BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
------------------------
Lê Thị Huệ
KHẢO SÁT KHẢ NĂNG SINH TỔNG HỢP
ENZYME CHITINASE CỦA MỘT SỐ CHỦNG NẤM SỢI
THUỘC GIỐNG ASPERGILLUS, TRICHODERMA VÀ
ỨNG DỤNG
Chuyên ngành: Vi sinh vật học
Mã số: 60 42 40
LUẬN VĂN THẠC SĨ SINH HỌC
Người hướng dẫn khoa học
PGS. TS. ĐỒNG THỊ THANH THU
Thành phố Hồ Chí Minh - 2010
Luận văn thạc sĩ Cao học K18
DANH MỤC VIẾT TẮT
CPE chế phẩm enzyme
CT Canh trườ
68 trang |
Chia sẻ: huyen82 | Lượt xem: 3825 | Lượt tải: 5
Tóm tắt tài liệu Khảo sát khả năng sinh tổng hợp Enzyme Chitinase của một số chủng nấm sợi thuộc giống Aspergillus, Trichoderma và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ng
DNS 3,5-dinitrosalicylic axit
MT Mơi trường
OD Mật độ quang
∆OD Hiệu số giữa mật độ quang của mẫu thử thật và thử khơng
UI Đơn vị hoạt độ enzyme (tính theo đơn vị quốc tế)
PTHQ Phương trình hồi qui
TB Giá trị trung bình
topt Nhiệt độ tối ưu
pHopt pH tối ưu
Luận văn thạc sĩ Cao học K18
MỞ ĐẦU
Vi sinh vật là nhĩm sinh vật cĩ số lượng nhiều nhất và cĩ khả năng chuyển hĩa vật chất
trong thiên nhiên mạnh nhất. Hiện nay người ta khai thác nhiều enzyme từ vi sinh vật và được ứng
dụng rất nhiều trong đời sống, sản xuất. So với nguồn khai thác enzyme từ động vật và thực vật,
nguồn enzyme từ vi sinh vật cĩ nhiều ưu điểm như hoạt tính enzyme cao, thời gian tổng hợp
enzyme từ vi sinh vật rất ngắn (chỉ vài ngày), nguyên liệu sản xuất rẻ tiền, cĩ thể sản xuất hồn tồn
theo qui mơ cơng nghiệp. Nhiều enzyme được khai thác từ vi sinh vật được tập trung nghiên cứu và
cĩ nhiều ứng dụng trong thời gian qua như protease, amylase, cellulase, pectinase … Những năm
sau này người ta đang chú ý nhiều hơn về một loại enzyme khác nữa là chitinase, đây là enzyme
thủy phân chitin.
Chitin là một polymer sinh học cĩ thể so sánh với các polysaccharide như cellulose, keratin.
Chitin phân bố rất rộng rãi ở dạng cấu trúc cơ bản trong thành tế bào của nấm và là bộ xương ngồi
của tơm cua và cơn trùng. Đây là một polymer cĩ trọng lượng phân tử cao, khơng tan trong nước,
chứa các đơn phân là N-acetyl-glucosamine liên kết bởi liên kết 1,4-β. Chitin cĩ nhiều cơng dụng
trong nhiều lĩnh vực như y học và cơng nghiệp…
Những enzyme cĩ liên quan đến chuyển hĩa và phân giải chitin đang được nghiên cứu nhiều
trong những năm gần đây. Chitin bị phân giải bởi hệ enzyme cĩ tên gọi chung là chitinase. Enzyme
này được sản xuất bởi các tổ chức sống dưới tế bào để phục vụ nhu cầu chức năng sinh lý của
chúng. Sự phân giải chitin dưới tác động enzyme phụ thuộc vào các yếu tố hĩa lý (tỉ lệ giữa cơ chất
và enzyme, pH, nhiệt độ…). Trong các nguồn thu nhận chitinase thì chitinase từ vi sinh vật là
nguồn quan trọng. Những nguồn sinh vật để thu nhận enzyme chitinase đáng kể là các chủng vi
khuẩn thuộc các chi Enterobacter và Streptomyces, các chủng nấm sợi thuộc các chi Asperillus,
Penicillium, và Trichoderma, và một số động vật nguyên sinh.
Những năm gần đây cĩ nhiều cơng trình nghiên cứu tập trung vào enzyme chitinase do tiềm
năng ứng dụng to lớn của enzyme này trong nhiều lĩnh vực khác nhau như trong thu nhận tế bào
trần (thể nguyên sinh), sản xuất chitooligosaccharides, glucosamine và N-acetyl glucosamine, sản
xuất thuốc trừ sâu sinh học, ứng dụng trong y học, trong việc kiểm sốt nấm kí sinh trên cây
trồng…v.v…
Vì những ứng dụng rộng rãi của chitinase như trên, mục đích đề tài chúng tơi nhằm nghiên
cứu sinh tổng hợp chitinase nhằm thu nhận chế phẩm chitinase từ một số chủng nấm sợi và bước
đầu khảo sát một số ứng dụng của enzyme này. Chúng tơi thực hiện đề tài: Khảo sát khả năng sinh
tổng hợp enzyme chitinase của một số chủng nấm sợi thuộc giống Aspergillus, Trichoderma và
ứng dụng.
Luận văn thạc sĩ Cao học K18
Mục tiêu đề tài: Lựa chọn chủng nấm sợi cĩ khả năng tổng hợp chitinase cao, thu nhận chế
phẩm chitinase từ canh trường và bước đầu nghiên cứu một số ứng dụng của chitinase.
Nhiệm vụ của đề tài
- Khảo sát khả năng sinh tổng hợp chitinase của một vài chủng nấm sợi thuộc giống
Aspergillus, Trichoderma. Chọn chủng nấm sợi để nghiên cứu tiếp.
- Khảo sát một số yếu tố ảnh hưởng quá trình sinh tổng hợp chitinase của chủng nấm sợi đã
chọn và tối ưu hĩa bằng phương pháp qui hoạch thực nghiệm.
- Thu nhận chế phẩm chitinase.
- Khảo sát các điều kiện hoạt động tối ưu của chế phẩm chitinase: nhiệt độ, pH, nồng độ cơ
chất, thời gian thủy phân cơ chất.
- Bước đầu thử nghiệm ứng dụng nấm sợi sinh enzyme chitinase hoặc chế phẩm chitinase.
Thời gian và địa điểm nghiên cứu đề tài
Thời gian : từ tháng 8/2009 – 7/2010
Địa điểm : Đề tài được thực hiện tại Phịng Thí nghiệm Vi sinh, khoa Sinh
Trường Đại học Sư Phạm Thành phố Hồ Chí Minh.
Luận văn thạc sĩ Cao học K18
Chương 1: TỔNG QUAN TÀI LIỆU
1.1. HỆ ENZYME CHITINASE TỪ NẤM SỢI
1.1.1. Khái quát về enzyme
1.1.1.1. Cấu trúc [1, 23]
Enzyme là một loại phân tử protein được sinh vật tổng hợp nên và tham gia xúc tác cho các
phản ứng sinh học.
Enzyme cĩ phân tử lượng từ 20.000 đến 1.000.000 dalton, được cấu tạo từ các L-acid amin
liên kết nhau bởi liên kết peptid. Bộ phận đặc hiệu tham gia phản ứng gọi là trung tâm hoạt động
của enzyme.
Enzyme gồm hai nhĩm: nhĩm enzyme một cấu tử gồm những enzyme cĩ thành phần hĩa học
duy nhất là protein; nhĩm enzyme hai cấu tử gồm những enzyme cĩ hai thành phần: phần protein
thuần gọi là apoenzyme cĩ vai trị xúc tác, phần thứ hai phi protein là coenzyme là những chất hữu
cơ đặc hiệu cĩ vai trị thúc đẩy quá trình xúc tác. Ngồi ra cĩ một số kim loại như Zn, Cu, Mn, Fe ...
đĩng vai trị liên kết enzyme và cơ chất trong quá trình xúc tác phản ứng, liên kết giữa apoenzyme
và coenzyme, tham gia trực tiếp vào quá trình vận chuyển điện tử.
1.1.1.2. Cơ chế hoạt động [16, 23]
Trung tâm hoạt động của enzyme (E) cĩ cấu trúc khơng gian tương ứng với cơ chất mà
chúng xúc tác, phản ứng hình thành trong quá trình enzyme tiếp xúc với cơ chất như “chìa khĩa-ổ
khĩa“ tạo phức hợp enzyme-cơ chất. Quá trình tác động của enzyme vào cơ chất để tạo sản phẩm
trải qua ba giai đoạn:
Giai đoạn 1: Enzyme (E) tương tác với cơ chất (S) nhờ những liên kết tạo phức E-S
Giai đoạn 2: Khi cơ chất (S) tạo phức với enzyme (E), cơ chất sẽ bị thay đổi cấu hình khơng
gian và mức độ bền vững các liên kết, liên kết bị phá vỡ tạo sản phẩm.
Giai đoạn 3: Enzyme tách ra, được giải phĩng nguyên vẹn. Sản phẩm (P) tạo thành.
Sơ đồ cơ chế tác động enzyme:
E + S E-S E + P
1.1.1.3. Phân loại enzyme [16, 23]
Cĩ nhiều cách phân loại enzyme, ở đây chúng tơi đề cập đến cách phân loại dựa vào kiểu xúc
tác của enzyme. Tại Hội nghị Sinh Hĩa học năm 1961 họp tại Moscow đã đề ra một bảng phân loại
mới, trong đĩ enzyme được chia ra làm 6 lớp chính:
- Oxydoreductase (lớp enzyme oxy hĩa hồn nguyên sinh học)
Luận văn thạc sĩ Cao học K18
- Transferase (lớp enzyme vận chuyển)
- Hydrolase (lớp enzyme thủy phân)
- Liase (lớp enzyme phân giải chất khơng theo con đường thủy phân)
- Ligase hay Syntetase (lớp enzyme tổng hợp chất)
- Isomerase hay Mutase (lớp enzyme đồng phân hĩa)
1.1.2. Enzyme chitinase [32]
1.1.2.1. Cấu trúc
Chitinase [Poly- Beta- 1- 4 – (2-acetalmido-2-deoxy) - D-glucoside glucanohydrolase]
thuộc nhĩm enzyme thủy phân (hydrolase), là enzyme thủy phân chitin thành chitobiose hay
chitotriose qua việc xúc tác sự thủy giải liên kết 1,4 glucoside giữa C1 và C4 của hai phân tử N-
acetyl Glucosamine liên tiếp nhau trong chitin. Mã số của enzyme chitinase là EC 3.2.1.14.
3 → Hydrolase
2 → Glycosylase
1 → Glycosidase
14 → Chitinase
Chitinase cịn cĩ các tên gọi khác (tùy theo xuất xứ enzyme) là chitodextrinase, β-poly-N-
acetyl glucosamine, ChiA1 (Bacillus circulans), Chitotriosidase (Homo sapiens), ChiC
(Streptomyces griceus) ...
Căn cứ vào hệ thống phân loại enzyme, chitinase thuộc ba họ Glycohydrolase 18 và
Glycohydrolase 19 và Glycohydrolase 20.
Họ Glycohydrolase 18
Là họ lớn nhất với khoảng 180 chi, được tìm thấy ở hầu hết các lồi thuộc Eukaryote,
Prokaryote và virus. Họ này bao gồm chủ yếu là enzyme chitinase, ngồi ra cịn cĩ các enzyme khác
như chitodextrinase, chitobiase và N-acetyl glucosaminidase.
Các enzyme chitinase thuộc họ Glycohydrolase 18 cĩ cấu trúc xác định gồm 8 xoắn α/β
cuộn trịn, chúng hoạt động thơng qua một cơ chế kiểm sốt mà trong đĩ các đoạn β polymer bị
phân cắt tạo ra sản phẩm là β anomer. [32]
Các chitinase thuộc họ Glycohydrolase 18 được tổng hợp từ các giống như Aeromonas
hydrophila, Bacillus circularis, Trichoderma harzianum, Aphanocladium album, Serratia
marcescens…
Luận văn thạc sĩ Cao học K18
Hình 1.1. Cấu trúc khơng gian của chitinase thuộc họ Glycohydrolase 18 [68]
Họ Glycohydrolase 19
Họ này gồm hơn 130 chi, thường thấy chủ yếu ở thực vật, ngồi ra cịn cĩ ở xạ khuẩn
Streptomyces griceus, vi khuẩn Haemophilus influenzae… Chúng cĩ cấu trúc hình cầu với một
vịng xoắn và hoạt động thơng qua cơ chế nghịch chuyển.
Họ Glycohydrolase 19 bao gồm những chitinase thuộc nhĩm I, II,IV.
Hình 1.2. Cấu trúc khơng gian của chitinase thuộc họ Glycohydrolase 19 [68]
Họ Glycohydrolase 20
Họ Glycohydrolase 20 bao gồm β-N-acetyl-D-Glucosamine acetylhexosaminidase từ vi
khuẩn, Streptomyces và người.
Ngồi ra, dựa vào trình tự đầu amin (N), sự định vị của enzyme, điểm đẳng điện, peptide
nhận biết và vùng cảm ứng, người ta phân loại enzyme chitinase thành 5 nhĩm:
Nhĩm I: là những đồng phân enzyme trong phân tử cĩ đầu N giàu cystein nối với tâm xúc
tác thơng qua một đoạn giàu glycin hoặc prolin ở đầu carboxyl (C) (peptide nhận biết). Vùng giàu
cystein cĩ vai trị quan trọng đối với sự gắn kết enzyme và cơ chất chitin nhưng khơng cần cho hoạt
động xúc tác.
Nhĩm II: là những đồng phân enzyme trong phân tử chỉ cĩ tâm xúc tác, thiếu đoạn giàu
cystein ở đầu N và peptid nhận biết ở đầu C, cĩ trình tự amino acid tương tự chitinase ở nhĩm I.
Chitinase nhĩm II cĩ ở thực vật, nấm, và vi khuẩn.
Nhĩm III: trình tự amino acid hồn tồn khác với chitinase nhĩm I và II
Luận văn thạc sĩ Cao học K18
Nhĩm IV: là những đồng phân enzyme chủ yếu cĩ ở lá cây hai lá mầm, 41-47% trình tự
amino acid ở tâm xúc tác của chúng tương tự như chitinase nhĩm I, phân tử cũng cĩ đoạn giàu
cystein nhưng kích thước phân tử nhỏ hơn đáng kể so với chitinase nhĩm I.
Nhĩm V: dựa trên những dữ liệu về trình tự, người ta nhận thấy vùng gắn chitin (vùng giàu
cystein) cĩ thể đã giảm đi nhiều lần trong quá trình tiến hĩa ở thực vật bậc cao.
1.1.2.2. Cơ chế hoạt động của enzyme chitinase [11]
Enzyme phân giải chitin bao gồm: endochitinase, chitin 1-4-- chitobiosidase, N-acetyl- -
D-glucosaminidase (exochitinase) và chitobiase.
Endochitinase là enzyme phân cắt nội mạch chitin một cách ngẫu nhiên tạo các đoạn
olygosaccharides, đã được nghiên cứu từ dịch chiết mơi trường nuơi cấy nấm Trichoderma
harzianum (2 loại endochitinase: M1 = 36kDa, pI1 = 5,3 (± 0,2) và M2 = 40kDa, pI2 = 3,9),
Gliocladium virens (M = 41kDa, pI = 7,8).
Chitin 1,4- - chitobiosidase là enzyme phân cắt chitin tạo thành các sản phẩm chính là các
dimer chitobiose, cụ thể enzyme này được thu từ Trichoderma harzianum (M = 36kDa, pI = 4,4 ±
0,2).
N-acetyl – - D - glucosaminidase (exochitinase) là enzyme phân cắt chitin từ một đầu cho
sản phẩm chính là các monomer N-acetyl-D-glucosamine.
Chitobiase là enzyme phân cắt chitobiose thành hai đơn phân N-acetyl-D-glucosamine.
Hình 1.3. Vị trí phân cắt enzyme chitinase [69]
Endochitinase phân cắt ngẫu nhiên trong nội mạch của chitin và chitooligomer, sản phẩm tạo
thành là một hỗn hợp các polymer cĩ trọng lượng phân tử khác nhau, nhưng chiếm đa số là các
diacetylchitobiose (GlcNAc)2 do hoạt tính endochitinase khơng thể phân cắt thêm được nữa.
Luận văn thạc sĩ Cao học K18
Hình 1.4. Cơ chế hoạt động của enzyme chitinase ở Trichoderma [11]
Chitin 1,4-chitobiosidase phân cắt chitin và chitooligomer ở mức trùng hợp lớn hơn hay
bằng 3 [(GlcNAc)n với n ≥ 3] từ đầu khơng khử và chỉ phĩng thích diacetylchitobiose (GlcNAc)2.
β –N- acetyl hexosaminidase phân cắt các chitooligomer hay chitin một cách liên tục từ đầu
khơng khử và chỉ phĩng thích các đơn phân N-acetyl glucosamine (GlcNAc).
Ngồi ra, để khảo sát kiểu phân cắt, người ta sử dụng N-acetyl-chito-oligosaccharide làm
cơ chất. Các oligsaccharide thường được thủy phân bên trong trên một vài vị trí xác định hoặc một
cách ngẫu nhiên. Một số enyme chitinase cĩ khả năng thủy phân trisaccharid, một số khác thì
khơng. Cĩ hai dạng chitinase thủy phân pentasaccharide: một phân cắt bên trong tạo disaccharid và
trisaccharid; một phân cắt bên ngồi tạo các monosaccharid và tetrasaccharid. Tĩm lại chitinase
thực chất là enzyme cắt ngẫu nhiên.
Endochitinase, chitobiosidase và β –N- acetylhexosaminidase cĩ thể hoạt động trên cơ chất
là dịch huyền phù chitin, vách tế bào nấm, chitooligomer và hoạt động kém hơn trên chitin thơ thu
từ vỏ tơm. Chitin và vách tế bào nấm chứa chitin là những cơ chất thích hợp cho endochitinase hơn
là chitobiosidase và -N-acetylhexosaminidase. Chitooligomer (GluNAc)3 và cao hơn nữa là sợi
chitin đều là cơ chất của cả 3 loại enzyme trên nhưng -N-acetylhexosaminidase thì hoạt động chậm
hơn trong việc làm giảm độ đục của huyền phù chitin. (GlcNAc)2 là cơ chất tốt nhất của -N-
acetylhexosaminidase nhưng khơng là cơ chất của endochitinase hay chitobiosidase. Chính vì thế cĩ
thể sử dụng để phân biệt hoạt tính giữa endochitinase, chitobiosidase và -N- acetylhexosaminidase.
Sản phẩm sau cùng của sự phân cắt là N-acetyl glucosamine.
Luận văn thạc sĩ Cao học K18
1.1.2.3. Các đặc tính cơ bản của hệ enzyme chitinase [11]
* Trọng lượng phân tử
Enzyme chitinase tìm thấy ở thực vật bậc cao và tảo biển cĩ trọng lượng phân tử khoảng
30kDa (kilodalton). Ở các lồi thân mềm, chân đốt, động vật cĩ xương (cá, lưỡng cư, thú), một số
chitinase cĩ trọng lượng phân tử khoảng 40-90 kDa hoặc cao hơn cả là khoảng 120kDa. Trọng
lượng phân tử của enzyme chitinase thu nhận từ nấm và vi khuẩn cĩ khoảng biến đổi rộng, từ 30
đến 120 kDa.
* Điểm đẳng điện, hằng số Michaelis
Enzyme chitinase cĩ giá trị điểm đẳng điện pI thay đổi rộng, từ 3- 10 ở thực vật bậc cao và
tảo; pI từ 4,7-9,3 ở cơn trùng, giáp xác, thân mềm và cá; pI từ 3,5 – 8,8 ở vi sinh vật. Hằng số
Michaelis : 0,010 – 0,011 (g/100ml)
* Ảnh hưởng của nhiệt độ [32, 62]
Theo nhiều nghiên cứu, chitinase hoạt động ở giới hạn nhiệt độ từ 20 – 500C (Frandberg và
Schnure, 1994; Huang và cộng sự, 1996; Bhushan và Hoondal, 1998; Wiwat và cộng sự, 1999;
Bendt và cộng sự, 2001).
Nhìn chung nhiệt độ tối ưu cho hệ enzyme chitinase ở vi sinh vật hoạt động là 400C, ngoại
trừ chitinase của Aspergillus niger hoạt động trên cơ chất là glycol chitin cĩ nhiệt độ tối thích là
50OC (Jeuniaux, 1963). Tuy nhiên, tùy theo nguồn gốc thu nhận mà các enzyme chitinase cĩ thể cĩ
những giá trị nhiệt độ tối thích khác nhau. Các enzyme chitinase thực vật thuộc nhĩm III và
chitinase từ Bacillus licheniformis phân lập ở suối nước nĩng cho thấy khả năng chịu đựng nhiệt độ
cao đến 800C. Bendt và cộng sự (2001) phát hiện hoạt tính thủy phân chitin mạnh nhất của chitinase
từ Vibrio sp. Từ 30-450C và chitinase chịu nhiệt từ chủng Bacillus sp. BG-11 hoạt tính cao nhất ở
40-600C.
Lorito (1998) đã khảo sát hoạt tính enzyme chitinase từ chủng Trichoderma harzianum
Rifai nhận thấy enzyme này cĩ khả năng hoạt động trong khoảng nhiệt độ rộng từ 25-600C, nhiệt độ
tối ưu là 400C.
* Ảnh hưởng của pH [32]
Giá trị pH tối thích (pHop) của hệ enzyme chitinase từ 4-9 đối với các enzyme chitinase ở
thực vật bậc cao và tảo; hệ enzyme chitinase ở động vật là 4,8- 7,5 và ở vi sinh vật là 3,5- 8,0.
Theo các nhà khoa học, pHop của enzyme chitinase cĩ thể cĩ sự phụ thuộc vào cơ chất được
sử dụng. Đa số các enzyme chitinase đã được nghiên cứu cĩ pHop khoảng 5,0 khi cơ chất là glucol
chitin nằm trong khoảng pH kiềm yếu.
Luận văn thạc sĩ Cao học K18
Các nghiên cứu đã chứng tỏ rằng chitinase hoạt động được trong khoảng pH từ 4,0-8,5
(Morrisey và cộng sự, 1976; Wiwat và cộng sự, 1999; Bendt và cộng sự, 2001). Chitinase của nấm
hoạt tính cao nhất ở pH = 5, trong khi ở vi khuẩn pH tối thích là 8,0. Theo Bhushan và Hoondal
(1998), hoạt tính của chitinase từ Bacillus sp. BG-11 cao nhất ở pH = 8,5.
1.1.2.4. Các nguồn thu nhận enzyme chitinase [11, 27]
Enzyme chitinase hiện diện ở hầu hết các sinh vật.
Enzyme chitinase được tìm thấy trong vi khuẩn như Chromobacterium, Klebsiella,
Pseudomonas, Clostridium, Vibrio, Bacillus và đặc biệt ở nhĩm Streptomycetes. Vi khuẩn tổng hợp
enzyme chitinase nhằm phân giải chitin trong mơi trường nhằm sử dụng nguồn cacbon cho sự sinh
trưởng và phát triển.
Chitinase cũng được tạo ra bởi các lồi nấm sợi thuộc các chi Trichoderma, Aspergillus,
Gliocladium, Calvatia ... và cả ở các nấm lớn như Lycoperdon, Coprinus ...
Enzyme chitinase được thực vật tổng hợp nhằm mục đích chống lại các nấm kí sinh gây
bệnh cho cây trồng. Những thực vật bậc cao cĩ khả năng tạo chitinase như thuốc lá (Nicotiana sp.),
cà rốt, đậu nành (hạt), khoai lang (lá) ... và đặc biệt một số lồi tảo biển cũng là nguồn cung cấp
enzyme chitinase.
Từ một số động vật nguyên sinh, từ các mơ và tuyến khác nhau trong hệ tiêu hĩa của nhiều
lồi động vật khơng xương như ruột khoang, giun trịn, thân mềm, chân đốt ... cĩ thể thu nhận được
enzyme chitinase. Đối với động vật cĩ xương sống, enzyme chitinase được tiết ra từ tuyến tụy và
dịch dạ dày của các lồi cá, lưỡng cư, bị sát ăn sâu bọ, trong dịch dạ dày của những lồi chim, thú
ăn sâu bọ.
Ngồi ra, enzyme chitinase cịn được thu nhận từ dịch biểu bì của giun trịn trong suốt quá
trình phát triển và dịch tiết biểu bì của các lồi chân đốt vào thời điểm thay vỏ, lột da. Enzyme
chitinase giúp cơn trùng tiêu hĩa màng ngồi (cuticun) của chúng trong quá trình biến thái hay lột
xác.
1.1.3. Chitin (cơ chất của chitinase)
1.1.3.1. Lịch sử nghiên cứu chitin [55]
Chitin được mơ tả lần đầu tiên bởi Braconnot vào năm 1811, khi nghiên cứu lồi nấm
Agaricus volvaceus và một vài lồi nấm khác xử lý với dung dịch kiềm, ơng thu được sản phẩm và
đặt tên là chitin (chitin cĩ nguồn gốc từ Hy Lạp là “tunnic” nghĩa là lớp vỏ bọc).
Hai năm sau Odier bắt đầu chú ý đến bản chất, cấu trúc của chitin.
Năm 1843, Lassaige chứng minh rằng trong chitin cĩ sự cĩ mặt của nitrogen.
Luận văn thạc sĩ Cao học K18
1.1.3.2. Chitin trong tự nhiên [30, 56, 57]
Chitin là một polysaccharide phổ biến trong tự nhiên, là một polyme sinh học được tổng hợp
với số lượng lớn từ sinh vật. Lượng chitin được sản xuất hàng năm trên thế giới chỉ đứng sau
cellulose, chúng được tạo ra trung bình 20g trong 1 năm/1m2 bề mặt trái đất. Trong tự nhiên chitin
tồn tại ở cả động vật và thực vật.
Trong giới động vật, chitin là một thành phần cấu trúc quan trọng trong lớp vỏ của một số
động vật khơng xương sống như cơn trùng, nhuyễn thể, giáp xác và giun trịn. Trong giới thực vật,
chitin cĩ ở thành tế bào của nấm và một số tảo Chlorophiceae.
Chitin tồn tại trong tự nhiên ở dạng tinh thể, đĩ là cấu trúc gồm nhiều phân tử được nối với
nhau bằng các liên kết hydro tạo thành một hệ thống sợi. Trong tự nhiên, chitin hiếm khi tồn tại ở
trạng thái tự do mà gần như luơn luơn liên kết dưới dạng phức hợp chitin- protein. Điều này dẫn đến
sự đề kháng với các hĩa chất và các enzyme thủy phân, gây nhiều khĩ khăn cho việc chiết tách, tinh
chế chúng. Tùy thuộc vào các đặc tính cơ thể và sự thay đổi từng giai đoạn sinh lý mà trong cùng
một lồi cĩ thể thấy sự thay đổi về lượng và chất của chitin.
Trong động vật thủy sản, đặc biệt là trong vỏ tơm, cua ghẹ, mai mực, hàm lượng chitin
chiếm khá cao từ 14-35% so với trọng lượng khơ. Vì vậy vỏ tơm, cua ghẹ, mai mực là nguồn
nguyên liệu chính để sản xuất chitin và các sản phẩm từ chúng.
Chitin được tìm thấy từ nhiều nguồn khác nhau với hàm lượng khác nhau [45,51]
Bọ cánh cứng 37%
Nhện 38%
Bị cạp 30%
Sâu 20-38%
Nấm 5-20%
Tơm 33%
Cua 70%
Mực 3-20%
Mặc dù chúng được phổ biến rộng rãi nhưng cho đến nay nguồn thu nhận chính của chitin là
từ vỏ cua và tơm. Trong cơng nghệ chế biến, do chitin tồn tại ở dạng phức hợp với một số chất như:
CaCO3, protein, lipid, các chất hữu cơ … nên việc tách chiết cịn khĩ khăn vì phải đảm bảo cả hai
yếu tố cùng một lúc là vừa loại hết tạp chất đồng thời khơng làm biến đổi tính chất của chitin.
Luận văn thạc sĩ Cao học K18
1.1.3.3. Cấu trúc phân tử và tính chất của chitin
Cấu trúc phân tử [57, 58]
Qua nghiên cứu về sự thủy phân chitin bằng enzyme hay HCl đậm đặc thì người ta thấy rằng
chitin là một polymer được tạo thành từ các đơn vị N-acetyl-β-D-Glucosamine liên kết với nhau bởi
liên kết 1-4 glucoside.
Hình 1.5. Cấu trúc chitin [61]
Chitin cĩ cấu trúc lạp thể gồm 3 dạng như : α, β và γ, sự khác nhau này thể hiện ở sự sắp xếp
các chuỗi. Các chuỗi α–chitin xếp xuơi, ngược xen kẽ nhau, tuy nhiên, chúng cĩ một cặp xếp cùng
chiều, ở chuỗi β – chitin các chuỗi sắp xếp theo một chiều nhất định, cịn ở chuỗi γ – chitin cĩ các
cặp chuỗi xếp cùng chiều so le với một chuỗi ngược chiều trong cấu trúc.
Hình 1.6. Cấu trúc của alpha-chitin [61]
Tính chất của chitin [27, 31]
Chitin ở thể rắn, cĩ cấu trúc bền vững nhờ các liên kết hydro trong và giữa các mạch. Chitin
khơng tan trong nước, trong dung dịch acid và kiềm lỗng, trong cồn và trong các dung mơi thơng
thường. Nĩ chỉ tan được trong một số acid vơ cơ đặc (HCl, H2SO4, H3PO4…).
Luận văn thạc sĩ Cao học K18
1.1.4. Các yếu tố ảnh hưởng đến sự tạo thành enzyme của nấm sợi trên mơi trường lên men
bán rắn [14, 35, 36]
1.1.4.1 Thành phần mơi trường nuơi cấy nấm sợi sinh chitinase [4, 11, 29]
Nguồn dinh dưỡng cacbon
Nấm sợi cĩ khả năng đồng hĩa nhiều nguồn cacbon khác nhau, trong đĩ nguồn
cacbonhydrat là dễ hấp thu nhất, trong đĩ glucose là nguồn cacbon duy nhất tham gia vào phản ứng
trong ba chu trình chuyển hĩa: con đường Embden Meyerhof (1930), Pentose và Entner Doudoroff.
Do chitinase vừa là enzyme cấu trúc, vừa là enzyme cảm ứng nên trong mơi trường nuơi
cấy nấm sợi sinh chitinase, cần cĩ nguồn chitin là chất cảm ứng và là nguồn cacbon nhằm tăng khả
năng sinh tổng hợp enzyme chitinase. Cơ chất dùng để cảm ứng nấm sợi sinh enzyme chitinase là
chitin (cĩ thể dạng huyền phù, dạng bột hay dạng thơ) và các dẫn xuất của chitin. Nghiên cứu của
Jesús de la Cruz và cộng sự (1922) chỉ ra rằng Trichoderma harzianum chỉ tạo ra chitinase khi cĩ
nguồn cacbon từ chitin chứ khơng từ nguồn khác như cellulose hay chitosan.
Nguồn dinh dưỡng nitơ
Nguồn nitrogen cĩ ý nghĩa lớn đến quá trình sinh tổng hợp enzyme của nấm sợi. Theo
Kapat và cộng sự (1996), khi loại ure ra khỏi mơi trường nuơi cấy sẽ làm tăng khả năng tổng hợp
chitinase. Takashi và cộng sự (2002) nghiên cứu khả năng sinh chitinase từ nấm sợi Aspergillus sp.
đã chỉ ra rằng hoạt tính chitinase cao khi sử dụng nguồn nitơ từ (NH4)2SO4. Theo Nampoothiri và
cộng sự (2003), khi bổ sung 2,0% (w/w) cao nấm men vào mơi trường nuơi cấy bán rắn thì khả
năng tạo chitinase ở Trichoderma harzianum tăng đáng kể. Tuy nhiên, theo Kovacs và cộng sự
(2003), trong nuơi cấy bán rắn, nguồn nitrogen bổ sung vào mơi trường cám gạo-chitin khơng ảnh
hưởng đến khả năng tạo chitinase. Suresh và Chandrasekharan (1999) cũng ghi nhận sự gia tăng sản
lượng enzyme này khi mơi trường nuơi cấy Trichoderma harzianum được cung cấp muối amonium
phosphat và cao nấm men. N. N. Nawani và B. P. Kapadnis trong quá trình nghiên cứu tối ưu hĩa
bằng phương pháp thiết kế thí nghiệm dựa trên tốn thống kê cho thấy đối với Streptomyces sp. NK
1057 khi cung cấp nguồn nitơ từ cả hai nguồn là cao nấm men và (NH4)2SO4 thì sản lượng chitinase
tăng từ 4 – 10% so với dùng riêng lẻ các nguồn này. [33]
Nguồn dinh dưỡng khống
Các chất khống như Fe, Mn, Zn, Mo, Cu ... cĩ vai trị quan trọng như tham gia vào quá
trình chuyển hĩa vật chất qua màng và thành tế bào nấm sợi, tham gia thành phần cấu tạo protein,
enzyme, điều hịa pH mơi trường nuơi cấy nên ảnh hưởng đến khả năng sinh tổng hợp enzyme nĩi
chung, chitinase nĩi riêng.
Luận văn thạc sĩ Cao học K18
1.1.4.2. Yếu tố mơi trường ảnh hưởng đến khả năng sinh enzyme chitinase của nấm sợi
- Ảnh hưởng của độ ẩm
Độ ẩm cĩ ý nghĩa trong nuơi cấy bán rắn. Theo Matsumoto và cộng sự (2001), với độ ẩm
75%, chủng Verticillium lecanii ATCC 26854 sinh chitinase cĩ hoạt tính cao nhất. Đối với
Trichoderma harzianum, hoạt tính chitinase cao nhất ở độ ẩm mơi trường là 65% (Nampoothiri và
cộng sự, 2003). Takashi và cộng sự (2002) chỉ ra rằng nấm sợi Aspergillus sp. tổng hợp chitinase
cĩ hoạt tính cao ở điều kiện độ ẩm mơi trường 57%.
- Ảnh hưởng của pH
Giá trị pH mơi trường ban đầu ảnh hưởng quan trọng đến khả năng sinh tổng hợp chitinase
của các chủng nấm sợi. Tùy thuộc vào từng lồi, từng chủng mà pH mơi trường ban đầu thích hợp
là acid, trung tính hay kiềm. Aspergillus sp. tổng hợp chitinase cĩ hoạt tính cao nhất ở điều kiện pH
= 5-6 (Takashi và cộng sự, 2002). Nhiều nghiên cứu trên Trichoderma harzianum chỉ ra rằng pH
thích hợp cho nấm này sinh trưởng tạo chitinase cĩ hoạt tính cao khoảng pH = 4-6 (Nguyễn Thị
Hồng Thương và các đồng tác giả, 2003).
- Ảnh hưởng của nhiệt độ
Nhiệt độ ảnh hưởng lớn đến tốc độ sinh trưởng và khả năng sinh enzyme của nấm sợi. Nhiệt
độ tối ưu cho sự sinh trưởng của đa số nấm sợi từ 28-320C, tối đa dưới 500C. Nhiệt độ quá cao hoặc
quá thấp cĩ thể kìm hãm sự sinh trưởng, thậm chí cĩ thể giết chết sợi nấm, quá trình tổng hợp
enzyme sẽ bị ức chế. Aspergillus sp. tổng hợp chitinase cĩ hoạt tính cao nhất ở điều kiện nhiệt độ
370C (Takashi và cộng sự, 2002)
- Ảnh hưởng của cơ chất cảm ứng
Chitinase cĩ thể là enzyme cảm ứng hoặc enzyme cấu trúc. Tuy nhiên trong các mơi trường
nuơi cấy vi sinh vật người ta đều bổ sung thêm cơ chất chitin nhằm tăng khả năng tạo chitinase.
Nhìn chung sự hiện diện của chitin trong mơi trường nuơi cấy hữu ích cho việc tạo chitinase
(Monreal và Reese, 1969; Ulhoa và Peberdy, 1993). Trong số các cơ chất, chitin huyền phù cĩ khả
năng kích thích tạo chitinase cao nhất (Bhushan, 2000; Nampoothiri và cộng sự, 2003). Trong hầu
hết các trường hợp, khi nồng độ chitin khoảng 1-1,5% là vi sinh vật cĩ khả năng tạo chitinase (Felse
và Panda, 2000).
Năm 2003, Binod và cộng sự đã sử dụng nhiều cơ chất khác nhau (như vách tế bào nấm, vỏ
tơm, cua ...) để tạo chitinase từ nấm sợi nuơi cấy trên mơi trường bán rắn. Việc tận dụng phế liệu
này vừa đem lại hiệu quả kinh tế, vừa gĩp phần giảm thiểu ơ nhiễm mơi trường.
Nghiên cứu của Đinh Minh Hiệp và các đồng tác giả (2003) chỉ ra rằng hệ enzym chitinase
của Trichoderma sp. cĩ thể được cảm ứng bởi vách tế bào vi nấm (Curvularia oryzae, Phytophthora
Luận văn thạc sĩ Cao học K18
primulae), vách tế bào nấm lớn (Schizophyllum commune, Trametes versicolor) hoặc chitin vỏ tơm,
trong đĩ vách tế bào nấm cảm ứng quá trình sinh tổng hợp hệ enzyme chitinase của Trichoderma tốt
hơn chitin vỏ tơm.
1.1.5. Những ứng dụng của enzyme chitinase [30, 33]
1.1.5.1. Ứng dụng trong việc thu nhận tế bào trần (thể nguyên sinh)
Thể nguyên sinh của tế bào nấm đã được sử dụng như một cơng cụ thí nghiệm cĩ hiệu quả
trong việc nghiên cứu quá trình hình thành thành tế bào, quá trình tổng hợp enzyme, quá trình bài
tiết chất cũng như việc cải tiến các chủng nấm ứng dụng trong cơng nghệ sinh học. Do trong thành
tế bào nấm cĩ chứa chitin, hệ enzyme thủy phân chitin là một trong những nhân tố cĩ thể sử dụng
để phá vỡ thành tế bào, tạo tế bào trần từ tế bào nấm.
Dahiya và cộng sự (2005) đã mơ tả hiệu quả của enzyme chitinase thu nhận từ chủng
Enterobacter sp. NRG 4 trong việc tạo tế bào trần từ nấm Trichoderma reesei, Aspergilllus niger,
Pleutotus florida ...
Mizuno và cộng sự (1997) tách tế bào trần từ Schizophyllum commune bằng cách sử dụng
dịch lọc mơi trường nuơi Bacillus circulans KH – 304. Phức hợp enzyme từ Bacillus circulans WL
– 12 với hoạt tính chitinase cao đã rất hiệu quả trong việc thu nhận tế bào trần từ Phaffia rhozyme
(Johnson và cộng sự, 1979).
1.1.5.2. Ứng dụng trong việc sản xuất chitooligosaccharides, glucosamine và N- acetyl
glucosamine
Chitooligosaccharides, glucosamine và N- acetyl glucosamine là chất cĩ tiềm năng rộng lớn
trong y dược. Chitooligosaccharides cĩ lợi ích tiềm năng đối với sản xuất thuốc cho người. Ví dụ,
chitohexaose và chitoheptaose được phát hiện cĩ tính kháng các khối u.
Chitinase thu nhận từ Vibrio alginolyticus đã được sử dụng để sản xuất chitopentaose và
chitotriose từ cơ chất chitin huyền phù (Murao và cộng sự, 1992).
Sự kết hợp giữa các enzyme thủy phân chitin cần thiết để thu nhận những oligomer cĩ chiều
dài chuỗi mong muốn. Ví dụ, để tạo chitooligosaccharides cần tỉ lệ endochitinase, tỉ lệ thấp N-acetyl
glucosamindase và exochitinase; trong khi để tạo N- acetyl glucosamine thì cần tỉ lệ cao
exochitinase và N-acetyl glucosamindase. (Aloise và cộng sự, 1996) nhận thấy khi ủ enzyme
chitinase với tetramer hoặc pentamer thu nhận từ Nocardia oritentalis thì thấy cĩ sự hình thành các
hexamer.
Sashiwa và cộng sự (2002) đã sản xuất N- acetyl glucosamine từ α-chitin bằng cách sử dụng
dịch enzym thơ từ Aeromonas hydrophila H-2330.
Luận văn thạc sĩ Cao học K18
1.1.5.3. Ứng dụng trong việc nghiên cứu thuốc trừ sâu sinh học
Chitin cĩ mặt trong lớp vỏ ngồi và ống tiêu hĩa của cơn trùng. Villagomez-Castro và
Lopez-Romero (1996) đã chỉ ra rằng các sự sự kiện thuộc về hình thái học ở nấm luơn cĩ sự tham
gia của enzyme chitinase. Allosamidin, một chất ức chế mạnh của enzyme chitinase, được nhận
thấy cĩ khả năng kìm hãm sự sinh trưởng của các lồi như ve bét, ấu trùng nhặng sau khi chúng ăn
vào (Sakuda và cộng sự, 1987).
1.1.5.4. Ứng dụng trong việc ước tính sinh khối nấm
Các nhà nghiên cứu đã mơ tả một loại phương pháp khác để ước tính lượng nấm cĩ trong
đất. Kỹ thuật bao gồm việc quan sát dưới kính hiển vi và ly trích những chất chỉ thị đặc trưng cho
nấm như glucosamine ergosterol.
Cĩ sự liên quan chặt chẽ giữa hoạt tính của chitinase và lượng nấm cĩ trong đất. Sự liên quan
như thế khơng thấy xuất hiện với vi khuẩn và xạ khuẩn. Chính vì thế, chitinase trở thành yếu tố chỉ
thị thích hợp cho mức sinh trưởng của nấm trong đất (Miller và cộng sự,1998). Tương tự, chitinase
và protein gắn kết với chitin cĩ thể được sử dụng để dự báo sự lây nhiễm nấm trên con người (Laine
và Lo, 1996).
1.1.5.5. Ứng dụng trong việc kiểm sốt muỗi
Chitinase đĩng vai trị quan trọng đối với hình thái nấm men, cơn trùng. Kurand._.a và Robbins
(1991) chỉ ra vai trị của chitinase trong sự phân chia tế bào trong suất quá trình sinh trưởng của
nấm men Sacharomyces cerevisiae.
Người ta chỉ ra rằng ấu trùng muỗi Aedes aegypti cĩ thể bị giết trong vịng 48 giờ với sự tác
động của chế phẩm thơ từ nấm Myrothecium verrucaria. Nấm gây bệnh cơn trùng như Beauveria
bassiana cĩ thể gây nhiễm trứng của muỗi Aedes aegypti. Điều này mở ra tiềm năng trong việc sản
xuất chất kiểm sốt cơn trùng truyền bệnh như muỗi.
1.1.5.6. Ứng dụng trong y học
Hiện nay, các nhà khoa học đang nghiên cứu sử dụng enzyme chitinase trong việc chẩn đốn
các bệnh truyền nhiễm do nấm gây ra. Chitin hiện diện trong vách hầu hết các nấm gây bệnh, ít nhất
là một giai đoạn trong chu trình sống của nấm. Hay ở nấm men thì chitin hiện diện trong những vết
chồi. Do đĩ cĩ thể dùng phương pháp nhuộm chitin đặc hiệu cho nấm, tạo cơ sở xây dựng một
phương pháp chẩn đốn nhanh các lồi nấm gây bệnh. Các nhà khao học đã đề xuất một phương
pháp chẩn đốn bệnh truyền nhiễm do nấm bằng cách sử dụng chitinase đã được phân lập tạo dịng
từ Vibrio parahemolyticus (đặt tên chitinase VP1), enzyme này kết hợp chặt chẽ với chitin và cĩ thể
Luận văn thạc sĩ Cao học K18
sử dụng như một mẫu dị trong việc chẩn đốn với độ nhạy cao để nhận diện một cách đặc hiệu các
vách tế bào nấm hay những vết chồi nấm men trong những lát cắt mẫu mơ bệnh. [32]
Ngồi ra, chitinase cĩ tiềm năng trong việc sản xuất các loại kem hay thuốc bơi ngồi da
chứa chất chống nấm bệnh thường xảy ra các nước vùng nhiệt đới bởi khả năng phân hủy vách tế
bào vi nấm của chúng.
1.1.5.7. Ứng dụng trong việc kiểm sốt nấm gây bệnh trên cây trồng
Nhiều lồi cơn trùng và nấm mốc cĩ hại cho cây trồng và vật nuơi do gây ra nhiều loại dịch
bệnh, ảnh hưởng trực tiếp đến sản xuất nơng nghiệp. Vì chitin khơng phải là thành phần phổ biến ở
thực vật và động vật cĩ xương nên người ta sử dụng các tác nhân kìm hãm sự sinh tổng hợp chitin
trong các nấm và cơn trùng như 1-(2,6-dichlorobenzoyl)-3-(3,4-dichlorophenol), nikkomycin,
polyoxin D ...Khi áp dụng trên cây cảnh, cây lương thực và trên động vật, những tác nhân trên
chứng tỏ cĩ nhiều ưu thế trong việc tiêu diệt nấm mốc, cơn trùng cĩ hại mà khơng gây hại đáng kể
cho thực vật hoặc động vật cĩ xương sống.
Theo Hirohi Ihui, enzyme chitinase luơn cĩ mặt trong cơ thể thực vật mặc dù trong cây
khơng chứa chitin. Chitinase và β-1,3-glucanase được tạo ra trong mơ thực vật khi tế bào bị kích
thích bởi nấm gây bệnh chứa chitin, xúc tác sự thủy phân vách tế bào nấm và ngăn cản sự phát triển
của bệnh. Chitinase sản xuất bởi Enterobacter sp. NRG4 cĩ hoạt tính cao đối với Fusarium
moniliforme, Aspergillus niger, Mucor rouxii và Rhizopus nigricans (Dahiya và cộng sự, 2005).
Bhushan và Hoodal (1998) nghiên cứu về tính tương thích của những chitinase chịu nhiệt từ
Bacillus sp. BG-11 với thuốc diệt cơn trùng và thuốc diệt nấm thường được sử dụng. Chitinase từ
Bacillus cereus YQ308 ức chế sự phát triển của nấm bệnh thực vật như Fusarium oxyporum, F.
Solani, Penicillium ultimum (Change và cộng sự, 2003). CHIT42, CHIT40 và CHIT72 từ
Trichoderma harzianum P1 và Trichoderma virens 41 cĩ thể tác động trên sự nảy mầm và sự kéo
dài của sợi nấm của nhiều nấm gây bệnh thực vật như Fusarium spp., Alternaria spp., Ustilago
avenae, ... khi chúng được ủ với dịch enzyme.
1.1.5.8. Ứng dụng trong sản xuất protein đơn bào
Chất thải rắn từ quá trình chế biến tơm chứa chủ yếu là chitin, CaCO3 và protein. Revah-
Moiseev và Carrod (1981) đã đề nghị sử dụng loại chất thải này để chuyển đổi bằng phương pháp
sinh học chitin thành protein đơn bào nhờ sử dụng enzyme thủy phân chitin. Họ sử dụng enzyme
chitinase thu nhận từ Saccharomyces marcescens để thủy phân chitin và Pichia Kudriavazevii để
sản xuất protein đơn bào (với 45% protein và 8-11% acid nucleic). Những nấm thường được dùng
Luận văn thạc sĩ Cao học K18
để sản xuất protein đơn bào là Hansenula polymorpha, Candida tropicalis, Sacharomyces
cerevisiae và Myrothecium verrucaria.
Vyas và Deshpande (1991) đã dùng enzyme thủy phân chitin thu nhận từ Myrothecium
verrucaria và dùng Sacharomyces cerevisiae để sản xuất protein đơn bào từ chất thải chứa chitin.
Tổng hàm lượng protein thu được là 61%, với tỉ lệ rất thấp acid nucleic (3,1%). Các nghiên cứu chỉ
ra rằng Sacharomyces cerevisiae là chủng tốt nhất để sản xuất protein đơn bào (60% protein và chỉ
1-3% acid nucleic).
1.2. ĐẶC ĐIỂM SINH HỌC CỦA CÁC CHỦNG NẤM SỢI NGHIÊN CỨU
1.2.1. Các chủng thuộc chi nấm Aspergillus [7,8, 60]
1.2.1.1. Vị trí phân loại
Giới: Nấm
Ngành: Ascomycota
Lớp: Eurotiomycetes
Bộ: Eurotiales
Họ: Trichocomaceae
Giống: Aspergillus
1.2.1.2. Đặc điểm hình thái
Sợi nấm cĩ vách ngăn, phân nhánh, khơng màu, màu nhạt, một số trường hợp trở nên nâu
hay màu sẫm khác ở một vùng nhất định của khuẩn lạc.
Aspergillus niger khi nuơi cấy trên mơi trường thạch-khoai tây-dextrose ở 250C cho khuẩn
lạc ban đầu màu trắng, sau nhanh chĩng chuyển sang màu đen với việc tạo vơ số bào tử đính, mặt
trái khuẩn lạc màu hơi vàng nhạt và khi trưởng thành cĩ thể tạo đường rãnh phĩng xạ trên bề mặt
thạch. Aspergillus awamori khi nuơi cấy trên mơi trường Czapek cho khuẩn lạc đạt kích thước 4,5-
5,0cm sau 7 ngày ở nhiệt độ 250C, cịn trên mơi trường MEA (cao malt) cho kích thước khuẩn lạc
lớn hơn. Khuẩn lạc cĩ màu nâu nhạt, dần chuyển sang đậm. Hệ sợi trắng dần ngả vàng sậm.
Cuống mang bào tử bụi phồng lên ở ngọn, các chuổi bào tử bụi từ đầu phồng mọc tỏa khắp
mọi hướng. Bào tử trần khơng cĩ vách ngăn, khác nhau về hình dạng, kích thước, màu sắc ... ở các
lồi khác nhau.
Theo Bùi Xuân Đồng, Aspergillus niger cĩ bào tử đính trưởng thành hình cầu, phần lớn 4,0-
5,0µm, xù xì khơng đều với những gờ rõ và gai khơng sắp xếp thành vạch kẻ dọc theo chiều dài.
Luận văn thạc sĩ Cao học K18
Aspergillus awamori cĩ bơng mau chĩng chuyển màu nâu hơi đỏ, mặt trái khuẩn lạc màu tương tự,
cuống bào tử đính phần lớn phát triển dài 1,0-1,5mm, bào tử đính phần lớn đường kính 4,0 đến 4,5
µm.
A B
Hình 1.7. Hình thái nấm Aspergillus niger [62, 63]
(A): bào tử, (B): Khuẩn lạc trên mơi trường PGA
Hình 1.8. Hình thái nấm Aspergillus awamori [63]
(A): Khuẩn lạc trên MT Czapek; (B): Khuẩn lạc trên MT MEA
(C), (D), (E): hình thái bào tử
1.2.1.3. Đặc điểm sinh lý, hĩa sinh
Nấm Aspergillus cĩ mặt khắp nơi trong tự nhiên, chúng phân bố rộng và dễ thích nghi vì
chúng cĩ thể hình thành khuẩn lạc trên nhiều nguồn cơ chất khác nhau.
Luận văn thạc sĩ Cao học K18
Nghiên cứu của Andrea Astoreca và cộng sự cho thấy nhiệt độ thích hợp cho sự sinh trưởng
của Aspergillus niger, Aspergillus awamori khoảng 25 - 300C. Theo Takashi và cộng sự (2002),
nhiệt độ thích hợp để Aspergillus sp. tổng hợp chitinase cĩ hoạt tính cao nhất là 370C.
Wainwright và cộng sự đã chỉ ra rằng, pH thích hợp cho sự sinh trưởng của nấm Aspergillus
awamori là khoảng 5.0-7.0. Độ pH quá acid (khoảng 2-3) sẽ ngăn cản sự tạo thành bào tử, dẫn đến
hệ sợi bị phân tán khi nuơi cấy chìm.
Đã cĩ nhiều nghiên cứu tìm hiểu về enzyme của nấm Aspergillus niger, gồm amylase,
amyloglucosidase, cellulase, lactase, invertase, pectinase ... Ngồi ra chitinase của nấm này cũng
được đề cập đến trong Hội nghị Quốc tế về Aspergillus tại Nertheland vào tháng 3 năm 2010 [60].
Vấn đề độc tố của Aspergillus niger cũng được đề cập đến, phần lớn chúng khơng cĩ hại,
nhưng một số cĩ thể tạo độc tố gây hại đến động vật và con người. Sự an tồn của Aspergillus niger
được đề cập đến trong nhiều bài báo của các tác giả Schuster và cộng sự (2002), Van Dijck và cộng
sự (2003), Blumenthal (2004), Olemspka-Beer và cộng sự (2006) [41]. Theo thơng tin tĩm tắt từ
những bài báo của các tác giả này, khoảng 3-10% các chủng Aspergillus niger cĩ khả năng sinh ra
độc tố trong những điều kiện nuơi cấy xác định như ochratoxin A.
1.2.2. Trichoderma harzianum [5, 12, 54]
1.2.2.1. Vị trí phân loại
Trichoderma là một trong những nhĩm vi nấm gây nhiều khĩ khăn trong phân loại do các
đặc điểm cần thiết cho việc phân loại vẫn cịn chưa được biết đầy đủ.
Theo Rifai (1969), Barnett và Hunter (1972), Trichoderma thuộc lớp nấm, nấm bất tồn
Deuteromycetes (Fungi imperfect), chúng được phân loại như sau:
Giới: Nấm
Nghành: Ascomycota
Lớp: Deuteromycetes
Bộ: Moniliales
Họ: Moniliceae
Giống: Trichoderma
Một số tài liệu phân loại giống Trichoderma thuộc họ Moniliacae, bộ Moniliales, lớp nấm,
nấm bất tồn (Fungi imperfecti).
Luận văn thạc sĩ Cao học K18
1.2.2.2. Đặc điểm hình thái [62, 63]
Khuẩn lạc Trichoderma harzianum ban đầu cĩ màu lục trắng, sau dần dần chuyển sang màu
lục sẫm, mặt dưới khuẩn lạc khơng màu.
Bào tử áo hình cầu, nhẵn, khơng màu, đường kính 6-12 m, ở giữa sợi nấm hoặc đính ở các
nhánh.
Giá bào tử trần ngăn vách, phân nhánh 2-3 lần, đường kính 4 - 5 m, dài tới 250 m. Thể
bình cĩ kích thước 3-4 x 5-7m, thường thành 2-5 cái ở đỉnh nhánh tận cùng, ở dọc các nhánh
thường đơn độc. Thể bình ở giữa thường dài tới 17 m và cĩ đường kính nhỏ hơn, phần rộng nhất
khoảng 2-3 m. Bào tử trần hình gần cầu, hình trứng, phần gốc hơi bẹt, nhẵn, màu lục nhạt, khơng
vách ngăn, kích thước 2-3 x 3-3,5 m, nhày ở thể bình.
Hình 1.9. Hình thái bào tử và khuẩn lạc của Trichoderma harzianum [64]
1.2.2.3. Đặc điểm sinh lý, hĩa sinh
Trichoderma harzianum được tìm thấy ở những vùng ấm áp. Theo nghiên cứu của Domsch
và cộng sự (1980), nhiệt độ tối ưu cho sự sinh trưởng, phát triển của Trichoderma harzianum vào
khoảng 30C, tối đa khoảng 36C. Trichoderma harzianum cũng cĩ thể phát triển ở nhiệt độ khoảng
5C, nhưng sinh trưởng rất chậm và yếu .
Trichoderma harzianum tổng hợp enzyme chitinase và các chất kháng sinh (Trichodermin,
glyotosin…).Vấn đề độc tố của Trichoderma harzianum chưa được biết đến.
1.3. SƠ LƯỢC CÁC NGHIÊN CỨU VỀ CHITINASE
1.3.1. Trên thế giới
So với các enzyme khác như protease, amylase, pectinase ... thì hệ enzyme chitinase được
nghiên cứu chậm hơn và các cơng trình nghiên cứu về chúng cịn hạn chế. Đối tượng được nghiên
cứu sớm nhất và khá nhiều là xạ khuẩn Streptomyces (L.R. Berger và D.M. Renolds, 1958; R.
Grupta, R. K. Saxena, P. Chatuvedi và J. S. Windi, 1995). Những nghiên cứu trên đối tượng này
nhằm thu nhận chitinase ứng dụng chủ yếu vào việc phá vỡ vách tế bào nấm. Năm 1978, P.A.
Luận văn thạc sĩ Cao học K18
Carroad và R. A. Tom cĩ cơng trình nghiên cứu việc sử dụng phương pháp sinh học trong xử lý
chất thải chứa chitin, và tiếp đĩ là nghiên cứu của I. G. Cosio, R. A. Fisher, P. A (1982) đề cập đến
quá trình sản xuất enzyme nhằm xử lý chất thải chứa chitin.
Về sau, trong những năm 1989, việc thu nhận chitinase được tiếp tục nghiên cứu trên các đối
tượng khác như Serratia liquefaciens (S. Joshi, Kozlowski), Myrothecium verrucaria (P. Vyas và
M. V. Deshpand) và vẫn chủ yếu tìm hiểu ứng dụng của chitinase trong việc phá vỡ vách tế bào
nấm.
Những năm gần đây, chitinase được nghiên cứu nhiều trên đối tượng nấm sợi Trichoderma.
Năm 1991, C. J. Ulhoa, J. F. Peberdy nghiên cứu sự điều hịa quá trình sinh tổng hợp chitinase của
Trichoderma harzianum. Năm 1999, P. A. Felse và T. Panda nghiên cứu tối ưu hĩa quá trình sinh
tổng hợp chitinase từ Trichoderma hazianum. Năm 2000, P. A. Felse và T. Panda nghiên cứu quá
trình nuơi cấy chìm thu nhận chitinase từ Trichoderma harzianum trong bể lắc. Năm 2003, Ashok
Pandey và cộng sự nghiên cứu tối ưu hĩa quá trình tổng hợp chitinase cĩ tính kháng nấm từ
Trichoderma harzianum nuơi cấy trên mơi trường bán rắn. Dường như Trichoderma là chi nấm đến
nay được phát hiện cĩ hoạt tính chitinase khá cao, ứng dụng nhiều trong các lĩnh vực, đặc biệt trong
bảo vệ thực vật. Đối với chi nấm Aspergillus cũng đã cĩ một số cơng trình nghiên cứu về khả năng
sinh chitinase của chúng trên mơi trường bán rắn (Nopakarn Rattanakit và cộng sự, 2002). Những
chủng thuộc chi nấm này được nghiên cứu thu nhận chitinase là Aspergillus carneus (A. A. Sherief,
1990); A. Fumigatus (Jin-Ian Xia và Jing Xiong, 2009). A. A. Shubakow và P. S. Kucheryavykh
(2003) đã nghiên cứu nuơi cấy nhiều chủng nấm khác nhau trong đĩ cĩ các chủng thuộc các chi
nấm Aspergillus và Trichoderma... Tuy nhiên những nghiên cứu về chitinase từ nấm sợi phần lớn
thực hiện trên mơi trường nuơi cấy lỏng.
Vi khuẩn cũng là một đối tượng được nghiên cứu về việc sinh tổng hợp chitinase. Năm 1998,
B. Bhushan, G. S. Hoondal nghiên cứu enzyme chitinase chịu nhiệt từ Bacillus sp G-1. Và gần đây
nhất, năm 2009, S. M. Akhir và cộng sự nghiên cứu tối ưu hĩa mơi trường nuơi cấy thu nhận
enzyme chitinase từ Bacillus licheniformis bằng phương pháp nghiên cứu bề mặt đáp ứng (RSM).
Ưu điểm của chitinase thu nhận từ vi khuẩn này là tính bền nhiệt của chúng.
Trên đối tượng thực vật, cũng cĩ một vài nghiên cứu thu nhận chitinase. Năm 2004, Isabela
S. Santos và cộng sự cĩ cơng trình nghiên cứu về chitinase thu nhận trên đối tượng thực vật (hạt cây
Adenanthera pavonina L.), cây họ đậu Phaseolumungo. Kết quả cho thấy chitinase từ hạt cây
Adenanthera pavonina L. là loại enzyme bền nhiệt. Tác giả Wen-Chi Hou, Yaw-Huei Lin, Ying-
Chou Chen (1998) nghiên cứu thu nhận chitinase chiết rút từ lá khoai lang.
Luận văn thạc sĩ Cao học K18
1.3.2. Trong nước
Nhìn chung những nghiên cứu về enzyme chitinase trong nước cịn rất hạn chế cho dù tiềm
năng ứng dụng rộng rãi của enzyme này là khơng thể phủ nhận. Năm 2001, tác giả Đinh Minh Hiệp
cĩ cơng trình nghiên cứu đặc tính của enzyme chitinase thu nhận từ nấm mật Coprinus fimentarius
và một số ứng dụng trong lĩnh vực bảo vệ thực vật và y dược.
Năm 2003, các tác giả Nguyễn Thị Hồng Thương, Đinh Minh Hiệp, Đồng Thị Thanh Thu cĩ
cơng trình nghiên cứu khảo sát một số yếu tố tác động lên quá trình sinh tổng hợp hệ enzyme
chitinase của các chủng nấm mốc Trichodrema sp. Năm 2004, tác giả Tơ Duy Khương thực hiện đề
tài khảo sát sự sinh tổng hợp chitinase ở Trichoderma spp. và khả năng đối kháng với một số nấm
gây bệnh. Năm 2008, tác giả Nguyễn Đình Nga và cộng sự khảo sát khả năng tác động lên nấm
Candida albicans của enzyme chitinase thu nhận từ thực vật và từ nấm Trichoderma.
Trên đối tượng thực vật, năm 2008, tác giả Đặng Trung Thành đã nghiên cứu quá trình thu
nhận enzyme chitinase từ cây khoai lang Ipomoea batatas, thu enzyme chitinase cĩ hoạt tính khá
cao (hoạt độ đạt 192 UI/ml)
Nhìn chung, những nghiên cứu về chitinase trong nước chưa nhiều, chủ yếu vẫn trên nấm
Trichoderma, ứng dụng chủ yếu mới đề cập đến trong lĩnh vực bảo vệ thực vật và khởi đầu trong
lĩnh vực y dược.
Luận văn thạc sĩ Cao học K18
Chương 2: VẬT LIỆU VÀ PHƯƠNG PHÁP
2.1 NGUYÊN VẬT LIỆU
2.1.1 Giống vi sinh vật
Các chủng nấm sợi Aspergillus niger và Aspergillus awamori, Aspergillus sp., Trichoderma
harzianum do phịng thí nghiệm, bộ mơn Sinh hĩa, trường Đại Học Khoa Học Tự Nhiên Thành phố
Hồ Chí Minh và bộ mơn Vi sinh, trường Đại Học Sư Phạm Thành phố Hồ Chí Minh cung cấp.
2.1.2 Các mơi trường sử dụng trong thí nghiệm
2.1.2.1. Mơi trường nuơi cấy và giữ giống nấm sợi
MT 1: Cao nấm men agar – Yeast Extract Agar (YEA) [1, 12]
Cao nấm men 4g
Agar 20g
Glucose 20g
Nước 1000ml
pH = 5,5 – 6,0
Khử trùng 1atm/30 phút
MT 2: Thạch khoai tây Dextrose (PDA) [6, 10, 26]
Nước chiết khoai tây 200ml
Agar 20g
Glucose 20g
Nước 1000ml
pH = 5,5 – 6,0
Khử trùng 1atm/30 phút
MT 3: Malt Extract Agar (YEA) [11,26]
Cao Malt 20g
Pepton 1g
Agar 20g
Glucose 20g
Nước 1000ml
pH = 5,5 – 6,0
Khử trùng 1atm/30 phút
2.1.2.2. Mơi trường cảm ứng tổng hợp enzym chitinase [12, 13, 29]
Luận văn thạc sĩ Cao học K18
MT 4:
NaNO3 3,5g
K2HPO4 1,5g
MgSO4.7H2O 0,5g
KCl 0,5g
FeSO4.7H2O 0,01g
Bột chitin 10g
Agar 20g
Nước 1000ml
pH = 6,5
Khử trùng 1atm/30phút
2.1.2.3. Mơi trường bán rắn khảo sát khả năng sinh tổng hợp hệ enzyme thủy phân chitinase từ
các chủng nấm sợi [12,15, 34, 36]
MT 5:
Trấu 50g
Cám 40g
Đường vàng 4g
(NH4)2HPO4 0,1g
Urê 2,2g
CaCl2 0,1g
KCl 0,05g
MgSO4.7H20 0,05g
HCl 0,05g
Bột chitin 10g
Nước 60%
MT 6:
Trấu 50g
Cám 40g
Cao nấm men 1g
(NH4)2SO4 0,1g
CaCl2 0,1g
KCl 0,05g
MgSO4.H20 0,05g
Bột chitin 10g
Luận văn thạc sĩ Cao học K18
Nước 60%
* Thay thế bột chitin bằng nguyên liệu giàu chitin khác (bột vỏ tơm, bột vỏ cua) để nghiên
cứu ảnh hưởng cơ chất cảm ứng lên khả năng sinh tổng hợp enzyme chitinase của chủng nấm sợi
chọn nghiên cứu.
2.2 DỤNG CỤ THIẾT BỊ HĨA CHẤT
2.2.1 Dụng cụ
- Thước đo khuẩn lạc.
- Bình tam giác các kích cỡ khác nhau (250ml, 500ml, 1000ml).
- Ống nghiệm 5ml, 10ml.
- Đĩa petri.
- Pipetman các loại.
- Buồng đếm hồng cầu.
- Đèn cồn, diêm quẹt, que cấy, giấy lọc, giấy báo cũ, bơng khơng thấm nước, bơng thấm
nước, đũa khuấy, phễu, ống đong, vải lọc …
- Nồi nấu mơi trường, lị điện.
2.2.2 Thiết bị
- Nồi hấp vơ trùng.
- Tủ cấy vơ trùng.
- Tủ sấy 300C – 1800C.
- Tủ ấm.
- Máy đo pH.
- Máy li tâm.
- Cân phân tích điện tử.
- Máy chụp ảnh kỹ thuật số.
- Máy nghiền mẫu.
- Máy đo độ ẩm.
- Máy đo quang phổ UV / Visible Spectrophometre ...
- Tủ lạnh.
2.2.3 Hĩa chất và vật liệu
Glucose, cao nấm men, chitin, agar, cồn, nước cất, khoai tây, trấu, cám; NaNO3, K2HPO4,
MgSO4.7H2O, KCl, FeSO4.7H2O, (NH4)2HPO4, (NH4)2SO4, Urê, CaCl2, HCl, NaH2PO4, Na2HPO4,
Luận văn thạc sĩ Cao học K18
N-acetyl-β-D-Glucosamine, Lugol, thuốc thử DNS, và các hĩa chất khác sử dụng trong từng
phương pháp sẽ nêu cụ thể.
2.3 PHƯƠNG PHÁP NGHIÊN CỨU
2.3.1 Phương pháp cấy chuyền và giữ giống nấm sợi [1, 6, 12]
Thực hiện: Chuẩn bị mơi trường PGA, cho vào các ống nghiệm, đem hấp khử trùng, lấy ra để
nguội tạo mơi trường thạch nghiêng. Thực hiện trong buồng cấy: cấy bào tử chủng nấm nghiên cứu
lên bề mặt thạch trong ống nghiệm. Để ống vừa cấy chuyền ở nhiệt độ phịng (28 – 300C) trong thời
gian 7 ngày, sau đĩ đem vào tủ giữ giống 40C. Sau 2 tháng cấy chuyền một lần.
2.3.2 Phương pháp xác định sơ bộ khả năng tổng hợp enzyme chitinase bằng cách đo
đường kính vịng phân giải [1, 12, 22]
Nguyên tắc: khi nuơi cấy trong mơi trường thạch cĩ bổ sung chitin, nấm sợi sinh enzyme
chitinase phân giải chitin thành các dạng cĩ cấu trúc mạch ngắn hơn và N-acetyl- D- glucosamine.
Các dạng này khơng cho phản ứng màu với thuốc thử Lugol, do đĩ sau khi nhỏ thuốc thử Lugol, độ
lớn của phần mơi trường trong suốt phản ánh khả năng sinh tổng hợp chitinase của nấm sợi. Phương
pháp này chỉ định tính enzyme, chỉ đánh giá sơ bộ khả năng tổng hợp chitinase chứ chưa xác định
chính xác hoạt độ chitinase.
Thực hiện: Chuẩn bị mơi trường cảm ứng tổng hợp enzyme chitinase (MT 4), hấp khử trùng
ở 121OC trong 30 phút. Dùng các đĩa petri vơ trùng (sấy ở 1600C trong 120 phút) cĩ kích thước
bằng nhau, cho 20ml mơi trường từ ống nghiệm vào đĩa, để nguội, sau 1-2 ngày kiểm tra sự tạp
nhiễm. Cấy chấm điểm chủng nấm sợi nghiên cứu vào đĩa, cĩ thể chấm một điểm giữa hoặc 3 điểm
trên đĩa petri. Ủ ở nhiệt độ phịng (28-300C) trong 2-3 ngày. Cho thuốc thử Lugol vào, để 5 phút rồi
đo đường kính vịng phân giải bằng thước đo khuẩn lạc.
Nếu D – d ≥ 25mm : hoạt tính enzyme mạnh
D – d ≥ 20mm : hoạt tính enzyme khá mạnh
D – d ≥ 15mm : hoạt tính enzyme trung bình
D – d ≤ 10mm : hoạt tính enzyme yếu
Từ đĩ chọn chủng cĩ tạo hệ enzyme thủy phân chitinase từ khá trở lên tiếp tục nghiên cứu tối
ưu hĩa.
Cách pha dung dịch Lugol
Iod 2,5g
KI 5g
Luận văn thạc sĩ Cao học K18
Nước 1000ml
2.3.3 Phương pháp nuơi cấy nấm sợi trên mơi trường bán rắn thu enzyme chitinase
[12, 34]
Nguyên tắc: Nấm sợi sử dụng chất dinh dưỡng cĩ sẵn trong mơi trường để sinh trưởng, tổng
hợp một lượng lớn enzyme ngoại bào lẫn trong mơi trường, ta thu được sinh khối nấm sợi lẫn
enzyme thơ từ canh trường.
Thực hiện: Cân 10 gam mơi trường bán rắn nuơi cấy nấm sợi thu enzyme chitinase (MT 5)
vào các bình tam giác 250 ml, hấp khử trùng ở 1210C trong 30 phút, sau đĩ để nguội. Dùng giống
trong ống thạch nghiêng, cho 10ml nước cất vơ trùng vào mỗi ống, dùng que cấy cà đều bề mặt lấy
hết bào tử tạo dạng huyền phù.Tiến hành đếm bào tử bằng buồng đếm hống cầu. Cho 2ml huyền
phù bào tử vào mỗi bình tam giác chứa mơi trường đã chuẩn bị (mật độ bào tử là 105 đến 106 bào
tử/1 gam mơi trường). Nuơi ở nhiệt độ phịng. Canh trường nuơi cấy được thu nhận sau từng
khoảng thời gian, điều kiện nhiệt độ, pH nhất định theo mục đích nghiên cứu cụ thể.
2.3.4 Phương pháp tách chiết dịch enzyme thơ và thu nhận chế phẩm enzyme từ canh
trường nuơi cấy [1, 12, 15]
Nguyên tắc: Dựa trên khả năng hịa tan trong nước của các enzyme, dùng nước cất hịa tan
tạo dịch enzyme, sau đĩ dùng các tác nhân kết tủa khác nhau để kết tủa enzyme. Kết tủa enzyme
được sấy ở nhiệt độ dưới 400C, tạo sản phẩm enzyme dạng bột khơ.
Thực hiện: Sau khi nuơi cấy trong các điều kiện mơi trường cụ thể, cho vào mỗi bình tam
giác (chứa 10 gam mơi trường) 80ml nước cất. Lắc trong 1 giờ, tốc độ 200 vịng/ phút, lọc qua vải,
thu dịch lọc. Đem dịch lọc li tâm 5000 vịng/phút trong 10 phút, thu dịch nổi, ta được dịch enzym
thơ. Để thu được chế phẩm enzyme (CPE) dạng bột khơ, sử dụng tác nhân tủa là Etanol 960 với tỉ lệ
1/3 – 1/4 (dung dịch Enzyme/Etanol) để kết tủa enzyme, ly tâm thu tủa enzyme, sấy nhiệt độ dưới
400C được sản phẩm (CPE).
2.3.5 Phương pháp xác định hoạt độ của enzyme chitinase theo phương pháp so màu
với thuốc thử DNS (3,5-dinitrosalicylic acid) [11,12]
Định nghĩa
Phương pháp so màu là phương pháp phân tích dựa trên việc so sánh cường độ màu của
dung dịch nghiên cứu với cường độ màu của dung dịch tiêu chuẩn cĩ nồng độ xác định. Dùng
phương pháp so màu chủ yếu để xác định lượng nhỏ các chất, phương pháp này cho phép tiết kiệm
thời gian cùng kết quả chính xác cao so với các phương pháp khác.
Luận văn thạc sĩ Cao học K18
Nguyên tắc
+ đường khử → + đường oxi hĩa
3,5-dinitrosalicylic acid 3-amino-5-nitrosalicylate
Khi enzyme phân hủy chitin tác dụng với cơ chất là chitin huyền phù, sản phẩm tạo thành là
N-acetyl-β-D-Glucosamine được hiện màu với thuốc thử DNS (3,5-dinitrosalisylic acid) và đem đo
mật độ quang ở bước sĩng 535nm.
Hĩa chất
* Dung dịch đệm phosphat 0,2M, pH 6,5
- Dung dịch NaH2PO4 0,2M: cân 31,2g NaH2PO4.2H2O hịa tan và thêm nước cất đến
1000ml.
- Dung dịch Na2HPO4 0,2M: cân 71,6g Na2HPO4.12H2O hịa tan và thêm nước cất đến
1000ml.
* Thuốc thử DNS
- Dung dịch A: hịa tan 300g muối Na-K tartrat kép vào trong 500ml nước cất.
- Dung dịch B: hịa tan 10g 3,5-dinitrosalicylic acid vào 200ml dung dịch NaOH 2N.
- Thuốc thử DNS dùng trong phản ứng: trộn dung dịch A với dung dịch B, thêm nước cất cho
đủ 1 lít. Chỉ pha dung dịch DNS dùng cho phản ứng trước khi sử dụng, bảo quản trong chai
nâu và tránh khơng khí.
Chuẩn bị dịch huyền phù chitin 1%
Do chitin khơng hịa tan trong nước nên để tiến hành xác định hoạt tính enzyme chitinase cần
huyền phù hĩa chitin: Lấy 5 gam chitin hịa tan trong 50ml HCl đậm đặc. Khuấy đều trong vịng 3
phút ở 40C. Sau đĩ cho nước cất lạnh 5C từ từ tới 500ml, chitin sẽ tạo huyền phù màu trắng sữa.
Huyền phù sẽ được lọc qua giấy lọc hoặc ly tâm (3500 vịng/phút trong 7 phút). Rửa nước cất nhiều
lần để pH đạt trung tính, bảo quản huyền phù ở tủ lạnh (2-6C).
Dựng đường chuẩn N-acetyl-β-D-Glucosamine
Luận văn thạc sĩ Cao học K18
Bảng 2.1. Bố trí thí nghiệm dựng đường chuẩn Glucosamine
Ống nghiệm số 0 1 2 3 4 5 6 7
Nồng độ N-acetyl-β-D-
Glucosamine 10µmol/ml
chuẩn (µmol/ml)
0 1 2 3 4 5 6 7
Thể tích dung dịch N-acetyl-β-
D-Glucosamine (ml)
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
Thể tích nước cất (ml) 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3
DNS (ml) 1 1 1 1 1 1 1 1
Lắc đều, đun sơi 5 phút
H2O (ml) 5 5 5 5 5 5 5 5
Lắc đều, để yên 5 phút, đo OD ở bước sĩng 535 nm
Chuẩn bị dung dịch N-acetyl-β-D-Glucosamine chuẩn 10µmol/ml: cân chính xác 0,0221g N-
acetyl-β-D-Glucosamine, cho nước cất vào đủ 10ml.
Dựng đường chuẩn biểu diễn sự tương quan giữa nồng độ N-acetyl-β-D-Glucosamine và giá
trị OD.
Xác định hoạt độ enzyme chitinase
Nguyên tắc: hoạt độ enzyme chitinase được xác định đựa trên phương pháp định lượng
glucosamine trong quá trình phân giải chitin. Lượng glucosamine tạo ra được xác định theo phương
pháp Elson- Morgan.
Tiến hành
Đối với enzyme làm thí nghiệm
Chọn các ống nghiệm cĩ cùng kích cỡ, cùng độ dày.
Cho vào ống nghiệm hỗn hợp phản ứng gồm: 1ml huyền phù chitin 1% và 1ml dịch enzyme
chitinase. Hỗn hợp này được ủ ở 50C trong vịng 60 phút.
Ngừng phản ứng bằng 1ml NaOH 1N và đun sơi cách thủy trong 5 phút.
Ly tâm 4000 vịng/phút trong 5 phút hoặc lọc, thu dịch nổi.
Cho 1ml dịch nổi và 1ml DNS 1%, lắc đều, đun sơi cách thủy trong 5 phút, làm lạnh nhanh
trong bồn làm lạnh.
Thêm 5ml nước cất, lắc đều và đo OD với bước sĩng 535nm.
Đối với dịch enzyme làm đối chứng
Luận văn thạc sĩ Cao học K18
Cho 1ml dịch enzyme vào ống nghiệm, nhỏ 1ml NaOH 1N, sau đĩ cho thêm 1ml dịch
huyền phù chitin 1% vào, tiếp tục làm theo các bước tương tự như trên.
Cách tính [16]
Một đơn vị hoạt tính enzyme chitinase (đvht) là lượng enzyme cần thiết để giải phĩng 1g
N-acetyl-β-D-Glucosamine (NAG) từ chitin huyền phù trong thời gian 1 phút ở nhiệt độ phản ứng
(500C).
Tổng hoạt tính (đvht) =
t
Vna ..
Hoạt tính chung (đvht/g.CP.E ) =
mtv
vna
..
'..
Trong đĩ
a: hàm lượng glucosamine (g /ml) trong dịch thí nghiệm đã pha lỗng
n: hệ số pha lỗng
V: thể tích dịch mơi trường nuối cấy (ml)
v’: thể tích dịch enzyme ban đầu (ml)
v : thể tích enzyme thí nghiệm (ml)
t : thời gian phản ứng (phút)
m : khối lượng enzyme (g)
2.3.6 Phương pháp khảo sát sự biến thiên hoạt độ của hệ enzyme chitinase của các
chủng nấm sợi theo các điều kiện nuơi cấy khác nhau (nhiệt độ, thời gian, chất
cảm ứng) khi nuơi cấy trên mơi trường bán rắn [12, 23]
Nguyên tắc
Yếu tố mơi trường ảnh hưởng lớn đến khả năng sinh tổng hợp enzyme của nấm sợi như thời
gian nuơi cấy, nhiệt độ mơi trường nuơi, loại cơ chất cảm ứng ... Khảo sát các yếu tố trên nhằm
chọn ra điều kiện tối ưu để nuơi cấy chủng nấm sợi nghiên cứu thu nhận enzyme chitinase cĩ hoạt
độ cao nhất.
2.3.6.1. Xác định thời gian thích hợp để thu nhận chitinase cĩ hoạt độ cao nhất ở các chủng nấm
sợi nghiên cứu
Chuẩn bị mơi trường nuơi cấy (mục 2.3.3). Cấy các chủng nấm sợi.
Luận văn thạc sĩ Cao học K18
Thu dịch chiết enzyme (mục 2.3.4) tại các thời điểm nuơi cấy 24 giờ, 36 giờ, 48 giờ, 60 giờ,
72 giờ, 84 giờ, 96 giờ.
Xác định sự biến thiên hoạt độ enzyme (mục 2.3.5) chitinase theo thời gian nuơi cấy các
chủng nấm sợi nghiên cứu.
2.3.6.2. Khảo sát ảnh hưởng nhiệt độ mơi trường nuơi đối với đối với khả năng sinh tổng hợp
chitinase ở các chủng nấm sợi nghiên cứu
Sử dụng Mơi trường 5 (mục 2.1.2), nuơi cấy trong thời gian tối ưu đã khảo sát ở trên ở các
nhiệt độ mơi trường 20OC, 25OC, 30OC, 35OC, 40OC, 450C.
Tiến hành thu dịch chiết enzyme, tiến hành xác định hoạt độ enzyme (theo mục 2.3.5)
2.3.6.3. Khảo sát ảnh hưởng nồng độ chất cảm ứng (chitin) đến khả năng sinh tổng hợp
chitinase của các chủng nấm sợi
Sử dụng Mơi trường 5 (mục 2.1.2), lần lượt bổ sung chitin ở các nồng độ 0,0%, 5%, 10%,
15%, 20%. Nuơi cấy ở nhiệt độ và thời gian tối ưu đã khảo sát ở mục 2.3.6.1 và 2.3.6.2.
Tiến hành thu dịch chiết enzyme, xác định hoạt độ chitinase.
2.3.6.4. Khảo sát ảnh hưởng chất cảm ứng đến khả năng sinh tổng hợp chitinase ở các chủng
nấm sợi nghiên cứu
Sử dụng Mơi trường 4 (mục 2.1.2), trong đĩ sử dụng thay thế lần lượt bột chitin, bột vỏ tơm,
bột vỏ cua (tương ứng lượng chitin là 10%). Nuơi cấy trong thời gian và nhiệt độ tối ưu đã khảo sát
ở trên, thu dịch enzyme thơ, tiến hành xác định hoạt độ enzyme (theo mục 2.3.5)
2.3.7 Phương pháp tối ưu điều kiện mơi trường nuơi cấy nấm sợi bằng qui hoạch thực
nghiệm [2]
Để xác định điều kiện tối ưu cho quá trình nuơi cấy chủng nấm sợi chọn thu chế phẩm
enzyme chitinase, chúng tơi dùng thực nghiệm yếu tố tồn phần. Từ các kết quả thí nghiệm nghiên
cứu ảnh hưởng riêng lẻ từng yếu tố, chúng tơi chọn 3 yếu tố là thời gian nuơi cấy, nhiệt độ mơi
trường nuơi cấy và nồng độ chitin trong mơi trường nuơi cấy để nghiên cứu tối ưu hĩa theo
phương pháp qui hoạch thực nghiệm.
- Lập ma trận đầy đủ với số thí nghiệm N = 23 = 8. Vì khơng làm thí nghiệm song song nên
để xác định phương sai tái hiện, chúng tơi làm 3 thí nghiệm ở tâm (mức cơ sở).
Luận văn thạc sĩ Cao học K18
Bảng 2.2. Ma trận qui hoạch thực nghiệm
STT
thí
nghiệm
x1 x2 x3 y
1 + + + y1
2 + + - y2
3 + - + y3
4 + - - y4
5 - + + y5
6 - + - y6
7 - - + y7
8 - - - y8
9 0 0 0 y0(1)
10 0 0 0 y0(2)
11 0 0 0 y0(3)
- Dùng PTHQ tuyến tính dạng:
ŷ = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + b123x1x2x3
trong đĩ ŷ: hoạt độ chitinase theo phương trình hồi qui (PTHQ)
- Tính b0, b1, b2, b3 ... bj - các hệ số của phương trình hồi qui bằng cơng thức:
N
i
ijij yxN
b
1
1
N
yxx
b
N
i
iilj
jl
1
)(
- Kiểm định tính ý nghĩa của các hệ số PTHQ theo tiêu chuẩn Student
+ Giá trị trung bình của thơng số tối ưu hĩa (hoạt độ chitinase) của 3 thí nghiệm tại tâm:
ŷ0 = 3
3
1
)0(u uy
+ Phương sai tái hiện:
Luận văn thạc sĩ Cao học K18
1
)(
1
2
0)0(
2
n
yy
s
n
u
u
th với n: số thí nghiệm tại tâm (ở đây n=3)
sth
+ Sai số tính cho bi:
N
s
s thbi
+ Tính các giá trị t:
tj =
| |bj
sbj
với tlt: p=0,05; bậc tự do f = n-1 = 2 → t(0,05;2)= 4,3 (Tra bảng Student)
Hệ số cĩ ý nghĩa phải thỏa mãn điều kiện tj > tlt
- Kiểm định sự tương thích của PTHQ theo tiêu chuẩn Fisher
+ Flt: giá trị chuẩn Fisher ở mức p = 0,05; f1 = N-l; f2 = n-1; trong đĩ N=8, l: số hệ số cĩ ý
nghĩa, n = 3.
+ Ftn: 2
2
th
du
tn s
sF với
lN
yy
s
i
du
2
2
)ˆ(
PTHQ._.
Các file đính kèm theo tài liệu này:
- LA5124.pdf