Lu(mvan TIU,lCsy Toan hQc- T11langThu(ln 17
Chuang4
cA C DANH GIA LOP HAM F
Trangchuangnay,chungWitlmm6iquailh~gifi'aq,m2,M1vadanhgia
caedi~ntich,caec~ntren,c~ndudicuacaed~ilu'<Jngm(r,f), M(r, f)
vdif E F vacaeh~quacuachung.Caeke'tquanaychapheptadanh
giacaed~ilu<Jngq,c,d va If(z)1cualOphamF.
Trudehe't,tacftnb6d~sau.
B5 d~4.1(xem[13,tr.522]ho~c[14,tr.56]).GiasitD Zahinhvanhkhan
0 < Rl < Izi < R2 < 00 WJi mQtsf)'nhat cilt nlim tren dl1iJngtron
Izi =R( Rl <R <R2),f
10 trang |
Chia sẻ: huyen82 | Lượt xem: 1416 | Lượt tải: 1
Tóm tắt tài liệu Đánh giá phép biến hình á bảo giác lên hình vành khăn bị cắt theo các cung tròn đối xứng quay, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
IiI PBHKABGmi€nD Zenmi§nE cuam(it
phdngw, saGehoIzi = R1va Izi = R2zanZur;tuangungvciibientrong
C1va bienngoaiC2eilaE.
Khi do,vciicaeky hi?unhutrangchuang2, taco
(
R2
)
k
(
R2
)
k
S-(R2, f) >S+(R1,f) R1 +s(R,f) R '
(4.1)
trongdo s(R, f) la flingdi?n richngoaieilat(tpdonggiciih(lnbiJi anh
caenhatcilt trenduiJngtron Izl =R biJi f.
1 1
Ddngthuexay raq f(z) =alzlK- z+bvciicachiingso'a,b,(a#0).
Chungminh.R5rangs(R,f) =S+(R,f) - S-(R, f).
Ap d\lngb6d~3.2,taco
(
R
)
k
S-(R, f) >S+(R1,f) Rl 0
Do d6 2
S+(R, f) >S+(Rj,f) (:J K + s(R, f).
Clingtheob6 d~3.2,ta Surfa
S-(R2, f)
2
> S+(R,f) (i)"
> [S+(Rt,f) (~)k+S(R,f)] (i)k.
Tli dotaco(4.1)voikhaDangxayfa d~ngthuctheob6d~3.2,nhtt
da:lieU. ~ D
4.1 QuaDh~gifia q,m2va M1
Dinhly 4.1. Gill saA lithlnhvimhkhanQ < Izi < 1v6ip nhatcdtdf;mg
(2.8),co thi biEnbaagiacblJi h Zenhlnhvimhkhan% < ItI < 1bi cdt
rheap nhatcdtdflCcacriabankfnh,saochoIzi =Q, Izi = 1 l&nht(lt
tl1(/ngungvdi ItI =%' ItI =l.
Khi do,vdigill thiefvaky hi?ulJ chl1(/ng2, doLV(Yicacdc;liZl1(Jngd(ic
tntngchoB =f(A),Vf E F, tacocacbatdcingthucdung
1
q <QK ,
M1_>K
m2- qo'
(4.2)
(4.3)
1
M1 <T(p,QK,q),
1
!L <T(p,QK,q).
m2
(4.4)
(4.5)
1 1
Deingthactrong(4.2)xayra {:}j(z) =alzlx- z, lal= 1,
(4.3)xayra {:}f(z) =alh(z)IK-lh(z), lal= 1,
(4.4)xayra {:}f(z) = fo(z)v6ifo trongb6dl 3.4,
(4.5)xllyra {:} f(z) =fo(z)vdifotrongb6dl 3.5.
Changminh.*Ap d1:1ngb6 d~4.1cho f E F, chil Y S+(Q,f) > 7fq2,
S-(1, f) < 7fMi = 7fva s(R, f) =ps, tasur fa
(
1
)
~
(
1
)
~
(
1
)
~
7f >7fq2 Q +ps R >7fq2Q .
18
1Tli doq<QK .
1 1
f)~ngthucKay fa ~ j(z) =alzlK- z +b,va8+(Q,f) =7rq2.Tli do
1
b=0va lal= 1VIM(l, j) = 1.V~yj(z) =alzlK-lz, lal= l.
* Vi j 0h-1 la PBHKABG mi~nBo=h(A) lenmi~nB = j(A), lien
apd\lngb6 d~3.3,co
( )
K
m2 1 M1 K
- qo.
M1 qo m2
~
D~ngthucxayfa ~ w =altlK-1tvdit =h(z). Honnuane'uIzi= 1
thlItI = 1va \wl= 1,suyfa lal = 1.V~yj(z) = alh(z)IK-lh(z), lal = 1.
*Ap d\lngb6d~3.4taduQc(4.4)clIngvdidi~uki~nxay fa d~ngthuc.
*Ap d\lngb6d~3.5vdiR = 1,ta duQc(4.5)clIngvdi di~uki~nxay
fa d~ngthuc. 0
4.2 Danhgiaeaedi~nneh
DinhIy 4.2. Vai caegiGthilt vaky hi?u iJ chU:l1ng2, \:Ir: Q < r < 1va
vj E F, taco caedanhgiadung
2
(
R
)
i
p8 <82RK - 81 Q ,
8(B) >82(1-R*) +81 [(~)k -1] ,
(
r
)
* 2
81 Q <8(r,j) <82rK
1
M6i dangthactrenXGYra ~ j(z) =alzIK-lz+b wJi caehangsffa,b
thichh(Jp.
Changminh.
(4.6)
(4.7)
(4.8)
*Ap d\lngb6d~4.1,taco
2 2
S-(1,f) >S+(Q,f) (~r+psGr.
Chli y s+(Q,f) =81,8-(1,f) =82,suyfa
82>81 (~)* +psG) * .
19
1 1
Tli doco (4.6)void~ngthucxayfa {::}j(z) = alzlX- z +bvoicac
hAngs6a,b.
BaygiGtasexacdinha vab.
1 -1" 1
GQit =IzlK z laPBHBGmienA tenhlnhvanhkhanQK < ItI < 1.
Khi do,hamw =at+bbie'nmi~nA tenmi~nB.
A
\ OQ\
1 1
"'~
'"
/ " ~
I / B ~\/ 0 \I b \I ,.:, I 1I I '-' I\ I
\ '- I
\ ~ I
\ I
, /
" /'- /, '"' '"
1
Tli hlnhtfen,d~dangtinhdu'Qc1+q= lal+ lalQK, Ibl+lal= 1,tuc
l+q
lal= l«l),lbl=l-lal.
l+QK
*NhG(4.6),taco
5(B) = 52- 81- p8
2
(
R
)
*
> 82- 81 - 82RK +81 Q .
Tli do co (4.7)voi khanangxayfa d~ngthucnhu'dfflieU.
*YOi Q <r < 1d~t
Al = An{zllzl<r},
A2 = An {zllzl >r}.
Liln 1119tapd\lngb5 d~3.2cho j E F, cacmi~nAI, A2,taco
2 .£.
S(r,f) >S+(Q,f) (;r=81 (;y,
va
(
1
)
-k
82=8-(1,f) >8(r,f);: .
Tli doco(4.8)voikhanangxayfad~ngthucnhu'dfflieU.
20
D
H~ qua 4.1. V(ji cac gid thief va ky hitfu(j chlt(jng2, Vr : Q <r <1va
"If E F, fa co caedanhgia
2
(
q2
)p8 <7rRK 1 - Q* '
S(B) >J[ [m~+q2 (~)I< - q2 - m~Ri< ] ,
(
r
)
f< 2
7rq2 Q <8(r,f) <7rrK.
1
M6i dang thac tren xdy ra <=}f(z) = a!zIK-1z, lal = 1.
Changminh.Ap d\lngdinh194.2vachu9 7rm~7rq2,ta
co (4.6a), (4.7a) va (4.8a)voi dAngthuc Kay fa nhu'da lieU voi chung
minh tu'dngt\l'nhu'(4.2). D
(4.6a)
(4.7a)
(4.8a)
4.3 C~n!renchom(r,f) va c~ndu'oichoM(r, f)
DinhIy 4.3. V(ji cacgidthiefva ky hitfu(j chltdng2, Vr : Q < r < 1va
"If E F, taco
rs; 1 (
1
)m(r,f) <V -; rK <rK ,
M(r,f) > J¥ (~)* (>q(~)*) .
(4.9)
(4.10)
1
M6i dangthacxdy ra <=}f(z) = alzlK-1z + b, v(ji cachangs6a,b
thiGhh(Jp.
Hdn mia,v(ji Q < r < R, "If E F, taco
m(r,f) < Mj (;)K, (4.9a)
vav(ji R <r <1,"If E F, taco
M(r, f) >rK.
M6i dangthacxdy ra <=}f(z) = alzIK-lz, lal=1.
(4.10a)
21
Chang minh. *Ap d\;lllgdinh194.2,congthuc(4.8),voi chu9
1rm2(T,f) <8(T,f)<1rM2(r,f),
ta nh~ndu'cjc(4.9)va (4.10)clingvoi di~uki~nxay fa ding thucnhu'
chungminh(4.6).
*Ne'uQ < r < R, thl mi~nAl khongchuadi~mbiencuaA, do
d6 mi~nBl la mi~nnhi lien va bdi PBHBG h, mi~nBl bie'nlen hlnh
v~lllhkhan M1 < ItI < p saDchoC1 tu'dnglingvoi ItI = ¥l. Ne'u
M1 > m(r,f) thl (4.9a)hi~nnhiendung. Ne'uM1 < m(r,f) thlhlnh
vanhkhanM1< Iwl < m(r,f) chuatfongBl va ligancachhaithanh
ph~nbiencua Bl lien theotinhddndi~umodulimi~nnhi lien, ta c6
m(r, f) p h<- ay
M1 - M1
m(r,f) <p, (4.11)
trongd6ding thucxayfa {:}h(w) = aw, laJ= 1.
M?t khach0 f laPBHKABGQ <Izi <r lenM1< ItI <p lien
;l«~r, (4.12)
tfongd6ding thucxayfa {:}t = blzlK-lz, Ibl= 1.
Tli (4.11)va (4.12),ta nh~ndu'cjc(4.9a)clingvoi di~uki~nxay fa
ding thuc.
Tu'dngt\1',tanh~ndu'cjc(4.10a)clingvoi di~uki~nxayfa ding thuc.
D
4.4 C~ndlioi rho m(r,f) va c~n!renrho M(r, f)
DinhIf 4.4(xem[14,tr.65]).Vdi caegiGthiefvaky hitlu(j chlt{jng2,
"liT: Q <T< 1va"lifE F, taco
M(r, f) <U < ...<Uj <Uj-l <... <Ul < 1,
m(r,f) >V > ...>Vj>Vj-l >...>VI >q.
(4,13)
(4.14)
trangdo
22
q
UI = T(p,r1<,q),VI =
[ (
Q
)
1<
]
'
T P - ,q, r
q , j =2,3,...,Uj = T(p, r1<,Vj-I), Vj =
[ (
Q
) 1<,~ ]T P, r Uj-i ,
(K Q r q)= lirnu.i,U = U ,p, " .i~oo
v =V(K,p,Q,r,q) = ~irnVj,.1~oo
va T(p,r, s) la hamphl:ldur;cdjnhnghfatrangphdn3.2.
Changminh.f)~t
AI=An{zllzl <r},BI=f(AI),
A2=An{zllzl >r},B2= f(A2),
M"(r, f) =rnax{lwllw E 'Y~},
m"(r,f) =rnin{lwll w E 'Y~},
M'(r, f) =rnax{lwllw E 'Y~},
m'(r,f) =rnin{lwllw E 'Y~},
vdi 'Y~,'Y~l~nlu'Qtla thanhph~nbiencuaBI, B2 tu'ongling vdi thanh
phfinbien Izi =r cuaAI, A2.
R5rangVr :Q <r <1,taco
m"(r,f) >m'(r,f) =m(r,f) >q,
M'(r,f) <M"(r,f) =M(r,f) <1.
Ap d\lngb6d~3.4va3.5chophepbie'nhlnhf E F caerni~nA2,Al
vaapd\lngcaetinhcha't(3.7)cuahamT(p,r, s) taco
M(r, f) =M"(r, f) <T(p,r1<,m")<T(p,r1<,q)=UI < 1
va
q >m(r,f) =m'(r,f) >
[ (
Q
)
k !L
]T p, ~ ' M'
23
Vi Uj khi j -+ 00 bi ch~ndu'dibdiM (r,f) vadondi~ugiam,trong
khi khi j -+ 00 bi ch?ntrenbCiim(r,f) vadondi~utang,dodot5n
t~icacgidih~n
~imUj =U, ~imvj = V.
.7---+00 .7---+00
Honnlia,coNI(r,f) v. D
H~qua4.2.Ket h(lpdjnhly 4.3,djnhly 4.4vacactinhchift(3.7)va
(3.21)cuahamT(p,r,s), tacocacdanhgiaddngiansau.
Vr :Q <r <1vavf E F, taco
1
M(r, f) <T(p,rK, 0),
rn(;,J) <T r' (~)1<,0] ,
F
(
r
)
* 1 1
V -; Q <M(r, f) <41'rK ,
1
4-iq (;)" <m(r,f)<fj r*
(4.15)
(4.16)
(4.17)
(4.18)
Chuf 1. Cacc(mtrong(4.15)va(4.16)la totnhifttrongso'cacc(m
1 1
phl;lthuQccungthamso: Cach~so'41',4-1'trong(4.17)va (4.18)la tot
nhifttrongso'cach~so'chiphl;lthuQcp.
BE chungto di~udo,taxetvi d\l sail.
Xet A la hlnh vanhkhanQ < Izl < 1 bi c~tbdi p clingtroll Lj
(j =0,...,p- 1)d~ng(2.8)vdiR2=Q.
1 1
PBHKABG Z = h(z) = IzIK- z bie'nA thanhA' la hlnhvanhkhan
1
QK <IZI <1bi c~tbdicacclingtroll
{
I 1r 7r
}Cj= ZIIZI=Rl,et+(2j-1)p<argz<-et+(2j+1)p
11: 2 1
vdi 0 <ex<-, j =0,1,...,p- 1, Ri =RK =QK.
P
Sando PBHBG 9 bie'nA'len B la hlnhvanhkhanq < Iwl < 1bi c~t
bdip do~n
OJ ~ {w c<lwl<d, argw=/;} (j=O,...,p-l),
25
q < c < d < 1,saocho IZI = 1tu'dngU'ngIwl = 1va OJ tu'dngU'ngvoi
Dj. Do s\fdO'ixU'ngcuaA' quadu'ongtroll IZI =Rl va do tinhduynha't
cuag, taco B clingdO'ixU'ngquadu'ongtroll Iwl=Vii,nghlalacd=q
va hlnhvanhkhanRl Vii}.
V~y,nSud~th =9 0 h(E F) thl theodinhnghlahamph\!T(p,r, s),
taco 1
Al(R, fd =d=T(p,RK, Vci)
va
m(R,h)
q q
= c=-= 1
d T(p,RK , Vii)
q
= T [p,(~)k , JQ ]'
CO'dinhQ va R, choa -+0 theo[12,tr.l06],taco q -+ O. Nhu' v~y
1
lirnM(R, h) =T(p,RK,0),
00-;0
[
1
]
. q Q K
ll~ m(R,11)= T p,(R) ,0 .
Di€u naykSthcjpvoi (3.26)kh~ngdinhchliy1.
H~qua4.3.Vi m(lzl,f) < If(z)1<M(lzl, f), Vz E A, nen"If E F, ta
co
V(K,p, Q, Izl,q)< If(z)1<U(K,p, Q, Izl,q),
q 1
[
Q 1<
]
< If(z)1<T(p,IzIK,q),
T P,(~) ,q
q 1
[
Q 1<
]
< If(z)1<T(p, IzIK,O),
T P, (JZT) ,0
1
4-~q c~'r< If(z)1<4~lzl*.
26
(4.19)
(4.20)
(4.20a)
(4.21)
H~qua4.4.Vi m(R,f) <c <d<M(R, f), nentacocacdanhgia
q
T [P>(~)k >q]
q
T [p,(~)* ,0]
_1
(
R
)
-k 1 1
4 1>q Q < C <d < 41'RK ,
1
d ~Q
K
1-.
C q
1
<C <d<T(p,RK,q), (4.22)
1
< C <d<T(p,RK,O), (4.22a)
(4.23)
(4.24)
Tu:angtifchuy 1 co thl thdyrangcacc(intrang(4.20a)va (4.22a)
III totnh{[ttrangsr/cacc(inphl;lthuQcLingthamso: Cachf$so'trang
(4.21),(4.23)va(4.24)ia totnhdttrangso'cachf$so'chlphl;lthuQcp.
27
._.