CHUaNG 3
MQT 56 KET QUA VE HAM SUY RQNG QlJ'(Rll)
Kh6ng gian cac hamsuyr(>ng(jj)'(Rll)ra dai la m(>ta'ty€u, tuyv~y,s1f
thi€u v~ngpheploanquailtn;mgnhuphepnhandfflamchoquatrlnhkhaosat
@'(Rll)traDentruutuQngvah,;mch€ v€ phuongphap.
Trong phgnnay cua lu~nvan se chungminh m(>tsO'm~nhd€ v€ s1f
nhilngqjY(Rll)vao y[Rll] daduQcphatbi€u trong[2]vdi hy v<;mgbudcdgut~o
co samar(>ngphuongphapkhaosat (jj)'(Rll)nhac6ngClJphongphil cuagiai
tichcd di€n. D6ngthai thli'apdlJngcack€t quado d
11 trang |
Chia sẻ: huyen82 | Lượt xem: 1564 | Lượt tải: 0
Tóm tắt tài liệu Hàm suy rộng Colombeau, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
€ giai quy€t m(>tvai va'n
d€ ClJth€, dongiantrongkh6nggian(jj)'(Rll).
I. vAl KIEN THUC Md DAD:
.Djnh nghla3.1:
Gia sli'T E (jj)'(Rll),tad~t
RT(cp,x) =<T(t), cp(t- x», cpE .AI, X E Rll.
.M~nhdi 3.2:
i) lim.f0
R"
ii) Vdi T E QlY(Rll),taco
=lim+ fRT(CPE' x)CD(x)dx, Vcp E ,AI, CDE (jj)(Rll)
E~O Rll
Chang minh:
i) La'ydayEk-+ 0+khi k -+ +00 , taco
lim f<p& (t - x)m(x)dx=lim f~<p(
t - x
J
CD(x)dx
& -->0+ k & ->0+ C' C'
k R" k R" (J k (J k
24
=hm+f<p(u)W(t-uE:k)du (d6ibie'nu =I-X)
6',->0R" E:k
suy fa: hm f0+ ,
k R"
= hm fO+
R" Rn
=6'~~+ f<pCu)[ w(t - UE:k )- w(t)]du
SUp p'p
do co,cpE @(Rll) Den I cp(u)I, I co(t- UEk)I, I co(t)I < c d6ng thai co,cplien
tlJcva suppcpcompact.Suyra
hm<p(u)[W(t-UE:k)-W(t)]=0 vaI cp(u)[co(t- UEk)- co(t)]I <c2
£k ->0+
A.pdlJngdinhly hQiWbi ch~nchodayham
taduQc
fk(u)=cp(u)[co(t- UEk)- co(t)]
hm f0+
supp'p
V~y 1
.
im f0+
R"
ii) duQcsuyratui, tudinhngh'iatichphan,tuHnhtuye'ntfnhlienWccua
T va cac ham cp,coE @(Rll).
.Vi dl,l3.3:
+Vdi8lahamDidc: =coCO),V coE qj)(Rll)ta co
Rb(cp,x) = cp(-x),Vcr E Jib Vx E Rll
{
I n€u x >0
+VdihamHeaviside:H: R ~ R, H(x)= /
0 neux <0
25
+00
Taco RH(cp,x)= fcp(t-x)dt
0
.Mfnh d€ 3.4:
Cho R(cp,x) E dl1Ril].Khi dovoi m6icoE @[Ril]luont6nt(;lis6hI nhien
N saocho \:fcpE ~dNtaluonco:
}~~fR(CPc,x)w(x)dx=0, \:fcpE ~dN
R"
Changminh:
Ta coK =suppcola t~phQpcompact.Do R(cp,x) E dt:[Ril]lien co s6tlf
nhienN}va dayY E r saochovoi m6icpE ~q (q ~N) d€u t6nt(;li2 s6dl1dng
C}va 11thoa:
I I
C E:y(q)
R(cp£, x) ::; 1"N ' \:fx E K, \:fE E (0,11)
&1
dodayy(q)tie'ntoi+00liencoth~chQnq duIOn(q ;:::N ;:::N})d~y(q)>Nt,
\:fq;:::N. Khi do I R(cp£,x) I ::;C}Ey(q)-Nl ~ 0 khi E ~ 0+,
ChQn day Ek~ 0+sao cho Ek E (0,11).
Voi cpE ~dq(q~N) va doco(x)bi ch~nlien taco:
I fR(cp"k,X)W(x)dxI =I fR(cp£k,x)co(x)dxI ::; II R(CP£k,x) Ilco(x)ldx
R" K K
::; fc1&[(q)-NIC ~ 0 khi Ek ~ 0+.
K
V~ylim fR(cp",x)w(x)dx=0 dungvoi mQicpE ~q"--70+
R"
.Mfnh d€ 3.5:(Daphatbi~uvachungminhtrong[8]).
Voi coE Ql)(R)taco
fw(x)du=0::3co* E @(R) thoa (co*)'=co.
R
26
II. VE BAO HAM THUC QlJ'(Rll) c y[Rll]
(HamsuyrQngQlJ'(Rll)clingla hamColombeau)
Trong ph~nnay chungWi chungminhcac mt%nhd€ da:du'Qcphatbi€u
trong [2] v€ va'nd€ nhungkh6nggian qj)'(Rll)vao kh6nggian Colombeau
q[Rll].
-Mfnh di 3.6:
Vdi T E qj)'(Rll),tacoRT(cP,x) E ~M[Rll]
Changminh:
Vdi t?P compactK c Rll va da chi so a. GQi ~la quac~udongcoHimt<;li
goc0 vachuat?PcompactK. khi8 dli nho (0 < 8 <11< 1) ta se co t- X E
8
Stippcpkeo theo t E B (dungvdi mQix thuQcK).
Sur fa f(l)=<pea)(1~x) E fl)(B)
Do T E f!l)'(Rll)va B clingla t?Pcompactlienco sotl!nhienk va so
du'ongC1 d€
<T,<p(aJ(t:X»IClllf(t)IIk =c11Icp(aJllk~Cl'S\ ,cz
ChQnN =k +n + I a I , khi dovdi m6icPE J'£N taco
I Du RT«pc,x) I =loaI =En.!j a I
~ sn+llal+kC1CZ=s~ ' dung \Ix E K, \18E (0, 11).
V?y RT(cp,x) E ~M[Rll].
27
.Mrnh d€ 3.7:
f!j)'(Rll)akhanggiantuye'ntinhconcuay[Rll]nhdphepnhung
Trongdo
j: @'(Rll) --+y[Rll]
jeT)=RT(cP,x) +,h[Rll]
Chungminh:
+ j la anhx~tuye'ntinhdU<;1csuyra tu dinhnghlacua RT(cP,x) va tinh
tuye'ntinhcuaT.
+ Bay gid chungminhj la donanhtucla tu gia thie'tjeT) =0 trong
y[Rll] cgnsuyraT =0 trongf!j)1(Rll).
Th~tv~y,dojeT) =0 lien RT(cp,x) E u11Rll].
Voi coE f!j)(Rll),t6nt~is6tlfnhienN saocho
!~~fRT(q>",x)m(x)dx=0 , vcpE u4q(q~N) (m~nhd~3.4)
R"
ma=hm fRT(q>c'x)m(x)dx (m~nhd~3.2),,-->0+
R"
~ =0, vco E Qj)(Rll).
V~yT =0 trong f!j)'(Rll).
.Mrnh d€ 3.8:
Cho T E f!j)'(Rll)va R(cp,x) la mQtd~idi~ncuajeT) (j la phepnhung
trongm~nhd~3.7).khi do voi m6icoE @(Rll) luant6nt~is6tlf nhienN sao
choVcpE .YiNtaco
1
.
im fR(q>",x)m(x)dx =,,-->0+
R"
. Chungminhm~nhd~naydU<;1csuyra tu3.4va 3.2
28
.M?nhdi 3.9:
Voi f(x) E COO(Rll),taco
Rl(CP,x) =ff(t)<p(t-x)dt va R2(CP,x) =f(x)
R"
la haid'.lidi~ncuamQtph~ntii'trongq[Rll].
Changminh:
C~nchungminh Rl(CP,x) - R2(CP,x) E u11Rll]
(vlly doky hi~u,lienchi chungminhtru'onghQpn=1).
Th~tv~y:voit~phQpcompactK c R vadachis6a
+Khi a =0:
Ta co
I Do-R1(CPE,x) I =I Rl(CPE,x) I =I ~ff(t)<P(
t-x
)
dt I
C:R c:
=I ff(x+uC:)<p(u)duI
R
(d
;>' b'A" t-x )01 len u =- =>t=x +UE .
E
=>
I Do-R1(CPE,x) - Do-R2(CPE'x) I =I ff(x+uc:)<p(u)du-ff(x)<p(~)duI
R R
=I fcP(u)[ f (x +U6')- f (x)] du I
GQiB la quac~udongHimt'.lig6c0 chuaK.
Voi Edube (0<E<11< 1)tasecoU E StippcPkeotheot E B.
ChQnN =1,y(q)=q +2,
Voi cPE .x1q\ .x1q+l,khai tri6n Taylor ham f(x) t'.lix Wi cap q ta du'QC
q .. (j) 1 (q+l) 1
f(x +U E) - f(x) =LUJEJf(x).-;-+uq+lEq+lf(8)
j=l J! (q+1)!
29
trongd68n~mgiuax vax +liE,voix vatthuQCB lien8clingthuQcB surra
(q+l) 1
I cp(u)uq+lf (8) .( 1)' I ::;CI (CI phl;lthuQccp),sii'dl;lng fuP<p(u)du=0 (1 ::;~q+ . R
::;q) ta du'Qc
If I If q+l (q+l) 1 I<p(x)(f(x+u&)- f(x)du = <p(u)& uq+lf (8).
R R (q+l)!
<C q+lC =C y(q) (c ladodocuaStippm).- I.E 2 . N 2. 't'
E
+ Khi a ~1: lam tu'dngtlf nhu'tren,thayVI v~ndl;lngcongthucTaylor
(a)
voihamf(x),baygiOlahamg(x)=f (x) taclingdu'Qcdi~uc~nchungminh
V~y [RI - R2]E JV[R].Dod6RI(CP,x)vaR2(cp,x) lahaid(;lidi~ncua
mQtph~ntii'trongy[R].
.M~nhdl 3.10:
qj)'(Rll)la khonggiantuye'ntinhconthlfcslfcuay[Rll](hi~utheonghla
nhung).
Changminh:
Ta tha'y82thuQcy[Rll]nhu'ngkhongthuQcqj)'[Rll].
Th~tv~y:Giasa82=T E 9lJ'(Rll)khid6(j trongy[Rll],T sec6haid(;li
di~nla RI(CP,x)=cp2(-x)vaR2(CP,x)=RT(cp,x) =>[RI - R2]E JV[iRll] lien
voi m6icoE qj)(Rll)d~ut6nt(;lis6tlf nhienN saochoVcPE J1q (q~N) tad~u
c6
!~~feR!-R2)«PE,x)OJ(x)dx=0
R"
(m~nhd~3.4)
ma lil11fR2 «p",x)w(x)dx= ,VcpE J11E~O
R"
(m~nhd~3.2)
sur ra !~~fRI «pI"x)OJ(x)dx =,VcpE J1q (q ~N)
R"
m~tkhac: limfRI «pI"x)OJ(x)dx = lil11f0
R" R"
30
(d
A!' b' '" x )01 len U =- -
E
= lim(-lY 2- fcp2(u)OJ(-uE:)du, K =Stipp cpla t?P compact.17--->0+ E:n
K
Bay gio chQn day Ek ~ 0+va coE QlJ(Rn)sao cho coCO)*-0, sad\lngtinh
compactcuaK, tinhbi ch~ncuacp,cova v?n d\lngdinhly hQiW bi ch~ncho
day ham fk (u) =cp2(u) co(-UEk) ta duQc
lim+ fcp2(u)co(-UEk)du = fcp2(u)CO(0)du= coCO)fcp2(u)du *-0
Ek~O KKK
suy ra Jim (_1)n~ fcp(U)co(-UEk)du = 00+ n
Ek~O Ek K
do do lim fRI (CPe'x) OJ(x) dx = 0017--->0+
R"
di~unay mall thu~nvdi lim fRJCPe, x) OJ(x)dx = lim fR2(CPe,x)OJ(x)dx17--->0+ 17--->0+
R" R"
=
(daco duQctuph~ntrencuachungminh).
V?y 82 ~ QlJ'(Rn).
.M~nhdi 3.11:
Vdi T E QlJ'[Rn]ta co:
i) D~RT(CP,X)=R a (cp,x)D T
ii) D<Xj(T) =j(D<XT)
Changminh:
i) D~RT(CP,x)=D~=<T(t),D~cp(t-x»
31
=<T(t), (-1) Ia I <p(a)(t- x» =(-1) I a I <T(t), <p(a)(t- x»
RDaT«p,x) = =(_1)1aI
=(_1)lal Ct-x»
nhuv~ytacoi)
conii) ducjcsuyratn!cti€p tui)
" "" ,,' ? ,
III. MOT SO KET QUA KHAC:
CaephuongtrlnhY' =0, Y' =T trong [!J)'(R)dffducjcgiai trong[8]b~ng
phuongphapthactri~ntoantatuye'ntinh.Trongph~nnaychungWilieUeach
giai khacdtjatrenco sa caeke'tquadffd~tducjckhi khaosatcaeham
Colombeau.
.Ph-tldngtrinh 3.12: Y' =0 trong [!J)'(R)
* Gia sa Y E [!J)'(R)la nghi<$mcuaphuongtrinh,tum<$nhd~3.11
=>R'y«p, x) =RY'«p,x) =Ro«p,x)=0, V<pE .xiI, X E R.
Ta tha'y:Khi c6 dinh <PIE J'iI, voi m6i coE [!J)(R),t6n t~iduy nha't
COoE [!J)(R) thoa co(x)=<PI(x) fm(~)d~+wo(x)va fmo(~)d~=o.
R R
Ta co=!imfRy(cpli,x)m(x)dx,<pE J'il (M<$nhd~ 3.2)Ii-+O+
R
=>= !~~[ fRy (cp0"X)CPI(x)dx. fm(C;)dC;+ fRy (cpIi'x)mo(X)dX]R R R
M~t khac !imfRy(CPIi'X)cpJ(x)dx ==a E (['Ii-+O+
R
lim fRy(CPIi,x)mo(x)dx = lim
~
RY(CPIi'X)' Xfmo(Odc;
l
+oo
0'-+0+ 0'-+0+R - 00
- JR" «j>pX)[WoC';-)d';-dx] ~0
32
Suyfa =- fam(x)dx
R
NguQc l:;ti, khong ma'ykho khan khi ki~m l:;ti dng mQi ham
=- fam(x)dx(a lahangs6thuQc<C)d€u nghit%mPT 3.12.
R
V~ynghit%mcuaphuongtrlnh3.121ahamhangtheonghiaphanb6.
.Phztdngtrinh 3.13:Y' =T tfong f!/j'(R)
* GiasaY E f!/j'(R)langhit%mcuaphuongtrlnh
=>R'y(cp,x) =Ryo(cp,x) =RT(cp,x), Vcr E J<£1,x ER.
c6 dinh cpE ,;:21,voi m6i coE f!/j(R),t6nt:;tiduy nha'tCOoE f!/j(R).
Thoaco(x)=CPl(X)fm(()d( +coo(X)va fmo(x)dx=O.
R R
Ta co =hmfRy«p",x)m(x)dx,,~o+
R
= !~~[
fRy«p",x)<p}(x)dx.fm(()d( +fRy«p",x)mo(X)dx
]R R R
Ma li~fRy«P",X)=a ECC~O
R
hmfRy«p",x)mo(x)dx=lim
[
Ry«P,,'X). XfOJo(c;)d('+OI),,~o+ ,,~o+
R -01) 1-01)
- JR', (q>"X)}j)o(.;)d~ch]
x
=0- hmfRT«P",X)fmo(()d(dx,,~o+
R -01)
x
=-
-00
33
x(doMD 3.5lien JO)o(~)d~E QiJ(R
-00
suyfa:
x
R -00
* NguQcl~i,tacoth€ ki€m duQcdingmQiham
x
=- +fam(x)dxd~uthuQcQiJ'(R)vathoaPT 3.13
R
(tfong do fmo(x)dx=O,m(t)=<1'I(t).fm(x)dx+mo(t),CP1c6 dinh thuQc J41,
R R
cona la h~ngs6phucthuQc<C.
x
V~ynghi~mcuaphudngtrlnh3.13la hamsuyfQng
-00
cQngvdi hamh~ng(theonghiaphanb6}
34
._.