BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
KHOA TOÁN-TIN HOC
NGHIỆM THU ĐỀ TÀI CẤP CƠ SỞ
Định lí Farkas mở rộng cho hệ
có chứa ràng buộc lồi đảo và ứng dụng
Mã số: CS.2005.23.77
Người thực hiện: PGS.TS. Nguyễn Định
Tp. Hồ Chí Minh, 2/2006
TÓM TẮT KẾT QUẢ NGHIÊN CỨU CỦA ĐỀ TÀI
Định lí Farkas mở rộng cho hệ
có chứa ràng buộc lồi đảo và ứng dụng
Mã số: CS.2005.23.77
BÁO CÁO TỔNG QUAN
Bổ đề Farkas đóng một vai trò cơ bản trong lí thuyết tối ưu tuyến tính cũ
16 trang |
Chia sẻ: huyen82 | Lượt xem: 1617 | Lượt tải: 0
Tóm tắt tài liệu Định lý Farkas mở rộng cho hệ có chứa ràng buộc lồi đảo và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ng như tối ưu
phi tuyến. Trong những thập niên vừa qua, Bổ đề Farkas đã được mở rộng và phát triển
ra cho các hệ tuyến tính (vô hạn chiều), các hệ phi tuyến cũng như các hệ đa trị, dưới các
dạng khác nhau. Cùng với các mở rộng này là áp dụng của nó vào lí thuyết quy hoạch
lồi nửa vô hạn, quy hoach lồi tổng quát, các bài toán quy hoạch lồi nửa các định (convex
semi-definite programs (SDP)), các bài toán tối ưu đa mục tiêu.
Kết quả nghiên cứu của đề tài đã được viết thành 3 bài báo trong đó có 2 bài đăng
trong Tạp chí Khoa học của Trường Đại học Sư phạm Tp. Hồ Chí Minh và 1 bài sẽ gửi
đăng trên một tạp chí toán quốc tế. Các kết quả này sẽ được trình bày trong 3 chương sau
đây và toàn văn 3 bài báo sẽ được đính kèm ở phần sau trong tập báo cáo nghiệm thu này.
Chương 1 trình bày tổng quan sự phát triển của các dạng mở rộng của Bổ đề Farkas
trong các thập niên gần đây, bao gồm các dạng trong không gian hữu hạn chiều và không
gian vô hạn chiều; cả các dạng tiệm cận và không tiệm cận mới được thiết lập trong những
năm cuối của thế kỉ 20 và những năm đầu của thế kỉ 21, cùng với những áp dụng đa dạng
của các dạng mở rộng này trong lý thuyết tối ưu. Chương 2 là các kết quả mới của đề tài,
mở rộng Bổ đề Farkas cho các hệ có chứa các bất đẳng thức lồi và các bất đẳng thức DC.
Chương 3, trình bày các áp dụng của các dạng mở rộng của Bổ đề Farkas vào các bài toán
quy hoạch DC với ràng buộc lồi theo nón và ràng buộc tập.
1
Chương I
CÁC KẾT QUẢ DẠNG FARKAS MỞ RỘNG VÀ ÁP DỤNG
VÀO LÍ THUYẾT CÁC BÀI TOÁN TỐI ƯU LỒI
1 Giới thiệu
Bổ đề Farkas cổ điển được phát biểu như sau:
Bổ đề 1.1 Giả sử a1, a2, ...., am, c ∈ Rn. Khi đó các mệnh đề sau là tương đương:
(i) aTi x ≥ 0, i = 1, 2, ...,m =⇒ cT (x) ≥ 0,
(ii) (∃λi ≥ 0, i = 1, 2, ...,m) c =
∑m
i=1 λiai.
Dạng cổ điển và đơn giản này đã được áp dụng một cách hiệu quả để nghiên cứu nhiều
lớp các bài toán tối ưu tuyến tính cũng như phi tuyến. Điều này là động lực để các nhà
toán học tìm kiếm các dạng tổng quát hơn nhằm mở rông phạm vi áp dụng của nó, chẳng
hạn vào các bài toán điều khiển tối ưu, các bài toán quy hoạch vô hạn hoặc áp dụng vào
lớp các bài toán nửa xác định đang phát triển và có rất nhiều ứng dụng trong những năm
gần đây.
Để có thể trình bày các mở rộng của Bổ đề Farkas, trước hết ta nêu ra một số khái
niệm cơ bản của giải tích lồi mà chúng ta sẽ sử dụng thường xuyên trong chương này và
các chương sau.
Cho f : X → R ∪ {+∞}. Miền hữu hiệu của f là tập
dom f = {x ∈ X | f(x) < +∞}.
Hàm f được gọi là chân chính nếu domf 6= ∅.
Giả sử f : X → R ∪ {+∞} là một hàm lồi chân chính và nửa liên tục dưới (l.s.c.).
Hàm đối ngẫu của f , f ∗ : X∗ → R ∪ {+∞}, được định nghĩa bởi
f ∗(v) = sup{v(x)− f(x) | x ∈ dom f}.
Epigraph của f , kí hiệu là epif , là tập
epi f = {(x, r) ∈ X × R | x ∈ dom f, f(x) ≤ r}.
Với ε ≥ 0, ε-dưới vi phân của f tại a ∈ domf được định nghĩa là tập lồi đóng yếu∗
∂εf(a) := {v ∈ X ′ | f(x)− f(a) ≥ v(x− a)− ε, ∀x ∈ dom f}.
Để ý rằng ∂εf(a) 6= ∅ nếu > 0. Khi = 0 ta quay trở lại khái niệm dưới vi phân của
hàm f tại a theo nghĩa thông thường của giải tích lồi. Trong trường hợp này ta sẽ kí hiệu
là ∂f(a) (thay vì ∂0f(a)). Dưới vi phân của một hàm lồi luôn là tập lồi, compact yếu∗ (có
thể là tập rỗng).
2
2 Các kết quả dạng Farkas mở rộng
Sự thành công của việc vận dụng Bổ đề Farkas trong các bài toán tối ưu tuyến tính cũng
như sự hữu ích của nó trong việc nghiên cứu các bài toán tối ưu phi tuyến đẫ dẫn đến nhu
cầu mở rộng bổ đề này cho các hệ tuyến tính vô hạn chiều, các hệ phi tuyến, các hệ liên
quan đến các ánh xạ đa trị, ... Chúng ta sẽ đề cập ở đây một số dạng mở rộng tiêu biểu.
Tuy nhiên, chỉ có một số kết quả quan trọmg mới đây sẽ được trình bày chi tiết.
• Bổ đề Farkas cho hệ tuyến tính vô hạn chiều.
• Bổ đề Farkas cho hệ không trơn.
• Các kết qủa mở rộng dạng Farkas cho các hệ lồi theo nón.
Trong mục này chúng ta sẽ điểm qua một số kết qủa mở rộng Bổ đề Farkas được công
bố trong những năm vừa qua, chủ yếu của các tác giả V. Jeyakumar, G.M. Lee, M.A.
Goberna, M.A. Lopez và Nguyễn Định (xem chi tiết trong [1]).
Cho X,Z là hai không gian định chuẩn, C là một tập lồi đóng của X , S là một nón
lồi đóng trong Z còn g : X → Z là một ánh xạ S-lồi, liên tục và f : X → R là một hàm
lồi lên tục.
Định lí 2.1 (Bổ đề Farkas dạng tiệm cận) Giả sử hệ x ∈ C, g(x) ∈ −S là tương thích.
Khi đó với mọi α ∈ R,các phát biểu sau là tương đương:
(i) inf{f(x) : g(x) ∈ −S, x ∈ C} ≥ α,
(ii) (0,−α) ∈ epif ∗ + cl (∪λ∈S+epi(λg)∗ + epi(δ∗C)) ,
(iii) (∃(λn)n ⊂ S+ ) (∀x ∈ C)
f(x) + lim inf
n
λng(x) ≥ α.
Dạng tiệm cận này của Bổ đề Farkas đã được sử dụng để thiết lập các định lí về điểm
yên ngựa, các định lí đối ngẫu mạnh cho bài toán tối ưu lồi tổng quát với ràng buộc lồi
theo nón dạng g(x) ∈ −S, cũng như cho bài toán nửa xác định (SDP).
Định nghĩa 2.1 Hệ x ∈ C, g(x) ∈ −S được gọi là thỏa mãn điều kiện chính quy dạng
nón đóng (CCCQ) nếu tập hợp⋃
λ∈S+
epi(λg)∗ + epi δ∗C là đóng yếu
∗
.
Người ta chứng minh được rằng (xem [JDL]) điều kiện (CCCQ) yếu hơn các điều kiện
dạng mở rộng của các điều kiện dạng Slater mở rộng (cũng thường gọi là các điều kiện
điểm trong, thường được sử dụng trong các bài toán tối ưu lồi).
3
Định lí 2.2 (Bổ đề Farkas dạng không tiệm cận) Giả sử tập C ∩ g−1(−S) là không rỗng
và α ∈ R. Nếu điều kiện (CCCQ) thỏa mãn thi các phát biểu sau là tương đương:
(i) g(x) ∈ −S, x ∈ C =⇒ f(x) ≥ α,
(ii) (0,−α) ∈ epi f ∗ + ∪λ∈S+epi (λg)∗ + epi δ∗C ,
(iii) (∃λ ∈ S+)(∀x ∈ C) f(x) + λg(x) ≥ α.
• Các mở rộng của Bổ đề Farkas cho hệ lồi vô hạn
Trong mục này chúng ta chủ yếu nghiên cứu hệ (gồm một số vô hạn các bất đẳng thức
lồi và một ràng buộc tập) sau
σ := {ft(x) ≤ 0, t ∈ T ; x ∈ C},
trong đó T là một tập chỉ số tùy ý (có thể vô hạn), C ⊂ X là một tập con lồi đóng, X
là một không gian vectơ tôpô lồi địa phương Hausdorff và ft : X → R ∪ {+∞} với mọi
t ∈ T . Giả sử rằng ft là các hàm lồi chân chính, nửa liên tục dưới (l.s.c.), mọi t ∈ T .
Gọi
K := cone{
⋃
t∈T
epif ∗t }+ epiδ∗C .
Định nghĩa 2.2 Chúng ta nói rằng hệ σ is Farkas-Minkowski (ngắn gọn FM) nếu tập K
là đóng yếu∗.
Liên quan đến hàm f và hệ σ, ta sẽ sử dụng điều kiện sau:
(CC) : The set epif ∗ + clK is weak∗-closed.
Bây giờ chúng ta nêu ra Bổ đề Farkas dạng mở rộng và không tiệm cận.
Định lí 2.3 Nếu σ là FM, (CC) thỏa mãn và α ∈ R, thì các mệnh đề sau là tương đương.
(i) f (x) ≥ α là hệ quả của σ;
(ii) (0,−α) ∈ epif ∗ + K;
(iii) tồn tại λ ∈ R(T )+ sao cho
f(x) +
∑
t∈T
λtft(x) ≥ α, ∀x ∈ C.
3 Một số áp dụng vào bài toán tối ưu
Bài toán lồi với ràng buộc lồi theo nón.
Xét bài toán tối ưu lồi tổng quát
(P) Minimize f(x)
với ràng buộc x ∈ C, −g(x) ∈ S,
trong đó X, Y là các không gian định chuẩn thực, f : X → R là một hàm lồi, g : X →
là một ánh xạ S-lồi, liên tục với S là một nón lồi đóng trong Y (không nhất thiết có phần
trong khác rỗng) và C là một tập lồi đóng trong X .
4
Định lí 3.1 (Điều kiện tối ưu) [JDL] Xét bài toán (P) và cho a ∈ C ∩ g−1(−S). Giả sử
rằng điều kiện (CCCQ) thỏa mãn. Khi đó a là một nghiệm của (P) nếu và chỉ nếu tồn tại
λ ∈ S+ sao cho
0 ∈ ∂f(a) + ∂(λg)(a) + NC(a) và λg(a) = 0,
trong đó NC(a) là nón pháp tuyến với tập C tại a.
Định lí 3.2 (Điều kiện tối ưu theo dãy I) Xét bài toán (P). Giả sử rằng a ∈ C ∩ g−1(−S).
Khi đó các điều kiện sau là tương đương:
(i) f(a) = inf{f(x) : x ∈ C, −g(x) ∈ S} (a là ngiệm của (P)),
(ii) (∃ u ∈ ∂f(a) )(∃{λn} ⊂ S+)(∃{n},{γn} ⊂ IR+) (∃{vn}, {wn} ⊂ X ′) sao
cho vn ∈ ∂n(λng)(a), wn ∈ ∂γnδC(a), u+vn+wn →∗ 0, n → 0, γn → 0 và λng(a) → 0
khi n → ∞.
Định lí 3.3 (Minimax Lagrange theo dãy) Đối với Bài toán (P), giả sử rằng tập các điểm
chấp nhận được là không rỗng. Khi đó tồn tại một dãy (λ¯n) ⊂ S+ sao cho
inf
x∈C
sup
(λn)⊂S+
lim inf
n→∞
L(x, λn) = sup
(λn)⊂S+
inf
x∈C
lim inf
n→∞
L(x, λn)
= inf
x∈C
lim inf
n→∞
L(x, λ¯n) = inf(P ).
Bài toán lồi vô hạn
Xét bài toán lồi vô hạn
(PI) Minimize f(x)
với ràng buộc ft(x) ≤ 0,∀t ∈ T,
x ∈ C,
trong đó X là một không gian vectơ tôpô lồi địa phương Hausdorff, C ⊂ X là một tập
lồi đóng và f, ft : X → R ∪ {+∞} là các hàm lồi chân chính, l.s.c., mọi t ∈ T . Gọi
A := {x ∈ X | ft(x) ≤ 0, ∀t ∈ T, x ∈ C}.
Định lí 3.4 [DGLS] (Điều kiện tối ưu) Đối với bài toán (PI), giả sử rằng điều kiện (CC)
thỏa mãn, a ∈ A. Nếu thêm σ là FM thì a là một nghiệm của (PI) nếu và chỉ nếu tồn tại
(λt)t ∈ Λ+ sao cho
0 ∈ ∂f(a) +
∑
t∈T
λt∂ft(a) + NC(a), λtft(a) = 0, t ∈ T. (1)
Sử dụng Bổ đề Farkas mở rộng chúng ta cũng thiết lập được các định lí đối ngẫu mạnh,
các điều kiện điểm yên ngựa cho bài toán (P1).
5
Chương II
BỔ ĐỀ FARKAS CHO HỆ BẤT ĐẳNG THỨC
GỒM CÁC HÀM LỒI VÀ HÀM DC
Giả sử Z là một không gian Banach, X là một không gian Banach phản xạ, f, g :
X −→ R ∪ {+∞} là các hàm lsc, lồi, chân chính, và h : X −→ Z là ánh xạ S-
lồi liên tục trong đó S là một nón lồi đóng trongZ. Trong suốt bài báo này ta giả sử
C ∩ h−1(−S) ⊂ domg. Hạn chế về tính phản xạ của không gian X chỉ để tránh việc sử
dụng lưới (net). Các kết quả trong bài này vẫn còn đúng trong không gian vectơ tôpô tổng
quát.
Gọi K là nón lồi xác định bởi
K := ∪λ∈S+epi(λh)∗ + epiδ∗C .
Chúng ta sẽ sử dụng các điều kiện sau đây, liên quan đến hệ h(x) ∈ −S, x ∈ C và
hàm lsc, lồi, chân chính f :
(CC1) epif ∗ + clK là đóng yếu∗.
(CC2) epif ∗ + K là đóng yếu∗.
Để ý rằng điều kiện (CC1) sẽ được thoả mãn nếu f liên tục tại một điểm nào đó trong
C ∩ h−1(−S).
Các kết quả chính trong chương này sẽ được nêu lên sau đây.
Định lí 1. (Bổ đề Farkas dạng tiệm cận) Cho α ∈ R. Nếu điều kiện (CC1) thoả mãn
thì các mệnh đề sau tương đương
(i) h(x) ∈ −S, x ∈ C =⇒ f(x)− g(x) ≥ α,
(ii) (0,−α) + epi g∗ ⊂ epi f ∗ + clK,
(iii) (∀x∗ ∈ domg∗)(∃(λn)n ⊂ S+)(∀x ∈ C)
f(x) + lim inf
n→∞
λnh(x) ≥ (x∗, x)− g∗(x∗) + α,
(iv) (∀ > 0) (∀x ∈ C ∩ domg) (∃(λn)n ⊂ S+)
f(x) + lim inf
n→∞
λnh(x)− g(x) ≥ α− .
Định lí 2. (Bổ đề Farkas dạng không tiệm cận) Cho α ∈ R. Nếu điều kiện (CC2) thoả
mãn thì các mệnh đề sau là tương đương
(i) h(x) ∈ −S, x ∈ C =⇒ f(x)− g(x) ≥ α,
(ii) (0,−α) + epi g∗ ⊂ epi f ∗ + K,
6
(iii) (∀x∗ ∈ domg∗)(∃λ ∈ S+)(∀x ∈ C)
f(x) + λh(x) ≥ (x∗, x)− g∗(x∗) + α.
(iv) (∀ > 0) (∀x ∈ C ∩ domg) (∃λ ∈ S+)
f(x) + λh(x)− g(x) ≥ α− .
Để ý rằng trong trường hợp g ≡ 0 kết quả trên suy biến thành các kết quả cho cac hệ
lồi vừa được thiết lập mới đây (Chương I).
Hệ quả 3. Giả sử C ∩ h−1(−S) khác rỗng và α ∈ R. Nếu f liên tục tại một điểm nào
đó trong C ∩ h−1(−S) thì các mệnh đề sau tương đương
(i’) h(x) ∈ −S, x ∈ C =⇒ f(x) ≥ α,
(ii’) (0,−α) ∈ epi f ∗ + cl (∪λ∈S+epi (λh)∗ + epi δ∗C),
(iii’) (∃(λn)n ⊂ S+)(∀x ∈ C) f(x) + lim inf
n→∞
λh(x) ≥ α.
Hệ quả 3. Giả sử C ∩ h−1(−S) khác rỗng và α ∈ R. Nếu f liên tục tại một điểm nào
đó trong C ∩ h−1(−S) và điều kiện K là đóng yếu∗ thì các mệnh đề sau là tương đương:
(i”) h(x) ∈ −S, x ∈ C =⇒ f(x) ≥ α,
(ii”) (0,−α) ∈ epi f ∗ + ∪λ∈S+epi (λh)∗ + epi δ∗C ,
(iii”) (∃λ ∈ S+)(∀x ∈ C) f(x) + λh(x) ≥ α.
7
Tài liệu
[1] Nguyễn Định, Các kết quả dạng Farkas mở rộng và áp dụng vào lý thuyết các bài
toán tối ưu lồi, Tạp chí khoa học Đại học Sư phạm Tp. Hồ Chí Minh - Khoa học
tự nhiên, 6(40), 2005, 3 - 25.
[2] Nguyễn Định và Trần Thái An Nghĩa, Bổ đề Farkas cho các hệ bất đẳng thức gồm
các hàm lồi và hàm DC, Tạp chí khoa học Đại học Sư phạm Tp. Hồ Chí Minh -
Khoa học tự nhiên, 6(40), 2005, 41 - 52.
[3] N. Dinh, Guy Vallet, and T.T.A. Nghia, A new approach to DC-programs with cone
convex constraints (bản thảo, 2005).
8
Chương III
BÀI TOÁN QUY HOẠCH DC VỚI RÀNG BUỘC LỒI THEO NÓN
1 Giới thiệu
Trong chương này chúng ta sẽ xét bài toán tối ưu cực tiểu hóa một phiếm hàm DC (hiệu
của 2 hàm lồi) với ràng buộc lồi theo nón và một ràng buộc tập có dạng sau:
(P) inf (f(x)− g(x))
subject to x ∈ C, h(x) ∈ −S
trong đó X,Z là các không gian Banach, C là một tập lồi đóng của X , f, g : X →
R ∪ {+∞} là các hàm lồi, S là một nón lồi đóng trong Z (không nhất thiết có phần
trong khác rỗng), và h : X → Z là một ánh xạ liên tục, S-lồi. Chúng ta quy ước rằng
∞−∞ = +∞.
Trong suốt chương này chúng ta giả thiết rằng
A := {x ∈ X | x ∈ C, h(x) ∈ −S} = C ∩ h−1(−S) 6= ∅.
Lúc này (P) có thể được viết lại là
(P′): inf
x∈A
f(x)− g(x)
hoặc là
(P′′): inf
x∈X
[(f(x) + δA(x))− g(x)]
Một điều kiện cần để một điểm a ∈ A là cực tiểu toàn cục của (P) là:
∂g(x0) ⊂ ∂(f + δA)(x0).
Dưới một điều kiện chính quy nào đó, điều kiện vừa nêu có thể viết lại là:
∂g(x0) ⊂ ∂f(x0) + NA(x0). (1)
Bổ đề sau đây đóng một vai trò quan trọng trong toàn bộ các nghiên cứu của chương
này. Nó được thiết lập bởi J. B. Hiriart-Urruty (2001).
Bổ đề 1.1 x0 ∈ A là một nghiệm tối ưu toàn cục của (P’) nếu và chỉ nếu với mọi ≥ 0,
∂g(x0) ⊂ ∂(f + δA)(x0). (2)
1
2 Điều kiện tối ưu
Kết quả chính của chương này là các điều kiện cần và đủ tối ưu cho bài toán (P). Chúng
tôi đã chứng minh được các kết quả sau:
Định lí 2.1 Giả sử rằng inf(P ) < +∞ và điều kiện (CC2) được thỏa mãn. Khi đó x¯ ∈ A
là một nghiệm tối ưu toàn cục của (P) nếu và chỉ nếu với mỗi ≥ 0, với mỗi x∗ ∈ ∂g(x¯),
tồn tại λ ∈ S+ và 1, 2, 3 ≥ 0 sao cho 1 + 2 + 3 = + λh(x¯) và
x∗ ∈ ∂1f(x¯) + ∂2(λh)(x¯) + N3(C, x¯). (3)
Đặc biệt, nếu x¯ ∈ A là một nghiệm toàn cục của (P) thì với mỗi x∗ ∈ ∂g(x¯), tồn tại
λ ∈ S+ sao cho
x∗ ∈ ∂f(x¯) + ∂(λh)(x¯) + N(C, x¯), λh(x¯) = 0.
Trường hợp đặc biệt, khi không có mặt ràng buộc x ∈ C, điều kiện tối ưu được cho ở
dạng đơn giản sau:
Hệ quả 2.1 Gỉa sử rằng C = X và inf(P ) < +∞. Nếu epif ∗ +⋃λ∈S+ epi(λh)∗ là đóng
yếu∗ thì x¯ là nghiệm tối ưu toàn cục của (P ) khi và chỉ khi với mỗi ≥ 0,
∂g(x¯) ⊂
⋃
λ∈S+
⋃
1+2=+λh(x¯)
1,2≥0
{∂1f(x¯) + ∂2(λh)(x¯)} . (4)
Đặc biệt, nếu x¯ là một nghiệm của (P) thì
∂g(x¯) ⊂
⋃
λ∈S+
λh(x¯)=0
{∂f(x¯) + ∂(λh)(x¯)}. (5)
3 Áp dụng
Trong mục này các kết quả đạt được trong Mục 2 sẽ được áp dụng để nghiên cứu các
lớp toán cụ thể, chẳng hạn, lớp các bài toán DC với ràng buộc lồi, lớp các bài toán trong
đó hàm g là hàm đa diện (maximum của một họ hữu hạn các hàm tuyến tính), bài toán
maximum một phiếm hàm lồi trên một tập lồi.
3.1 Bài toán DC với ràng buộc lồi
Xét bài toán:
(PCI): inf
x∈C, hi(x)≤0, i∈I,
f(x)− g(x),
2
trong đó I là một tập chỉ số tùy ý (có thể vô hạn); hi : X −→ R, i ∈ I , là các hàm lồi,
liên tục trong khi f, g : X → R∪ {+∞} là các hàm lồi chân chính, nửa liên tục dưới như
trong các mục trước.
Gọi Z = RI là không gian tích được trang bị tôpô tích. Khi đó không gian đối ngẫu
tôpô Z∗ của Z là R(I), chính là không gian gồm các dãy suy rộng hữu hạn, nghĩa là bao
gồm các hàm v : I → R với giá hữu hạn. Đặt S = RI+. Khi đó nón đối ngẫu (dương) S+
của nón S là R(I)+ với
R(I)+ := {(λi)i∈I | λi ≥ 0, i ∈ I, λi = 0 voi moi i tru mot so huu han i ∈ I}
Gọi A := {x ∈ C, hi(x) ≤ 0, ∀i ∈ I}. Kí hiệu h := (hi). Dễ dàng nhận thấy rằng
h : X −→ Z là liên tục, S-lồi và rằng Bài toán (PCI) có thể viết lại dưới dạng Bài toán
(P). Giả sử rằng A := h−1(−S) ∩ C là một tập không rỗng của X .
Điều kiện tối ưu cho (PCI) được cho ở định lí sau:
Định lí 3.1 Giả sử rằng inf (PCI) < +∞ và rằng epif ∗ + cone⋃i∈I epihi∗ + epiδ∗C là
một tập đóng yếu∗. Khi đó, x¯ là một nghiệm tối ưu toàn cục của (PCI)nếu và chỉ nếu với
mọi ≥ 0, với mọi x∗ ∈ ∂g(x¯), tồn tại (λi) ∈ R(I)+ , (i) ∈ R(I)+ , α, β ≥ 0 sao cho
α + β +
∑
i∈I
i = +
∑
i∈I
λihi(x¯),
x∗ ∈ ∂αf(x¯) +
∑
i∈I
∂i(λihi)(x¯) + Nβ(C, x¯).
Đặc biệt, nếu x¯ là một nghiệm tối ưu toàn cục của (PCI) thì với mọi x∗ ∈ ∂g(x¯), tồn tại
(λi) ∈ R(I)+ sao cho
x∗ ∈ ∂f(x¯) +
∑
i∈I
λi∂hi(x¯) + NC(x¯), λihi(x¯) = 0. (6)
3.2 Bài toán (P) với g là hàm đa diện
Chúng ta sẽ xét trường hợp đặc biệt của Bài toán (P) khi C = X và g là hàm có dạng
g(x) = max
i∈I
{(a∗i , x) + bi}, ∀x ∈ X (7)
trong đó I = {1, 2, . . . , n}, a∗1, a∗2, . . . , a∗n ∈ X∗. Hàm g như thế được gọi là một hàm lồi
đa diện. Ta có
epig∗ = cl
{
co
(⋃
i∈I
({a∗i } × [−bi,+∞))
)}
.
Điều kiện tối ưu cho (P) trong trường hợp này được cho ở định lí sau:
3
Định lí 3.2 Đối với Bài toán (P), giả sử rằng C = X và g là một hàm lồi đa diện xác
định bởi (7). Giả sử thêm nữa rằng {h(x) ∈ −S} 6= ∅ và epif ∗ +⋃λ∈S+ epi(λh)∗ là đóng
yếu∗. Nếu inf(P ) < +∞ thì x¯ là một nghiệm toàn cục của (P) khi và chỉ khi với mỗi i ∈ I ,
tồn tại λi ∈ S+ sao cho
a∗i ∈
⋃
1+2=αi
1,2≥0
{∂1f(x¯) + ∂2(λih)(x¯)} , (8)
trong đó αi := λih(x¯) + g(x¯)− gi(x¯) ≥ 0.
3.3 Bài toán cực đại một hàm lồi trên một tập lồi
Xét bài toán cực đại hóa một hàm lồi sau:
(PM): sup
x∈C, h(x)∈−S
p(x)
trong đó p : X −→ R∪{+∞} là một hàm lồi chân chính, nửa liên tục dưới, h : X −→ Z
là một ánh xạ liên tục, S-lồi. Các không gian X,Z, các tập C, nón S như ở các Mục 1 và
2.
Bài toán (PM) tương đương với bài toán sau:
(PM1): inf
x∈C, h(x)∈−S
−p(x).
Để ý rằng sup(PM) = −inf(PM1). Điều kiện cần và đủ tối ưu cho (PM) được thiết lập
nhờ vào Định lí 2.1 ở Mục 2.
Định lí 3.3 Giả sử rằng sup (PM) > −∞ và K := K := ∪λ∈S+epi(λh)∗ + epiδ∗C là
đóng yếu∗. TKhi đó x¯ là nghiệm tối ưu toàn cục của (PM) nếu và chỉ nếu với mỗi ≥ 0,
mỗi x∗ ∈ ∂p(x¯), tồn tại λ ∈ S+ và 1, 2 ≥ 0 thỏa mãn 1 + 2 = + λh(x¯) và
x∗ ∈ ∂1(λh)(x¯) + N2(C, x¯). (9)
Đặc biệt, nếu x¯ là nghiệm toàn cục của (PM) thì với mỗi x∗ ∈ ∂p(x¯) tồn tại λ ∈ S+ sao
cho
x∗ ∈ ∂(λh)(x¯) + N(C, x¯) v λh(x¯) = 0.
4
KẾT LUẬN
Đề tài đã nêu lên một bức tranh về sự phát triển của Bổ đề Farkas trong vài thập niên
qua. Qua đó nêu lên được tầm quan trọng của kết quả dạng này trong lí thuyết tối ưu hiện
đại. Thông qua việc phát triển, mở rộng của kết quả quan trọng này, các điều kiện chính
quy (mà nhờ có nó các điều kiện cần tối ưu dạng Karush-Kuhn-Tucker mới có thể được
thiết lập) cũng được làm yếu đi một cách đáng kể.
Đề tài cũng đã lần đầu tiên đề xuất các dạng mở rộng của Bổ đề Farkas cho các hệ có
chứa các ràng buộc dạng DC. Các kết quả này có giá trị một cách độc lập. Nó có thể dùng
để thiết lập các đặc trưng cho các bao hàm thức của một tập lồi chứa trong một tập DC.
Các kết quả này mở rộng các kết quả mới công bố gần đây của chủ nhiệm đề tài với các
đồng nghiệp V. jeyakumar, M.A. Boberna, G.M. Lee (2005, 2006).
Với những kết quả dạng Farkas mở rộng ở trên, đề tài cũng đề xuất một cách tiếp cận
mới đối với lớp các bài toán quy hoạch DC, lớp bài toán khó mà cho tới hiện nay, theo sự
hiểu biết của chúng tôi, các kết quả nghiên cứu định tính đang còn khá thưa thớt.
Kết quả đạt được của đề tài có thể xem như những khởi đầu cho một cách tiếp cận
nghiên cứu các bài toán quy hoạch DC. Rất nhiều điều cần phải được tiếp tục nghiên cứu
theo hướng này, chẳng hạn, các kết quả về đối ngẫu, ổn định với nhiễu, ... của lớp toán
này.
Tài liệu
[1] Nguyễn Định, Các kết quả dạng Farkas mở rộng và áp dụng vào lý thuyết các bài
toán tối ưu lồi, Tạp chí khoa học Đại học Sư phạm Tp. Hồ Chí Minh - Khoa học
tự nhiên, 6(40), 2005, 3 - 25.
[2] Nguyễn Định và Trần Thái An Nghĩa, Bổ đề Farkas cho các hệ bất đẳng thức gồm
các hàm lồi và hàm DC, Tạp chí khoa học Đại học Sư phạm Tp. Hồ Chí Minh -
Khoa học tự nhiên, 6(40), 2005, 41 - 52.
[3] N. Dinh, Guy Vallet, and T.T.A. Nghia, A new approach to DC-programs with cone
convex constraints (bản thảo, 2006).
Tp. Hồ Chí Minh, ngày 26 thàng 2, năm 2006
Chủ nhiệm đề tài CS.2005.23.77
5
PGS.TS. Nguyễn Định
6
PHẦN PHỤ LỤC CÁC CÔNG TRÌNH
Thực hiện trong khuôn khổ của đề tài: CS.2005.23.77
[1 ] Nguyễn Định, Các kết quả dạng Farkas mở rộng và áp dụng vào lý thuyết các bài
toán tối ưu lồi, Tạp chí khoa học Đại học Sư phạm Tp. Hồ Chí Minh - Khoa học
tự nhiên, 6(40), 2005, 3 - 25.
[2 ] Nguyễn Định và Trần Thái An Nghĩa, Bổ đề Farkas cho các hệ bất đẳng thức gồm
các hàm lồi và hàm DC, Tạp chí khoa học Đại học Sư phạm Tp. Hồ Chí Minh -
Khoa học tự nhiên, 6(40), 2005, 41 - 52.
[3 ] N. Dinh, Guy Vallet, and T.T.A. Nghia, A new approach to DC-programs with
cone convex constraints (bản thảo, 2006).
1
._.
Các file đính kèm theo tài liệu này:
- LA7224.pdf