ChU'O1lg4. DANH GIA LOP HAM F
TrongchuangmlYchungtoineutencacdanhgiacacd~iluQ'Ilgchomi6n8nhB
ill cacd~iluQ'Ilgd~ctrungcuami6nchuAnE (xemhinh4.1)bai PBHKABG
f E F, heluhStcacdanhgianayda:dugcchUngminhtrong[19,tr.17-'J,7].
( OQ)R
to
E
f
z
Hinh4.1v6ip=2.
4.1 Danbgiabankinbq.
Djnb If 4.1.
V6i cackyhi~utrongchuang2 ,\if E F , tacodanhgia q nhusail:
- 1
q~QK , (4.1)
q ,;m2T(p,Qk,0) <m2T(p,Qk,0).
(4.2)
, -.!..-l
Dau'='xilyratrong(4.1)fez) =a Iz IK z, Ia 1=1.
28
Chlingminh:xem[19,
8 trang |
Chia sẻ: huyen82 | Lượt xem: 1496 | Lượt tải: 1
Tóm tắt tài liệu Đánh giác các phép biến hình á bảo giác những miền nội tiếp trong hình vành khăn, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
tr 18-19].
Trongtrucmgh9'PcacbienngmiivabientrongcuamiSng6cvamiSnanhlacac
ducmgironchungtoitimduqcc~ duaicuaq (xemcach~qua6 chuang6).
4.2 Banb gia M(r,f), m(r,f)
BinbIf 4.2.
V6i cackyhi~utrongchuang2,r labankinhduOngtrimtam0 nfuntrongmien
E saochoQ <r <1, 'VfEF taco
m(r,f)<~r~ (<rk),
(4.3)
M(r,f)~ t(~i[~q(~il (4.4)
, ~-l, ,
Cacdangthucxayrafez)=aI z IK z+b, v6icachangsoa,bthichhqp
ChUngminh:XemThu~n[19,21-22]
BinbIf 4.3.
V6i cackyhi~utrongchuang2,Vf E F vaVr:Q<r<l,taco
M (r,f)::;; U <... <Uj < Uj-l <...UI<1, (4.5)
m(r,f) 2::V >."Vj>Vj-l>...>VI>q, (4.6)
Trongdo:
29
-
I
)
q
J
'=T
(
p,rK,q , VI =
[ (
Q
)
~-
Ul T p, -; ,q
(4.5a)
-
Uj=T
(p,r~'Vj-l}Vj=
[
,
(
Qq
)
t'~
J
'
T P r UJ-I
(4.6a)
u =u
( K,p,Q,r,q )= l.im Uj'J~ <t)
v =V (K ,P,Q ,r, q) =~imVj
J~ 00
T(p,r,s)lahamph\!dinhnghiatrongchuong2.
Chlmgminh:XemThao[14,tr.65]ho~cThu~n[19,tr22-25].
H~qua 4.1.
Tir dinhly 4.3vatinhchfitcuahamT(p,r,s) trong(2.8)va(2.18)tadllilhgia
dongianchoM(r,f) vam(r,f)nhusan:
M(r,f)<T(p,r~,qJ <T(p,r~,0J <4~r~,
(4.7)
m(rf» q > q >~
, T[P'(~)~,qJ T[P'(~)~,oJ 4~(~r
(4.8)
30
- 4 1
d - QK1~-=-<2P-
C q .
(4.13)
4.4 Daubgia If(z)1
Vi m(lzl,f)~lf(z)I~M(lzl,f) 'VzEE,nen'VfEFtac6:
-
q
T[P'(I~I)k,qJ ~lf(Z)I~T(P,1Zlk,q}<1),
(4.14)
TirtinhchfttcuahamT(p,r,s)trong(2.8)va(2.18)tacodanhgiadongifmhon
choIf(z)l:
-
q
T[P{I;lto)<If(z)1<T(P,Izlk,o].
(4.15)
1
4~lq(I~I)K<[f(z)1<4~lzlt
(4.16)
4.5 Daubgiacaedi~uticb
V6i caeIcyhi~ua chuong2tacodanhgiacaedi~ntichcuami~ncinhB thong
quaphepbiSnhinhf EF nhusau:
- 2
(
2
pS~SRK- - R
)
K
2 Sl-
Q ,
(4.17)
32
S(B)~S,[l-Rf}~[(~)f-1
(4.18)
2
sl~S(r,f)~S2rK, (4.19)
m6i dtlngthucxily ra f(z)=aIz IK-Iz,lal=1.
Chtmgminh:Xem[14,tr.58-59]ho~c[19,tr 19-20].
- -
4.6 Caedaubgiakhaeebocvad.
Vi C ~ d~M(R,f),f E F nentiT(4.7)tacoc~trencuac,ngoairatrongtwang
hgpbientrongcuamiSnB laduangtrim,tatill c~trenkhachoc nhugall:
BiobIy4.5.
V6i caekyhi~utrongchuang2 taco:
(
-
)
- nK R M (
q < c<qeV p~InQIn ~' f) (4.20)
Chtmgminh:
B~ngm9tphepquaythichhgpsaochomiSnE chuam9tcungtrimcod~ng
LI ={zllzl=R,- ~~argz~~}. D~t EI ={zIQ<lzl<R,-~<argz<~},
BI =f(EI), BI c B(xemhinh4.2).
33
z EI
.(QQ:~'-IR'. f
E
Hinh4.2v6'ip=2.
Di[tt w =reiq>,ap dungb6 dS 2.9 cho PBHKABG tir £1 tenBI va l~y
1 1
B '
P=Iwl =~'WE 1ta co:
S (B) 2~ 2fte
p 1 K R PIn-
Q
Sp(B,) =Ifp2(w)ds=W~~<P:;;~If drd<p =211In M(~,f)
81 81 P q~lwl~M(R,f)r p q
v6'i
-
C Idwl c
Ip2f~=Inq'q
Trong do
~ 27tlnM(~,f) 2~~ln2 ~ ~ln2 ~~7tKlnRln M(~,f)
P q K InR q q p~ Q q
Q
1tKInR InM(~,f)
~<qeV PP Q q , rnctaduQ'c(4.20).
Chap4.1:
34
- 7tKIn!.1nM(!,f)
NSu B =const,khi R~Q nghiala R ~1 thi qeVPJ3Q q ~ q <c, trong
Q
truemghgpnaydanhgiac~ trencuac larfitt61.
Vi d~c~m(R,f),f EF, tir (4.8)tacoc~ du6'icuad. Ngoairatrpngtwemg
hgpbienngoaicuami~nB laduemgtrimtadanhgia dnhusau:
BlobIf 4.6
V6'icaeky hi~utrongchuang2 tadanhgia d nhusau:
(
,.., - ~,nK In 1 I 1
1 >)d>e V p~ m(R,f) oR (4.21)
ChUngminh:
BfuIgmQtphepquaythichhqpsaochomi~nE chuamQtclingtrimcod~g:
LJ ={zllzl=R,-B~argz~B}. D~t E2={zIR<lzl<l,-B<argz<B},
B2=f(E2), B2cB(xem hinh4.3).
(Q
E2
z
w
1f ..
BE
Hinh4.3v6'ip=2.
f)~tw =reiq>, apd\mgb6d~2.9choPBHKABG ill £2lenB2val~yp =I~=~.
Taco:
S(B );:::~2fJe
2 KIP'In-
R
Sp(Bz)=ffp2(W)ds=ffr~~<P~!If drd<p=21tIn ! .
82 82 P m(R,f):=;JwI:=;Ir p m(R,f)
v6i I >IfI dwI =In~,
P-a Iwl d
trong do
=>2nIn 1 ~~~In2 ~
p m(R,f) K In~ d
R
1tK 1 1
(
1
J
2
=>-In In - ~ In-=-
p~ m(R,f) R d
1
~ In ~ <
d
nK
I
1
I
1
n n-
p~ m(R,f) R
nK 1 1
- ,,{-In In-
'J p ~ m (R ,f) Rd >e ,tuctadugc4.21.
1tK 1 1
Chuy4.2n@u~=const,khi R~ 1thi e- ~pJ3Inm(R,f)InR ~ 1,trongtruangnay
danhgiac~ du6icuad lar~t6t.
36
._.