trichoderma virens 41 có thể tác động trên sự nảy mầm và sự kéo dài của sợi nấm của nhiều nấm gây bệnh thực vật như Fusarium spp., Alternaria spp., Ustilago avenae, ... khi chúng được ủ với dịch enzyme. 1.1.5.8. Ứng dụng trong sản xuất protein đơn bào Chất thải rắn từ quá trình chế biến tôm chứa chủ yếu là chitin, CaCO3 và protein. Revah- Moiseev và Carrod (1981) đã đề nghị sử dụng loại chất thải này để chuyển đổi bằng phương pháp sinh học chitin thành protein đơn bào nhờ sử dụng enzyme thủy phân chitin. Họ sử dụng enzyme chitinase thu nhận từ Saccharomyces marcescens để thủy phân chitin và sau đó nuôi Pichia Kudriavazevii để sản xuất protein đơn bào (với 45% protein và 8-11% acid nucleic). Những nấm thường được dùng để sản xuất protein đơn bào là Hansenula polymorpha, Candida tropicalis, Sacharomyces cerevisiae và Myrothecium verrucaria. Vyas và Deshpande (1991) đã dùng enzyme thủy phân chitin thu nhận từ Myrothecium verrucaria và dùng Sacharomyces cerevisiae để sản xuất protein đơn bào từ chất thải chứa chitin. Tổng hàm lượng protein thu được là 61%, với tỉ lệ rất thấp acid nucleic (3,1%). Các nghiên cứu chỉ ra rằng Sacharomyces cerevisiae là chủng tốt nhất để sản xuất protein đơn bào (60% protein và chỉ 1-3% acid nucleic). 1.2. ĐẶC ĐIỂM SINH HỌC CỦA CÁC CHỦNG NẤM SỢI NGHIÊN CỨU 1.2.1. Các chủng thuộc chi nấm Aspergillus [7, 8, 61] 1.2.1.1. Vị trí phân loại Giới: Nấm Ngành: Ascomycota Lớp: Eurotiomycetes Bộ: Eurotiales Họ: Trichocomaceae Giống: Aspergillus 1.2.1.2. Đặc điểm hình thái Sợi nấm có vách ngăn, phân nhánh, không màu, màu nhạt, một số trường hợp trở nên nâu hay màu sẫm khác ở một vùng nhất định của khuẩn lạc. Aspergillus niger khi nuôi cấy trên môi trường thạch-khoai tây-dextrose ở 250C cho khuẩn lạc ban đầu màu trắng, sau nhanh chóng chuyển sang màu đen với việc tạo vô số bào tử đính, mặt trái khuẩn lạc màu hơi vàng nhạt và khi trưởng thành có thể tạo đường rãnh phóng xạ trên bề mặt thạch. Aspergillus awamori khi nuôi cấy trên môi trường Czapek cho khuẩn lạc đạt kích thước 4,5- 5,0cm sau 7 ngày ở nhiệt độ 250C, còn trên môi trường MEA (cao malt) cho kích thước khuẩn lạc lớn hơn. Khuẩn lạc có màu nâu nhạt, dần chuyển sang đậm. Hệ sợi trắng dần ngả vàng sậm. Cuống mang bào tử bụi phồng lên ở ngọn, các chuổi bào tử bụi từ đầu phồng mọc tỏa khắp mọi hướng. Bào tử trần không có vách ngăn, khác nhau về hình dạng, kích thước, màu sắc ... ở các loài khác nhau. Theo Bùi Xuân Đồng, Aspergillus niger có bào tử đính trưởng thành hình cầu, phần lớn 4,0- 5,0µm, xù xì không đều với những gờ rõ và gai không sắp xếp thành vạch kẻ dọc theo chiều dài. Aspergillus awamori có bông mau chóng chuyển màu nâu hơi đỏ, mặt trái khuẩn lạc màu tương tự, cuống bào tử đính phần lớn phát triển dài 1,0-1,5mm, bào tử đính phần lớn đường kính 4,0 đến 4,5 µm. A B Hình 1.7. Hình thái nấm Aspergillus niger [63, 64] (A): bào tử, (B): Khuẩn lạc trên môi trường PGA Hình 1.8. Hình thái nấm Aspergillus awamori [64] (A): Khuẩn lạc trên MT Czapek; (B): Khuẩn lạc trên MT MEA (C), (D), (E): hình thái bào tử 1.2.1.3. Đặc điểm sinh lý, hóa sinh Nấm Aspergillus có mặt khắp nơi trong tự nhiên, chúng phân bố rộng rãi và dễ thích nghi vì chúng có thể hình thành khuẩn lạc trên nhiều nguồn cơ chất khác nhau. Nghiên cứu của Andrea Astoreca và cộng sự cho thấy nhiệt độ thích hợp cho sự sinh trưởng của Aspergillus niger, Aspergillus awamori khoảng 25 - 300C. Theo Takashi và cộng sự (2002), nhiệt độ thích hợp để Aspergillus sp. tổng hợp chitinase có hoạt tính cao nhất là 370C. Wainwright và cộng sự đã chỉ ra rằng, pH thích hợp cho sự sinh trưởng của nấm Aspergillus awamori là khoảng 5.0-7.0. Độ pH quá acid (khoảng 2-3) sẽ ngăn cản sự tạo thành bào tử, dẫn đến hệ sợi bị phân tán khi nuôi cấy chìm. Đã có nhiều nghiên cứu tìm hiểu về enzyme của nấm Aspergillus niger, gồm amylase, amyloglucosidase, cellulase, lactase, invertase, pectinase ... Ngoài ra chitinase của nấm này cũng được đề cập đến trong Hội nghị Quốc tế về Aspergillus tại Nertheland vào tháng 3 năm 2010 [61]. Vấn đề độc tố của Aspergillus niger cũng được đề cập đến, phần lớn chúng không có hại, nhưng một số có thể tạo độc tố gây hại đến động vật và con người. Sự an toàn của Aspergillus niger được đề cập đến trong nhiều bài báo của các tác giả Schuster và cộng sự (2002), Van Dijck và cộng sự (2003), Blumenthal (2004), Olemspka-Beer và cộng sự (2006) [41]. Theo thông tin tóm tắt từ những bài báo của các tác giả này, khoảng 3-10% các chủng Aspergillus niger có khả năng sinh ra độc tố trong những điều kiện nuôi cấy xác định như ochratoxin A. 1.2.2. Trichoderma harzianum [5, 12, 55] 1.2.2.1. Vị trí phân loại Trichoderma là một trong những nhóm vi nấm gây nhiều khó khăn trong phân loại do các đặc điểm cần thiết cho việc phân loại vẫn còn chưa được biết đầy đủ. Theo Rifai (1969), Barnett và Hunter (1972), Trichoderma thuộc lớp nấm, nấm bất toàn Deuteromycetes (Fungi imperfect), chúng được phân loại như sau: Giới: Nấm Nghành: Ascomycota Lớp: Deuteromycetes Bộ: Moniliales Họ: Moniliceae Giống: Trichoderma Một số tài liệu phân loại giống Trichoderma thuộc họ Moniliacae, bộ Moniliales, lớp nấm, nấm bất toàn (Fungi imperfecti). 1.2.2.2. Đặc điểm hình thái [63, 64] Khuẩn lạc Trichoderma harzianum ban đầu có màu lục trắng, sau dần dần chuyển sang màu lục sẫm, mặt dưới khuẩn lạc không màu. Bào tử áo hình cầu, nhẵn, không màu, đường kính 6-12 m, ở giữa sợi nấm hoặc đính ở các nhánh. Giá bào tử trần ngăn vách, phân nhánh 2-3 lần, đường kính 4 - 5 m, dài tới 250 m. Thể bình có kích thước 3-4 x 5-7m, thường thành 2-5 cái ở đỉnh nhánh tận cùng, ở dọc các nhánh thường đơn độc. Thể bình ở giữa thường dài tới 17 m và có đường kính nhỏ hơn, phần rộng nhất khoảng 2-3 m. Bào tử trần hình gần cầu, hình trứng, phần gốc hơi bẹt, nhẵn, màu lục nhạt, không vách ngăn, kích thước 2-3 x 3-3,5 m, nhày ở thể bình. Hình 1.9. Hình thái bào tử và khuẩn lạc của Trichoderma harzianum [65] 1.2.2.3. Đặc điểm sinh lý, hóa sinh Trichoderma harzianum được tìm thấy ở những vùng ấm áp. Theo nghiên cứu của Domsch và cộng sự (1980), nhiệt độ tối ưu cho sự sinh trưởng, phát triển của Trichoderma harzianum vào khoảng 30C, tối đa khoảng 36C. Trichoderma harzianum cũng có thể phát triển ở nhiệt độ khoảng 5C, nhưng sinh trưởng rất chậm và yếu . Trichoderma harzianum tổng hợp enzyme chitinase và các chất kháng sinh (Trichodermin, glyotosin…).Vấn đề độc tố của Trichoderma harzianum chưa được biết đến. 1.3. SƠ LƯỢC CÁC NGHIÊN CỨU VỀ CHITINASE 1.3.1. Trên thế giới So với các enzyme khác như protease, amylase, pectinase ... thì hệ enzyme chitinase được nghiên cứu chậm hơn và các công trình nghiên cứu về chúng còn hạn chế. Đối tượng được nghiên cứu sớm nhất và khá nhiều là xạ khuẩn Streptomyces (L.R. Berger và D.M. Renolds, 1958; R. Grupta, R. K. Saxena, P. Chatuvedi và J. S. Windi, 1995). Những nghiên cứu trên đối tượng này nhằm thu nhận chitinase ứng dụng chủ yếu vào việc phá vỡ vách tế bào nấm. Năm 1978, P.A. Carroad và R. A. Tom có công trình nghiên cứu việc sử dụng phương pháp sinh học trong xử lý chất thải chứa chitin, và tiếp đó là nghiên cứu của I. G. Cosio, R. A. Fisher, P. A (1982) đề cập đến quá trình sản xuất enzyme nhằm xử lý chất thải chứa chitin. Về sau, trong những năm 1989, việc thu nhận chitinase được tiếp tục nghiên cứu trên các đối tượng khác như Serratia liquefaciens (S. Joshi, Kozlowski), Myrothecium verrucaria (P. Vyas và M. V. Deshpand) và vẫn chủ yếu tìm hiểu ứng dụng của chitinase trong việc phá vỡ vách tế bào nấm. Những năm gần đây, chitinase được nghiên cứu nhiều trên đối tượng nấm sợi Trichoderma. Năm 1991, C. J. Ulhoa, J. F. Peberdy nghiên cứu sự điều hòa quá trình sinh tổng hợp chitinase của Trichoderma harzianum. Năm 1999, P. A. Felse và T. Panda nghiên cứu tối ưu hóa quá trình sinh tổng hợp chitinase từ Trichoderma hazianum. Năm 2000, P. A. Felse và T. Panda nghiên cứu quá trình nuôi cấy chìm thu nhận chitinase từ Trichoderma harzianum trong bể lắc. Năm 2003, Ashok Pandey và cộng sự nghiên cứu tối ưu hóa quá trình tổng hợp chitinase có tính kháng nấm từ Trichoderma harzianum nuôi cấy trên môi trường bán rắn. Dường như Trichoderma là chi nấm đến nay được phát hiện có hoạt tính chitinase khá cao, ứng dụng nhiều trong các lĩnh vực, đặc biệt trong bảo vệ thực vật. Đối với chi nấm Aspergillus cũng đã có một số công trình nghiên cứu về khả năng sinh chitinase của chúng trên môi trường bán rắn (Nopakarn Rattanakit và cộng sự, 2002). Những chủng thuộc chi nấm này được nghiên cứu thu nhận chitinase là Aspergillus carneus (A. A. Sherief, 1990); A. fumigatus (Jin-Ian Xia và Jing Xiong, 2009). A. A. Shubakow và P. S. Kucheryavykh (2003) đã nghiên cứu nuôi cấy nhiều chủng nấm khác nhau trong đó có các chủng thuộc các chi nấm Aspergillus và Trichoderma... Tuy nhiên những nghiên cứu về chitinase từ nấm sợi phần lớn thực hiện trên môi trường nuôi cấy lỏng. Vi khuẩn cũng là một đối tượng được nghiên cứu về việc sinh tổng hợp chitinase. Năm 1998, B. Bhushan, G. S. Hoondal nghiên cứu enzyme chitinase chịu nhiệt từ Bacillus sp G-1. Và gần đây nhất, năm 2009, S. M. Akhir và cộng sự nghiên cứu tối ưu hóa môi trường nuôi cấy thu nhận enzyme chitinase từ Bacillus licheniformis bằng phương pháp nghiên cứu bề mặt đáp ứng (RSM). Ưu điểm của chitinase thu nhận từ vi khuẩn này là tính bền nhiệt của chúng. Trên đối tượng thực vật, cũng có một vài nghiên cứu thu nhận chitinase. Năm 2004, Isabela S. Santos và cộng sự có công trình nghiên cứu về chitinase thu nhận trên đối tượng thực vật (hạt cây Adenanthera pavonina L.), cây họ đậu Phaseolumungo. Kết quả cho thấy chitinase từ hạt cây Adenanthera pavonina L. là loại enzyme bền nhiệt. Tác giả Wen-Chi Hou, Yaw-Huei Lin, Ying- Chou Chen (1998) nghiên cứu thu nhận chitinase chiết rút từ lá khoai lang. 1.3.2. Trong nước Nhìn chung những nghiên cứu về enzyme chitinase trong nước còn rất hạn chế cho dù tiềm năng ứng dụng rộng rãi của enzyme này là không thể phủ nhận. Năm 2001, tác giả Đinh Minh Hiệp có công trình nghiên cứu đặc tính của enzyme chitinase thu nhận từ nấm mật Coprinus fimentarius và một số ứng dụng trong lĩnh vực bảo vệ thực vật và y dược. Năm 2003, các tác giả Nguyễn Thị Hồng Thương, Đinh Minh Hiệp, Đồng Thị Thanh Thu có công trình nghiên cứu khảo sát một số yếu tố tác động lên quá trình sinh tổng hợp hệ enzyme chitinase của các chủng nấm mốc Trichodrema sp. Năm 2004, tác giả Tô Duy Khương thực hiện đề tài khảo sát sự sinh tổng hợp chitinase ở Trichoderma spp. và khả năng đối kháng với một số nấm gây bệnh. Năm 2008, tác giả Nguyễn Đình Nga và cộng sự khảo sát khả năng tác động lên nấm Candida albicans của enzyme chitinase thu nhận từ thực vật và từ nấm Trichoderma. Trên đối tượng thực vật, năm 2008, tác giả Đặng Trung Thành đã nghiên cứu quá trình thu nhận enzyme chitinase từ cây khoai lang Ipomoea batatas, thu enzyme chitinase có hoạt tính khá cao (hoạt độ đạt 192 UI/ml) Nhìn chung, những nghiên cứu về chitinase trong nước chưa nhiều, chủ yếu vẫn trên nấm Trichoderma, ứng dụng chủ yếu mới đề cập đến trong lĩnh vực bảo vệ thực vật và khởi đầu trong lĩnh vực y dược. Chương 2: VẬT LIỆU VÀ PHƯƠNG PHÁP 2.1 NGUYÊN VẬT LIỆU 2.1.1 Giống vi sinh vật Các chủng nấm sợi Asperillus niger và Asperillus awamori, Aspergillus sp., Trichoderma harzianum do phòng thí nghiệm, Bộ môn Sinh hóa, Trường Đại Học Khoa Học Tự Nhiên Thành phố Hồ Chí Minh và Bộ môn Vi sinh, Trường Đại Học Sư Phạm Thành phố Hồ Chí Minh cung cấp. 2.1.2 Các môi trường sử dụng trong thí nghiệm 2.1.2.1. Môi trường nuôi cấy và giữ giống nấm sợi MT 1 [1, 12]: Cao nấm men agar – Yeast Extract Agar (YEA) Cao nấm men 4g Agar 20g Glucose 20g Nước 1000ml pH = 5,5 – 6,0 Khử trùng 1atm/30 phút MT 2 [6, 10, 26]: Thạch khoai tây Dextrose (PGA) Nước chiết khoai tây 200ml Agar 20g Glucose 20g Nước 1000ml pH = 5,5 – 6,0 Khử trùng 1atm/30 phút MT 3 [11,26]: Malt Extract Agar (YEA) Cao Malt 20g Pepton 1g Agar 20g Glucose 20g Nước 1000ml pH = 5,5 – 6,0 Khử trùng 1atm/30 phút 2.1.2.2. Môi trường cảm ứng tổng hợp enzym chitinase [12, 13, 29] MT 4: NaNO3 3,5g K2HPO4 1,5g MgSO4.7H2O 0,5g KCl 0,5g FeSO4.7H2O 0,01g Bột chitin 10g Agar 20g Nước 1000ml pH = 6,5 Khử trùng 1atm/30phút 2.1.2.3. Môi trường bán rắn khảo sát khả năng sinh tổng hợp hệ enzyme thủy phân chitinase từ các chủng nấm sợi [12,15, 34, 36] MT 5: Trấu 50g Cám 40g Đường vàng 4g (NH4)2HPO4 0,1g Urê 2,2g CaCl2 0,1g KCl 0,05g MgSO4.7H20 0,05g HCl 0,05g Bột chitin 10g Nước 60% MT 6: Trấu 50g Cám 40g Cao nấm men 1g (NH4)2SO4 0,1g CaCl2 0,1g KCl 0,05g MgSO4.H20 0,05g Bột chitin 10g Nước 60% * Thay thế bột chitin bằng nguyên liệu giàu chitin khác (bột vỏ tôm, bột vỏ cua) để nghiên cứu ảnh hưởng cơ chất cảm ứng lên khả năng sinh tổng hợp enzyme chitinase của chủng nấm sợi chọn nghiên cứu. 2.2 DỤNG CỤ THIẾT BỊ HÓA CHẤT 2.2.1 Dụng cụ - Thước đo khuẩn lạc. - Bình tam giác các kích cỡ khác nhau (250ml, 500ml, 1000ml). - Ống nghiệm 5ml, 10ml. - Đĩa petri. - Pipetman các loại. - Buồng đếm hồng cầu. - Đèn cồn, diêm quẹt, que cấy, giấy lọc, giấy báo cũ, bông không thấm nước, bông thấm nước, đũa khuấy, phễu, ống đong, vải lọc … - Nồi nấu môi trường, lò điện. 2.2.2 Thiết bị - Nồi hấp vô trùng. - Tủ cấy vô trùng. - Tủ sấy 300C – 1800C. - Tủ ấm. - Máy đo pH. - Máy li tâm. - Cân phân tích điện tử. - Máy chụp ảnh kỹ thuật số. - Máy nghiền mẫu. - Máy đo độ ẩm. - Máy đo quang phổ UV / Visible Spectrophometre ... - Tủ lạnh. 2.2.3 Hóa chất và vật liệu Glucose, cao nấm men, chitin, agar, cồn, nước cất, khoai tây, trấu, cám; NaNO3, K2HPO4, MgSO4.7H2O, KCl, FeSO4.7H2O, (NH4)2HPO4, (NH4)2SO4, Urê, CaCl2, HCl, NaH2PO4, Na2HPO4, N-acetyl-β-D-Glucosamine, Lugol, thuốc thử DNS, và các hóa chất khác sử dụng trong từng phương pháp sẽ nêu cụ thể. 2.3 PHƯƠNG PHÁP NGHIÊN CỨU 2.3.1 Phương pháp cấy chuyền và giữ giống nấm sợi [1, 6, 12] Thực hiện: Chuẩn bị môi trường PGA, cho vào các ống nghiệm, đem hấp khử trùng, lấy ra để nguội tạo môi trường thạch nghiêng. Thực hiện trong buồng cấy: cấy bào tử chủng nấm nghiên cứu lên bề mặt thạch trong ống nghiệm. Để ống vừa cấy chuyền ở nhiệt độ phòng (28 – 300C) trong thời gian 7 ngày, sau đó đem vào tủ giữ giống 40C. Sau 2 tháng cấy chuyền một lần. 2.3.2 Phương pháp xác định sơ bộ khả năng tổng hợp enzyme chitinase bằng cách đo đường kính vòng phân giải [1, 12, 22] Nguyên tắc: khi nuôi cấy trong môi trường thạch có bổ sung chitin, nấm sợi sinh enzyme chitinase phân giải chitin thành các dạng có cấu trúc mạch ngắn hơn và N-acetyl- D- glucosamine. Các dạng này không cho phản ứng màu với thuốc thử Lugol, do đó sau khi nhỏ thuốc thử Lugol, độ lớn của phần môi trường trong suốt phản ánh khả năng sinh tổng hợp chitinase của nấm sợi. Phương pháp này chỉ định tính enzyme, chỉ đánh giá sơ bộ khả năng tổng hợp chitinase chứ chưa xác định chính xác hoạt độ chitinase. Thực hiện: Chuẩn bị môi trường cảm ứng tổng hợp enzyme chitinase (MT 4), hấp khử trùng ở 121OC trong 30 phút. Dùng các đĩa petri vô trùng (sấy ở 1600C trong 120 phút) có kích thước bằng nhau, cho 20ml môi trường từ ống nghiệm vào đĩa, để nguội, sau 1-2 ngày kiểm tra sự tạp nhiễm. Cấy chấm điểm chủng nấm sợi nghiên cứu vào đĩa, có thể chấm một điểm giữa hoặc 3 điểm trên đĩa petri. Ủ ở nhiệt độ phòng (28-300C) trong 2-3 ngày. Cho thuốc thử Lugol vào, để 5 phút rồi đo đường kính vòng phân giải bằng thước đo khuẩn lạc. Nếu D – d ≥ 25mm : hoạt tính enzyme mạnh D – d ≥ 20mm : hoạt tính enzyme khá mạnh D – d ≥ 15mm : hoạt tính enzyme trung bình D – d ≤ 10mm : hoạt tính enzyme yếu Từ đó chọn chủng có tạo hệ enzyme thủy phân chitinase từ khá trở lên tiếp tục nghiên cứu tối ưu hóa. Cách pha dung dịch Lugol Iod 2,5g KI 5g Nước 1000ml 2.3.3 Phương pháp nuôi cấy nấm sợi trên môi trường bán rắn thu enzyme chitinase [12, 34] Nguyên tắc: Nấm sợi sử dụng chất dinh dưỡng có sẵn trong môi trường để sinh trưởng, tổng hợp một lượng lớn enzyme ngoại bào lẫn trong môi trường, ta thu được sinh khối nấm sợi lẫn enzyme thô từ canh trường. Thực hiện: Cân 10 gam môi trường bán rắn nuôi cấy nấm sợi thu enzyme chitinase (MT 5) vào các bình tam giác 250 ml, hấp khử trùng ở 1210C trong 30 phút, sau đó để nguội. Dùng giống trong ống thạch nghiêng, cho 10ml nước cất vô trùng vào mỗi ống, dùng que cấy cà đều bề mặt lấy hết bào tử tạo dạng huyền phù.Tiến hành đếm bào tử bằng buồng đếm hống cầu. Cho 2ml huyền phù bào tử vào mỗi bình tam giác chứa môi trường đã chuẩn bị (mật độ bào tử là 105 đến 106 bào tử/1 gam môi trường). Nuôi ở nhiệt độ phòng. Canh trường nuôi cấy được thu nhận sau từng khoảng thời gian, điều kiện nhiệt độ, pH nhất định theo mục đích nghiên cứu cụ thể. 2.3.4 Phương pháp tách chiết dịch enzyme thô và thu nhận chế phẩm enzyme từ canh trường nuôi cấy [1, 12, 15] Nguyên tắc: Dựa trên khả năng hòa tan trong nước của các enzyme, dùng nước cất hòa tan tạo dịch enzyme, sau đó dùng các tác nhân kết tủa khác nhau để kết tủa enzyme. Kết tủa enzyme được sấy ở nhiệt độ dưới 400C, tạo sản phẩm enzyme dạng bột khô. Thực hiện: Sau khi nuôi cấy trong các điều kiện môi trường cụ thể, cho vào mỗi bình tam giác (chứa 10 gam môi trường) 80ml nước cất. Lắc trong 1 giờ, tốc độ 200 vòng/ phút, lọc qua vải, thu dịch lọc. Đem dịch lọc li tâm 5000 vòng/phút trong 10 phút, thu dịch nổi, ta được dịch enzym thô. Để thu được chế phẩm enzyme (CPE) dạng bột khô, sử dụng tác nhân tủa là Etanol 960 với tỉ lệ 1/3 – 1/4 (dung dịch Enzyme/Etanol) để kết tủa enzyme, ly tâm thu tủa enzyme, sấy nhiệt độ dưới 400C được sản phẩm (CPE). 2.3.5 Phương pháp xác định hoạt độ của enzyme chitinase theo phương pháp so màu với thuốc thử DNS (3,5-dinitrosalicylic acid) [11,12]  Định nghĩa Phương pháp so màu là phương pháp phân tích dựa trên việc so sánh cường độ màu của dung dịch nghiên cứu với cường độ màu của dung dịch tiêu chuẩn có nồng độ xác định. Dùng phương pháp so màu chủ yếu để xác định lượng nhỏ các chất, phương pháp này cho phép tiết kiệm thời gian cùng kết quả chính xác cao so với các phương pháp khác.  Nguyên tắc + đường khử → + đường oxi hóa 3,5-dinitrosalicylic acid 3-amino-5-nitrosalicylate Khi enzyme phân hủy chitin tác dụng với cơ chất là chitin huyền phù, sản phẩm tạo thành là N-acetyl-β-D-Glucosamine được hiện màu với thuốc thử DNS (3,5-dinitrosalisylic acid) và đem đo mật độ quang ở bước sóng 535nm.  Hóa chất * Dung dịch đệm phosphat 0,2M, pH 6,5 - Dung dịch NaH2PO4 0,2M: cân 31,2g NaH2PO4.2H2O hòa tan và thêm nước cất đến 1000ml. - Dung dịch Na2HPO4 0,2M: cân 71,6g Na2HPO4.12H2O hòa tan và thêm nước cất đến 1000ml. * Thuốc thử DNS - Dung dịch A: hòa tan 300g muối Na-K tartrat kép vào trong 500ml nước cất. - Dung dịch B: hòa tan 10g 3,5-dinitrosalicylic acid vào 200ml dung dịch NaOH 2N. - Thuốc thử DNS dùng trong phản ứng: trộn dung dịch A với dung dịch B, thêm nước cất cho đủ 1 lít. Chỉ pha dung dịch DNS dùng cho phản ứng trước khi sử dụng, bảo quản trong chai nâu và tránh không khí.  Chuẩn bị dịch huyền phù chitin 1% Do chitin không hòa tan trong nước nên để tiến hành xác định hoạt tính enzyme chitinase cần huyền phù hóa chitin: Lấy 5 gam chitin hòa tan trong 50ml HCl đậm đặc. Khuấy đều trong vòng 3 phút ở 40C. Sau đó cho nước cất lạnh 5C từ từ tới 500ml, chitin sẽ tạo huyền phù màu trắng sữa. Huyền phù sẽ được lọc qua giấy lọc hoặc ly tâm (3500 vòng/phút trong 7 phút). Rửa nước cất nhiều lần để pH đạt trung tính, bảo quản huyền phù ở tủ lạnh (2-6C).  Dựng đường chuẩn N-acetyl-β-D-Glucosamine Bảng 2.1. Bố trí thí nghiệm dựng đường chuẩn Glucosamine Ống nghiệm số 0 1 2 3 4 5 6 7 Nồng độ N-acetyl-β-D- 0 1 2 3 4 5 6 7 Glucosamine 10µmol/ml chuẩn (µmol/ml) Thể tích dung dịch N-acetyl-β- D-Glucosamine (ml) 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 Thể tích nước cất (ml) 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 DNS (ml) 1 1 1 1 1 1 1 1 Lắc đều, đun sôi 5 phút H2O (ml) 5 5 5 5 5 5 5 5 Lắc đều, để yên 5 phút, đo OD ở bước sóng 535 nm Chuẩn bị dung dịch N-acetyl-β-D-Glucosamine chuẩn 10µmol/ml: cân chính xác 0,0221g N- acetyl-β-D-Glucosamine, cho nước cất vào đủ 10ml. Dựng đường chuẩn biểu diễn sự tương quan giữa nồng độ N-acetyl-β-D-Glucosamine và giá trị OD.  Xác định hoạt độ enzyme chitinase Nguyên tắc: hoạt độ enzyme chitinase được xác định đựa trên phương pháp định lượng glucosamine trong quá trình phân giải chitin. Lượng glucosamine tạo ra được xác định theo phương pháp Elson- Morgan. Tiến hành  Đối với enzyme làm thí nghiệm Chọn các ống nghiệm có cùng kích cỡ, cùng độ dày. Cho vào ống nghiệm hỗn hợp phản ứng gồm: 1ml huyền phù chitin 1% và 1ml dịch enzyme chitinase. Hỗn hợp này được ủ ở 50C trong vòng 60 phút. Ngừng phản ứng bằng 1ml NaOH 1N và đun sôi cách thủy trong 5 phút. Ly tâm 4000 vòng/phút trong 5 phút hoặc lọc, thu dịch nổi. Cho 1ml dịch nổi và 1ml DNS 1%, lắc đều, đun sôi cách thủy trong 5 phút, làm lạnh nhanh trong bồn làm lạnh. Thêm 5ml nước cất, lắc đều và đo OD với bước sóng 535nm.  Đối với dịch enzyme làm đối chứng Cho 1ml dịch enzyme vào ống nghiệm, nhỏ 1ml NaOH 1N, sau đó cho thêm 1ml dịch huyền phù chitin 1% vào, tiếp tục làm theo các bước tương tự như trên.  Cách tính [16] Một đơn vị hoạt tính enzyme chitinase (đvht) là lượng enzyme cần thiết để giải phóng 1g N- acetyl-β-D-Glucosamine (NAG) từ chitin huyền phù trong thời gian 1 phút ở nhiệt độ phản ứng (500C). Tổng hoạt tính (đvht) = t Vna .. Hoạt tính chung (đvht/g.CP.E ) = mtv vna .. '.. Trong đó a: hàm lượng glucosamine (g /ml) trong dịch thí nghiệm đã pha loãng n: hệ số pha loãng V: thể tích dịch môi trường nuối cấy (ml) v’: thể tích dịch enzyme ban đầu (ml) v : thể tích enzyme thí nghiệm (ml) t : thời gian phản ứng (phút) m : khối lượng enzyme (g) 2.3.6 Phương pháp khảo sát sự biến thiên hoạt độ của hệ enzyme chitinase của các chủng nấm sợi theo các điều kiện nuôi cấy khác nhau (nhiệt độ, thời gian, chất cảm ứng) khi nuôi cấy trên môi trường bán rắn [12, 23] Nguyên tắc Yếu tố môi trường ảnh hưởng lớn đến khả năng sinh tổng hợp enzyme của nấm sợi như thời gian nuôi cấy, nhiệt độ môi trường nuôi, loại cơ chất cảm ứng ... Khảo sát các yếu tố trên nhằm chọn ra điều kiện tối ưu để nuôi cấy chủng nấm sợi nghiên cứu thu nhận enzyme chitinase có hoạt độ cao nhất. 2.3.6.1. Xác định thời gian thích hợp để thu nhận chitinase có hoạt độ cao nhất ở các chủng nấm sợi nghiên cứu Chuẩn bị môi trường nuôi cấy (mục 2.3.3). Cấy các chủng nấm sợi. Thu dịch chiết enzyme (mục 2.3.4) tại các thời điểm nuôi cấy 24 giờ, 36 giờ, 48 giờ, 60 giờ, 72 giờ, 84 giờ, 96 giờ. Xác định sự biến thiên hoạt độ enzyme (mục 2.3.5) chitinase theo thời gian nuôi cấy các chủng nấm sợi nghiên cứu, từ đó xác định được thời gian thích hợp. 2.3.6.2. Khảo sát ảnh hưởng nhiệt độ môi trường nuôi đối với đối với khả năng sinh tổng hợp chitinase ở các chủng nấm sợi nghiên cứu Sử dụng Môi trường 4 (mục 2.1.2), nuôi cấy trong thời gian tối ưu đã khảo sát ở trên ở các nhiệt độ môi trường 20OC, 25OC, 30OC, 35OC, 40OC, 450C. Tiến hành thu dịch chiết enzyme, tiến hành xác định hoạt độ enzyme (theo mục 2.3.5), từ đó xác định được nhiệt độ phù hợp. 2.3.6.3. Khảo sát ảnh hưởng nồng độ chất cảm ứng (chitin) đến khả năng sinh tổng hợp chitinase của các chủng nấm sợi Sử dụng Môi trường 5 (mục 2.1.2), lần lượt bổ sung chitin ở các nồng độ 0,0%, 5%, 10%, 15%, 20%. Nuôi cấy ở nhiệt độ và thời gian tối ưu đã khảo sát ở mục 2.3.6.1 và 2.3.6.2. Tiến hành thu dịch chiết enzyme, xác định hoạt độ chitinase, từ đó xác định được nồng độ chitin phù hợp. 2.3.6.4. Khảo sát ảnh hưởng chất cảm ứng đến khả năng sinh tổng hợp chitinase ở các chủng nấm sợi nghiên cứu Sử dụng Môi trường 4 (mục 2.1.2), trong đó sử dụng thay thế lần lượt bột chitin, bột vỏ tôm, bột vỏ cua (tương ứng lượng chitin là 10%). Nuôi cấy trong thời gian và nhiệt độ tối ưu đã khảo sát ở trên, thu dịch enzyme thô, tiến hành xác định hoạt độ enzyme (theo mục 2.3.5), từ đó xác định được chất cảm ứng phù hợp. 2.3.7 Phương pháp tối ưu điều kiện môi trường nuôi cấy nấm sợi bằng qui hoạch thực nghiệm [2] Để xác định điều kiện tối ưu cho quá trình nuôi cấy chủng nấm sợi chọn thu chế phẩm enzyme chitinase, chúng tôi dùng thực nghiệm yếu tố toàn phần. Từ các kết quả thí nghiệm nghiên cứu ảnh hưởng riêng lẻ từng yếu tố, chúng tôi chọn 3 yếu tố là thời gian nuôi cấy, nhiệt độ môi trường nuôi cấy và nồng độ chitin trong môi trường nuôi cấy để nghiên cứu tối ưu hóa theo phương pháp qui hoạch thực nghiệm. - Lập ma trận đầy đủ với số thí nghiệm N = 23 = 8. Vì không làm thí nghiệm song song nên để xác định phương sai tái hiện, chúng tôi làm 3 thí nghiệm ở tâm (mức cơ sở). Bảng 2.2. Ma trận qui hoạch thực nghiệm STT thí nghiệm x1 x2 x3 y 1 + + + y1 2 + + - y2 3 + - + y3 4 + - - y4 5 - + + y5 6 - + - y6 7 - - + y7 8 - - - y8 9 0 0 0 y0(1) 10 0 0 0 y0(2) 11 0 0 0 y0(3) - Dùng PTHQ tuyến tính dạng: ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b123x1x2x3 trong đó ŷ: hoạt độ chitinase theo phương trình hồi qui (PTHQ) - Tính b0, b1, b2, b3 ... bj - các hệ số của phương trình hồi qui bằng công thức:    N i ijij yx N b 1 1 N yxx b N i iilj jl   1 )( - Kiểm định tính ý nghĩa của các hệ số PTHQ theo tiêu chuẩn Student + Giá trị trung bình của thông số tối ưu hóa (hoạt độ chitinase) của 3 thí nghiệm tại tâm: ŷ0 = 3 3 1 )0( u u y + Phương sai tái hiện: 1 )( 1 2 0)0( 2      n yy s n u u th với n: số thí nghiệm tại tâm (ở đây n=3)  sth + Sai số tính cho bi: N s s thbi  + Tính các giá trị t: tj = | |bj sbj với tlt: p=0,05; bậc tự do f = n-1 = 2 → t(0,05;2)= 4,3 (Tra bảng Student) Hệ số có ý nghĩa phải thỏa mãn điều kiện tj > tlt - Kiểm định sự tương thích của PTHQ theo tiêu chuẩn Fisher + Flt: giá trị chuẩn Fisher ở mức p = 0,05; f1 = N-l; f2 = n-1; trong đó N=8, l: số hệ số có ý nghĩa, n = 3. + Ftn: 2 2 th du tn s s F  với lN yy s i du     2 2 )ˆ( PTHQ thu được tương thích với thực nghiệm khi Ftn < Flt Từ PTHQ, nhận xét ảnh hưởng các yếu tố lên quá trình sinh tổng hợp chitinase của chủng nấm sợi chọn nghiên cứu. Sau đó tiến hành tối ưu hóa thực nghiệm bằng phương pháp đường dốc nhất, bắt đầu từ điểm không, là mức cơ sở. Từ kết quả thu được chọn điều kiện môi trường nuôi cấy thích hợp cho chủng nấm sợi chọn nghiên cứu sinh trưởng và tạo chitinase có hoạt tính cao nhất. 2.3.8 Phương pháp nghiên cứu các điều kiện hoạt động tối ưu của chế phẩm chitinase thu nhận từ một số chủng nấm sợi nghiên cứu 2.3.8.1. Khảo sát ảnh hưởng của nhiệt độ đối với khả năng xúc tác của chế phẩm enzyme chitinase Cân 0,2g chế phẩm enzyme, hòa tan trong 10ml nước cất. Tiến hành phản ứng với chitin huyền phù trong các điều kiện nhiệt độ ủ 300C, 400C, 500C, 600C, 700C, 800C. Từ đó vẽ đồ thị biễu diễn sự biến thiên của sản phẩm tạo thành (glucosamine) theo nhiệt độ, tìm ra nhiệt độ hoạt động tối ưu của chế phẩm enzyme. 2.3.8.2. Khảo sát ảnh hưởng của pH đối với khả năng xúc tác của chế phẩm enzyme chitinase pH = 3,0 – 4,0: sử dụng đệm citrate pH = 4,5 – 5,0: sử dụng đệm acetate pH = 3,0 – 4,0: sử dụng đệm phosphate Cân mỗi 0,1g chế phẩm enzym, hòa tan trong 5ml._.

Các file đính kèm theo tài liệu này:

  • pdfLA5255.pdf
Tài liệu liên quan