CHUtING 3 KHAI THIEN MAC-LAURIN CUA LOI GtAI
(3.1)
(3.2)
(3.3)
Tit daytrddi taxet1= [-b,b] va cacs6 thlfc aUk'bijk,Cijknhutrong
dinhly 2.3. Gia sa g E Cl(I; RO)va gQif E Cl(I; RO)Ia Wi giai duynhcft
cuah~(2.11)tuonglingvdig.
duQc
B[ingcachd:~l0hamhaiv€ cua(2.11)ta
n m
f/ (x)=LLaijkbijkfj (Sijk(X))+g{(x),
)=1k=l
1~ i ~n, XE I,
trongd6 (( -b),((b) ky hi~uchIcacd:;tohambellphait:;ti-bva belltrai
t:;tibcuafj,HinluQt.
£>~t
(1)- ~ ba' k -a" k "k 'l} l} l}
Ta c6 tit (2.10), (2.13) r
10 trang |
Chia sẻ: huyen82 | Lượt xem: 1640 | Lượt tải: 0
Tóm tắt tài liệu Hệ phương trình hàm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
[ing
n m
p(1) := LLla~~1~p<1 .
i,)=lk=l
Do dinhly 2.3,t6nt:;tiduynhcft
p[l] = (Pl[l],..., poll]) E C(I;RO)
la Wi giai cuah~.
(3.4)
(3.5)
(3.6)
(3.7)
(3.8)
n m
~[lJ(X) =L2:a&~FpJ(Sijk(X»+g;(x),
j=lk=l
1 ::;;i ::;;n,
Hon mla,dotinhduynh:1t,Wi giai nayclingtIlingvdi d~oham
e=(f/, ...,in/)cua f, . P [IJ- f / '- 11.e. i -i,l-,...,n.
XE I,
Tu'onghI, n€u f E Cr(I; Rn) l?tWi giai cuah~(2.11)tu'ongling vdi
g E CreI;Rn).Ta c6saudaykhi d~ohamcua(3.1)d€n r -11~n.
n In
J;(r) (x) =LLGijkb;kfY) (Sijk(x» +gY\x),
j=1k=1
1::;; i ::;;n,
Tli (2.10),(2.13)tasuyra
n m
jJ(r) :=LLIGijkb~kl::;;jJ <1.
i,j=Ik=1
Do d6h~phu'ongtrlnhsau
n m
~[rJ(x) =LLaijkb~kFY](Sijk(X)) +g;r)(x),
j=lk=l
1::;; i ::;;n,
t6nt~iduynh:1tmQtWi giai
p[r] = (PIle],...,purr])E C(I;Rn)
12
XE 1.
XE I,
vaWigiainaytrungvoid~ohamca'pr
(f) = (f1(f),...,fn(f»)
cuaWigiai f.
Dod6,tac6dinhly san
DinhIf 3.1:
Gidsa/ =[-b, bJ vacacsffthl!C a!jk'bUlaCijknhutrangd;nhIy 2.3.
Chog E Cr(/;Rn).
Khi do t6nt()i f E Cr (I; Rn) vaF[rJ E C(/; Rn) Ian Iu(ftIa cac Iai
gidi duynh{i'tcua cac h~phudngtrlYlhham(2.11)va (3.7),d6ngthai F[r]
trungvaid()ohamcap r cuaf
Chu thich 3.1:
(3.9)
(3.10)
Trongtru'ongh<;1pI =R, tagia thiStthemr~ngcacsa thljc aUk'bijb
Cijkthoa di~uki~n
n m
maxI I !aijkb;kI <1 .
O:::;s:::;ri,j=lk=l.
Khi do,nSu
g E Cbf (I; Rn) =={g E Cb (I; Rn) / g', gOO,...,g(f) E Cb (I; Rn) },
thlkStlu~ncuadinhly 3.1viincondung,trongd6cackhonggian
13
hamC(I; Rn)va Cr(l;Rn)xua"thi~ntrongdinhIy 3.1du'Qcthaytheboi
Cb(I;Rn)va Cbr(l;Rn),I:1nIu'Qt.Chungminhket quanaytu'dngtV'nhu'
chungminhcuadinhIy 3.1
Bay giGtro I<;litru'onghQp1=[-b,b].Gia sag E CP(I;Rn)va
gQi f E CP(I;Rn)Ia Wi giai duynha"tcua (2.11)tu'dngungvdi g.
Vdi m6i 1~ r ~ P, tacop[r]nhu'trongdinhIy 3.1
Khi dotheocongthucMaclaurintaco
(3.11)
p-l
1:
(r)
(0) 1 x
f(x)= I i , xr+ ,f(X-ty-lf(P)(t)dt,r=O r. (p-l).o
l~i~n.
M(ttkhac,taco:
(3.12) p[r]=rr) , V r =1,...,P
vad(tt Fro]=f.
Tacotil' ,:3.11),(3.12)ding
(3.13)
p-l F[r] (0) I x
fJx) =I i , xr + I f(X-t)P-l f';[P](t)dt,r=O r. (p - I). 0 l~i~n.
Bao I<;li,gia samQtham f =(f;,...,fJ E C(I; Rn) choboi congthuc
(3.14)
~ p-l F[r] (o) 1 x
/;(x)=I i I xr+ ,f(X-ty-1F}P](t)dt,r=O r. (p - 1).0
l~i~n.
Khi do,til' (3.12),(3.14)taco
14
(3.15) ];(x) =I J;<r);o)xr + 1 I f(X-t)P-l t;<P)(t)dtr=O r. (p - 1).0
= fj(x), i=l,.. .,n,XE I.
V~y f IaWigiiiicua(2.11).
Dod6,tac6dinhIy sauday.
DinhIf 3.2:
Giasa / =[-b, bJ vacacsa thT!c a!ik'bijbCijk nhu
trangdtnhly 2.3.
Chog E Cpr/;Rn).Khido,liJi giaif E cpr/;Rn)cua(2.11)du(fcbiiu
diln dutJi dqng (3.13),trangdo Ffr] E C(/; Rn) la liJi giai duynhdt cua
(3.7).Dao lqi, mQihamf E Cpr/;Rn)du(fCbiiu diendutJidqng(3.14)diu
la liJi giai cua (2.11).
Chu thich 3.2:
Tru'onghQpI =R va cacs6thlfc (j'iik'bijk.Cjjkthoamandi€u kic$n(3.9).
N€u g E CbP(I;Rn)thlk€t ku~ncuadinhIy 3.2v~ndung,trongd6 cac
thonggianhamC(I; Rn)va CP(I;Rn)xuftthic$ntrongdinhIy 3.2du'Qc
thaybdi Cb(I;Rn)vaCbP(I;Rn)I~nIu'Qt.
15
TrdvStru'onghQp1=[-b,b],titdinhly 3.2,tacoht$quasau:
He Qua3.1:
GidsitI =[-b, b] vacacs6 th1!CaUk'bjjk,CjjknhlltrangdjnhIy 2.3.
Khi do, ne'ugJ, ..,;gnIa cac da thacbqc ~r -1, thlliJi gidi f cua (2.11)
ding Ia da thacbqc ~ r -1.
Chungminh:
Taco
(3.16) gj(r)(x)= 0, 1 :::;;i:::;;n, '\j xE [-b, b] .
Khi dop[r](x)=0 la Wi giai duynh1tcuaht$(3.7).
Ap dvng(3.13)voip=r,taco
(3.17) f(x) =f F;[S] (0) Xl
s=o s! . .
DinhIf 3.3:
GidsitI =[-b, b], vacacs6 th1!C aiik'bUbC!jknhll trangdjnh Iy 2.3.
Chog E CP(I;Rn).GQi f E CP(I;Rn)cua(2.11) zIngvai g vagQi f
Ia liJi gidi da thac bqc .~ p -1 cua h~(2.11)zIngvai da thac
g=(gl' ,gJ ' trangdo
16
(3.18)
(3.19)
(3.20)
(3.21)
(3.22)
~ p-l (r)
g;(X) ="g; (0)L xr
r=O r! .
Khi d6 tac6
~ 1 bP
II
(p)
11
III - It ~1- P p! g x'
Chungminh:
Khai trienMaclaurinchogj(x)taco
gi(X) =gJx)+(p ~I)! r(x -. t)p-l g;p) (t)dt .
Ap dl;mgdanhgia (2.7)yoi a =~taco
III - It ~1~pjig- gllx .
Do (3.20)taduQc
n
JIg- gllx ~supIlgi(X) - gJx)1 .
!xl:;;bi=l
Ta danhgia t6ngcu6iclingcua(3.22),
Truoc he't,yoi 0 ~ x ~ b:
17
(3.23)
(3.24)
tlr(x - tV-1g;p)(t)dtl:s;r(x - t)p-ll1g(p)(t)lldt
P
:s;IlgCP)!Ix.r (x - tV-1dt =IIg(p)!Ix.xp
bP
:s;IIg(p)!Ix.p
Tu'dnghf,b1td~ngthuc (3.23)clingv~nluonluondung
voi -b :s;x :s;o.
Dodotu (3.22),(3.23)taco
jig- gl!x:s;IIg(pjll ~
x p!
vatu (3.21)taco(3.19) .
;HeQua3.2:
(3.25)
Gid sa 1= [-b, bj, vacacs{fth1!caUk'bi}",CijknhutrongdjnhIy 2.3.
Cho g E CCO(I;Rn) saDcho
3d> 0.. IIg(pjllx::;;dP, 'Vp2:0
GQif Ia liJi gidicuah~(2.11)lingWJigvagQi ][P], Ia liJi gididathac
b(ic ::;;p -1cuah~(3.11)lingWJidathac g, nhutrongdjnhIy3.3.
Khido
Hrnl
l
! - ][PJ
II
=0 .
p~CIJI X
18
(3.26)
HCInnila, taconcodankgia
Ilf-][p]11 ~~ (bd)Px 1- fJ '~'p.
'rip=1,2, ...
Chungminh:
Hi€n nhien tu (3.19)va (3.25), tad~nden(3.26). .
He gmi3.3:
(3.27)
Gidsa / =[-b, b], vacacsa th1!CaUk'bijktCijknhutrangdinkly 2.3.
Chog E C(/;Rn)va! la liJi gidicuah~(2.11)angvaig
Khi do,t6ntc;zimQtdaycacdathacbqc ::;;p -1:
][p] =if[p], ,J!p])
saDcho
p~roIlf- 7[P]!Ix =0 .
Chungminh:
Theodinhly Weierstrass,m6ihamgiduQcxa'pXlbdimOtdaycac
dathuchQitv d€u p/p]khi b~cp-1 ~ 00
Do d6 p[p]=(Pl[P],...,Pn[p]) hQitv trongC(l; Rn)v€ g khi p~ 00
GQi ][P] laWigiaidathuccua(2.11)ungvoig=p[p].
19
(3.28)
Thea danhgill (2.7)vdi a =ptaco:
111[p]- it ~1~fJ .llp[p]- gllx~ 0
20
khi P-7 00.
.
._.