Đánh giá khả năng chịu hạn và tạo vật liệu khởi đầu cho chọn dòng chịu hạn từ các giống lạc L08, L23, L24, LTB, LCB, LBK bằng kỹ thuật nuôi cấy in vitro

Tài liệu Đánh giá khả năng chịu hạn và tạo vật liệu khởi đầu cho chọn dòng chịu hạn từ các giống lạc L08, L23, L24, LTB, LCB, LBK bằng kỹ thuật nuôi cấy in vitro: ... Ebook Đánh giá khả năng chịu hạn và tạo vật liệu khởi đầu cho chọn dòng chịu hạn từ các giống lạc L08, L23, L24, LTB, LCB, LBK bằng kỹ thuật nuôi cấy in vitro

pdf75 trang | Chia sẻ: huyen82 | Lượt xem: 1490 | Lượt tải: 3download
Tóm tắt tài liệu Đánh giá khả năng chịu hạn và tạo vật liệu khởi đầu cho chọn dòng chịu hạn từ các giống lạc L08, L23, L24, LTB, LCB, LBK bằng kỹ thuật nuôi cấy in vitro, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 1 MỞ ĐẦU 1. Lý do chọn đề tài Lạc (Arachis hypogaea L.) là cây công nghiệp ngắn ngày, có giá trị kinh tế cao. Cây lạc được gieo trồng phổ biến ở hơn 100 nước với diện tích 22 triệu ha [12]. Hạt lạc là một trong những nguồn thực phẩm chứa nhiều chất béo và protein cần thiết cho khẩu phần ăn của con người. Ngoài ra, hạt lạc còn chứa các vitamin nhóm B và một lượng hydratcacbon nhất định. Hạt lạc là nguyên liệu chính để sản xuất dầu ăn, bánh kẹo, fomát... và là mặt hàng xuất khẩu có giá trị. Các phụ phẩm của lạc (khô dầu, thân, lá) dùng làm thức ăn cho gia súc hay phân bón đều tốt và rẻ tiền. Trồng lạc có tác dụng cải tạo đất và phù hợp với cơ cấu chuyển đổi kinh tế nông nghiệp hiện nay [11], [12]. Ở Việt Nam, cây lạc đóng vai trò quan trọng trong cơ cấu cây nông nghiệp, đặc biệt ở những nơi khí hậu thường xuyên biến động và điều kiện canh tác còn gặp nhiều khó khăn. Trong những năm gần đây, việc tổng kết kinh nghiệm thực tiễn và ứng dụng khoa học tiên tiến vào sản xuất đã góp phần tăng năng suất lạc một cách đáng kể [15]. Năm 2005, năng suất bình quân đạt 18 tạ/ha, sản lượng đạt 485,610 nghìn tấn, so với 1995 năng suất mới chỉ là 13 tạ/ha. Tuy nhiên, sản xuất lạc ở nước ta vẫn còn nhiều yếu tố hạn chế, một trong những nhân tố chính có ảnh hưởng đến năng suất và chất lượng lạc là khô hạn [16]. Để hạn chế ảnh hưởng của hạn tới năng suất cây trồng nói chung, cây lạc nói riêng, ngoài các biện pháp tưới tiêu hợp lý cần sử dụng các giống có khả năng chịu hạn cao, đặc biệt ở những vùng đất không chủ động nước. Vì vậy, nghiên cứu khả năng chịu hạn của các giống lạc là rất cần thiết. Kỹ thuật chọn dòng biến dị soma cho phép thu được những dòng tế bào có khả năng chống chịu cao với các điều kiện bất lợi của môi trường [30], [43]. Đây là hướng nghiên cứu có nhiều triển vọng đã được sử dụng ở nhiều Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 2 nước trên thế giới và tạo ra những giống cây trồng mới có khả năng chống chịu cao trong một thời gian rút ngắn so với các phương pháp truyền thống [30], [51]. Từ những lý do trên, chúng tôi đã chọn đề tài nghiên cứu: “Đánh giá khả năng chịu hạn và tạo vật liệu khởi đầu cho chọn dòng chịu hạn từ các giống lạc L08, L23, L24, LTB, LCB, LBK bằng kỹ thuật nuôi cấy in vitro”. 2. Mục tiêu nghiên cứu - Đánh giá khả năng chịu hạn của các giống lạc L08, L23, L24, LTB LCB, LBK ở giai đoạn hạt nảy mầm, giai đoạn cây non và ở mức độ mô sẹo. - Tạo vật liệu khởi đầu cho chọn dòng chịu hạn ở các giống lạc L08, L23, L24, LTB LCB, LBK 3. Nội dung nghiên cứu - Phân tích một số chỉ tiêu hoá sinh trong hạt tiềm sinh của các giống L08, L23, L24, LTB LCB, LBK - Xác định ảnh hưởng của hạn sinh lý đến hoạt độ của một số enzym và chất tan tương ứng ở giai đoạn hạt nảy mầm. - Đánh giá khả năng chịu hạn ở giai đoạn cây non 3 lá bằng phương pháp gây hạn nhân tạo. - Đánh giá khả năng chịu hạn của các giống lạc ở mức độ mô sẹo thông qua xử lý bằng thổi khô. - Tạo vật liệu khởi đầu cho chọn dòng chịu hạn ở các giống lạc L08, L23, L24, LTB LCB, LBK bằng kỹ thuật nuôi cấy in vitro: Xác định ngưỡng chọn lọc, tái sinh cây, tạo cây hoàn chỉnh, trồng ngoài đồng ruộng. - Sử dụng kỹ thuật RAPD để đánh giá ADN genome một số dòng có nguồn gốc từ mô sẹo chịu mất nước so với giống gốc. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 3 Chƣơng 1 TỔNG QUAN TÀI LIỆU 1.1. Giá trị kinh tế, đặc điểm nông sinh học và tình hình sản xuất lạc trên thế giới và ở Việt Nam 1.1.1. Giá trị kinh tế của cây lạc Hạt lạc chiếm 40% – 58% lipit, 16% – 43% protein, 6% – 24% gluxit, 2,5% cellulose. Trong 100g lạc có 60 UI vitamin A, 300 UI vitamin B, một lượng PP đủ dùng cho người lớn trong 1 ngày và cung cấp 578,6 calo [5]. Protein của lạc có đủ 8 loại axit amin không thay thế, đặc biệt trong hạt lạc có chất lecithin (phosphattidyl choline) có tác dụng làm giảm lượng cholesterol trong máu, chống hiện tượng xơ vữa mạch máu [9]. Thức ăn bằng lạc có thể khắc phục tình trạng thiếu protein cho con người [8]. Dầu lạc là một hỗn hợp glyxerin chứa 80% axit béo không no, có độ nhớt thấp, mùi thơm. Dầu lạc được sử dụng trong y học, kỹ nghệ dầu máy, sản xuất xà phòng...[5]. Hạt lạc là mặt hàng xuất khẩu có giá trị cao, mỗi năm nước ta xuất khẩu khoảng 80 – 120 ngàn tấn, chiếm 30%– 50% tổng sản lượng [11]. Các phụ phẩm của lạc như khô dầu, thân lá dùng để chế biến thức ăn cho gia súc hay phân bón đều có giá trị dinh dưỡng cao và rẻ tiền. Một kg khô dầu lạc chứa 400 gam protein, 80 gam lipit [9], [11]. Trồng lạc còn có tác dụng chống sói mòn và cải tạo đất. Nhờ sự hoạt động của vi khuẩn nốt sần mà sau một vụ lạc sẽ để lại trong đất từ 40 – 60 kg N/ha [38]. Mặt khác, cây lạc có thời gian sinh trưởng ngắn (từ 90 – 125 ngày), nên có thể xen canh, gối vụ với các cây trồng khác làm tăng giá trị kinh tế trên một đơn vị diện tích đất trồng. 1.1.2. Đặc điểm nông sinh học của cây lạc Rễ lạc thuộc loại rễ cọc, có nhiều rễ phụ. Trên rễ lạc có nhiều nốt sần, được tạo thành do vi khẩn Rhizobium sống cộng sinh, do vậy cây lạc có khả năng cố định nitơ phân tử trong không khí thành đạm cung cấp cho cây và đất trồng [38]. Thân chính của cây lạc thường chỉ cao khoảng 25cm - 50cm, lúc Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 4 còn non thân lạc hình tròn, về già có cạnh và rỗng [12]. Lá lạc là loại lá kép lông chim, có 4 lá chét mọc đối nhau, hình trái xoan ngược [38]. Hoa lạc mọc thành chùm, có từ 2 – 15 hoa. Lạc là cây tự thụ phấn nghiêm ngặt, khi hoa nở là đã tự thụ phấn xong [9]. Quả lạc có hình kén, dài 1 – 8 cm, rộng 0,5 – 2cm, một đầu dính với tia, quả thắt ở giữa ngăn các hạt, vỏ quả cứng có gân mạng, chứa từ 1 – 3 hạt; hạt được bọc trong vỏ lụa mỏng, hình trứng [11]. Về mặt sinh thái học, cây lạc chịu ảnh hưởng nhiều của các nhân tố sinh thái như: Nhiệt độ, nước, độ ẩm, ánh sáng, đất và các chất khoáng [8], [9], [15], [38]. Dựa vào thời gian sinh trưởng, cây lạc được chia làm hai loại: giống chín sớm có thời sinh trưởng từ 90 – 125 ngày, giống chín muộn có thời gian sinh trưởng từ 140 – 160 ngày. Dạng chín muộn trội hoàn toàn so với dạng chín sớm [8]. 1.1.3. Tình hình sản xuất lạc trên thế giới và ở Việt Nam Trong các cây lấy dầu, lạc có diện tích, sản lượng đứng thứ hai sau đỗ tương và được trồng khắp các châu lục. Châu Á, là nơi có diện tích trồng, sản lượng lạc cao nhất, chiếm trên 60% sản lượng lạc của thế giới. Châu Phi đứng thứ hai chiếm 30%, các châu lục khác rất ít (châu Mỹ 5%, châu Âu 0,22%) [9]. Trong số các nước trồng lạc thì Ấn Độ, Trung Quốc, Mỹ là những nước có sản lượng lạc hàng năm cao nhất (trên 1triệu tấn/năm). Một số nước như Dimbabue, Camơrun (Châu Phi) có sản lượng lạc rất thấp, chỉ đạt 0,17 triệu tấn/năm [11]. Ấn Độ là quốc gia có diện tích trồng lạc đứng đầu thế giới (8,1 triệu ha) song sản lượng hàng năm thấp, chỉ đạt 5,4 triệu tấn vì năng suất lạc chỉ đạt 6,9 – 9,98 tạ/ha. Trung Quốc có diện tích trồng lạc chỉ hơn nửa Ấn Độ (4,3 triệu ha) nhưng hàng năm đạt 11,89 triệu tấn, đứng đầu thế giới. Còn Mỹ tuy có diện tích gieo trồng thấp (0,59 triệu ha) nhưng nhờ có các giống lạc cao sản nên sản lượng hàng năm cao (đạt 1,8 triệu tấn/năm) đứng thứ 3 trên thế giới [9], [11], [12]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 5 Trong 25 nước trồng lạc ở châu Á, Việt Nam đứng ở vị trí thứ năm về sản lượng lạc hàng năm. Trong các thập kỷ 60, 70, 80 của thế kỷ XX diện tích, năng suất và sản lượng lạc của nước ta còn thấp. Đến thập kỷ 90 của thế kỷ XX, diện tích, năng suất, sản lượng lạc của nước ta tăng nhanh, trong vòng 10 năm năng suất lạc tăng gần 30% [12]. Ở Việt Nam cây lạc có mặt ở 59/61 tỉnh thành, chia thành 5 khu vực chính: Vùng Trung du miền núi phía Bắc, với tổng diện tích 41.000 ha; Khu vực Bắc Trung Bộ là vùng trọng điểm sản xuất lạc với 71.000 ha, đạt 68,7 – 93,4 nghìn tấn lạc/năm; Khu vực Nam Trung Bộ có khoảng 29.000 ha; Vùng Cao nguyên Nam Bộ với 18.680 ha; và Vùng Đông Nam Bộ có 6.800 ha [38]. 1.2. Tính chịu hạn ở thực vật 1.2.1. Hạn và các hình thức hạn ảnh hƣởng đến cây trồng Hạn là tác động của môi trường gây nên sự mất nước của thực vật [18]. Có 3 hình thức hạn ảnh hưởng đến cây trồng là hạn đất, hạn không khí và hạn tổ hợp [18]. Hạn đất xảy ra khi lượng nước trong đất thiếu nhiều không đủ cho rễ hút để cung cấp cho cây. Vì thế, cây có thể bị héo và chết. Tuy nhiên, cũng có những trường hợp đủ nước mà cây vẫn héo, nguyên nhân là do hạn sinh lý gây nên. Hạn không khí thường xảy ra khi không khí môi trường có nhiệt độ cao và độ ẩm thấp, ví dụ như gió nóng Israel, gió Lào ở miền Trung nước ta...làm cho cây thoát hơi nước quá mạnh, vượt xa mức bình thường và dẫn tới hiện tượng mất nước, do rễ hút vào không bù đủ lượng nước mất đi, làm các bộ phận non của cây thiếu nước. Hạn tổ hợp là sự phối hợp thiếu nước trong đất và trong không khí . 1.2.2. Tác hại của hạn lên thực vật 1.2.2.1. Tác hại của hạn lên thực vật Thiếu nước sẽ gây nên các hậu quả rất lớn đối với hoạt động sống của cây. Trước tiên ảnh hưởng đến sự cân bằng nước của cây, từ đó ảnh hưởng đến các chức năng sinh lý khác như quang hợp, hô hấp, dinh dưỡng khoáng và cuối Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 6 cùng là ảnh hưởng đến sự sinh trưởng phát triển của thực vật dẫn đến giảm năng suất. Khi gặp hạn trạng thái của chất nguyên sinh của tế bào thay đổi mạnh, ảnh hưởng đến tính chất hoá lý của chất nguyên sinh như tính thấm, mức độ thuỷ hoá của keo, thay đổi pH, độ nhớt, dẫn đến sự thay đổi vị trí các thành phần cấu tạo nên chất nguyên sinh, cuối cùng ảnh hưởng đến quá trình trao đổi chất bình thường của cơ thể [13]. Trong thời gian cây bị hạn, hàm lượng nước tự do trong lá giảm xuống nhưng hàm lượng nước liên kết lại tăng lên. Chất nguyên sinh của tế bào có tính đàn hồi lớn thì cây có khả năng chịu hạn cao [42]. Hạn còn ảnh hưởng đến hô hấp. Trong thời gian khô hạn, ở những cây trung sinh thường tăng cường hô hấp. Nhờ gia tăng hô hấp mà cây giữ được độ ngậm nước của keo nguyên sinh chất [13]. Sự tăng cường quá trình thuỷ phân khi gặp điều kiện khô hạn là nguyên nhân tăng cường hô hấp trong cây. Khi mất nước ban đầu hô hấp tăng, nhưng sau đó giảm đột ngột, nếu tình trạng thiếu nước kéo dài [42]. Thiếu nước ảnh hưởng đến quang hợp. Hạn hán đã ảnh hưởng xấu đến quá trình hình thành diệp lục, phá hoại lạp thể nên hiệu suất quang hợp giảm xuống nhanh chóng. Theo Buxigon, cây trúc đào khi bị hạn thì cường độ quang hợp giảm 40% [42]. Hạn ảnh hưởng đến hoạt động hút khoáng của hệ rễ, dẫn đến tình trạng thiếu những nguyên tố dinh dưỡng quan trọng trong quá trình trao đổi và tổng hợp các chất hữu cơ khác nhau trong cơ thể thực vật [13]. Hạn ảnh hưởng trực tiếp đến quá trình sinh trưởng các tế bào, đặc biệt là trong pha giãn của tế bào, từ đó mà ảnh hưởng đến quá trình sinh trưởng của toàn cây [42]. 1.2.2.2 Ảnh hƣởng của hạn đến cây lạc Trong mỗi thời kỳ sinh trưởng, cây lạc chỉ có khả năng chịu hạn ở một mức độ nhất định. Biểu hiện bề ngoài nhận thấy rõ rệt nhất khi cây lạc bị hạn ở tất cả các thời kỳ sinh trưởng là ở bộ lá. Khi độ ẩm đất giảm, lá lạc nhỏ và Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 7 dày, màu lá từ xanh đậm chuyển dần sang xanh nhạt do diệp lục bị phá hủy [15]. Trong điều kiện bị hạn tức thời, lá vẫn giữ nguyên kích thước nhưng sức trương tế bào giảm, khí khổng khép lại, lá bị rũ xuống [8]. Thời kỳ trước ra hoa là thời kỳ cây lạc chịu được hạn lớn nhất, vì trong giai đoạn này nhu cầu về nước của cây lạc không lớn lắm, độ ẩm thích hợp từ 60% - 65%. Bị hạn trong thời kỳ trước ra hoa ảnh hưởng đến tốc độ sinh trưởng của cây lạc, làm cho quá trình phát triển bị chậm lại [38]. Ở giai đoạn ra hoa, thiếu nước sẽ làm giảm số hoa, tỷ lệ hoa có ích, các đợt rộ không được hình thành, kéo dài thời gian ra hoa - chín của lạc, gây ảnh hưởng đáng kể tới năng suất. Tuy nhiên, nếu được tưới kịp thời lượng hoa nở hàng ngày có thể phục hồi nhanh chóng [8]. Trong giai đoạn hình thành quả, do diện tích lá đạt cao nhất, tốc độ chất khô tích lũy cũng cao cho nên cần lượng nước lớn nhất. Nếu thiếu nước trong giai đoạn này sẽ làm giảm số quả chắc, giảm trọng lượng hạt, dẫn đến giảm năng suất [38]. 1.2.3. Cơ sở sinh lý, sinh hóa và di truyền của tính chịu hạn ở thực vật 1.2.3.1. Cơ sở sinh lý của tính chịu hạn Nước có ý nghĩa quyết định đến đời sống của thực vật. Thiếu nước cây sẽ chết non hoặc giảm sức sống, giảm năng suất. Do sự thiếu nước của môi trường, nhiệt độ thấp hay nhiệt độ cao...có thể gây ra hiện tượng mất nước của cây. Để đáp ứng sự thiếu hụt nước trong điều kiện cực đoan, cây bắt buộc phải có những cơ chế thích ứng đặc biệt giúp cây duy trì sự tồn tại khi bị hạn. Ở thực vật, khi đề cập cơ chế chịu hạn người ta thường chú ý đến vai trò của bộ rễ và khả năng điều chỉnh áp suất thẩm thấu của tế bào. Về vai trò của bộ rễ: Những cây chịu hạn có bộ rễ khoẻ, dài, mập, có sức xuyên sâu giúp cây hút được nước ở tầng đất sâu. Bộ rễ lan rộng, có nhiều rễ phụ và có nhiều mô thông khí, cùng với hệ mạch dẫn phát triển giúp cho việc thu nhận và cung cấp nước tới các bộ phận khác của cây trong điều kiện khó khăn về nước. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 8 Về khả năng điều chỉnh áp suất thẩm thấu: Khi tế bào bị mất nước dần dần, các chất hòa tan sẽ được tích lũy trong tế bào chất (như: đường, axit hữu cơ, axit amin, các ion chủ yếu là ion K+...), các chất này có tác dụng điều chỉnh áp suất thẩm thấu. Áp suất thẩm thấu tăng lên giúp cho tế bào rễ thu nhận được những phân tử nước ít ỏi còn trong đất. Bằng cơ chế như vậy, thực vật có thể chịu được sự mất nước trong thời gian ngắn [18]. Ngoài ra, thực vật còn có khả năng chống chịu hạn bằng những biến đổi về hình thái như lá cuộn lại thành ống, lá có nhiều lông, cu tin dày để giảm thoát hơi nước [13]. 1.2.3.2. Cơ sở sinh hóa và di truyền của tính chịu hạn Khi phân tích thành phần hóa sinh của các cây chịu hạn, các nghiên cứu đều cho rằng, khi cây gặp hạn có hiện tượng tăng lên về hoạt độ enzyme, hàm lượng ABA, hàm lượng proline, nồng độ ion K+, các loại đường, axit hữu cơ,... giảm CO2, protein và axit nucleic [1], [6],[19], [31]. Nghiên cứu sự đa dạng và hoạt động của enzyme trong điều kiện gây hạn đã được nhiều tác giả quan tâm. Trần Thị Phương Liên (1999) nghiên cứu đặc tính hóa sinh của một số giống đậu tương có khả năng chịu nóng, hạn đã nhận xét rằng áp suất thẩm thấu cao ảnh hưởng rõ rệt tới thành phần và hoạt độ protease, kìm hãm sự phân giải protein dự trữ [18]. Một số nghiên cứu trên các đối tượng như lạc, lúa, đậu xanh, đậu tương...cho thấy, có mối tương quan thuận giữa hàm lượng đường tan và hoạt độ enzyme α - amylase, giữa hàm lượng protein và hoạt độ protease [17], [27], [35]...Đường tan là một trong những chất tham gia điều chỉnh áp suất thẩm thấu trong tế bào. Sự tăng hoạt độ α - amylase sẽ làm tăng tăng hàm lượng đường tan do đó làm tăng áp suất thẩm thấu và tăng khả năng chịu hạn của cây trồng [20], [31]. Những thay đổi hóa sinh khác do hạn gây ra cũng đã được nhiều tác giả quan tâm nghiên cứu, trong đó có sự biến đổi hàm lượng axit amin proline. Nghiên cứu khả năng chịu hạn của một số giống lúa cạn địa phương ở vùng núi phía Bắc, tác giả Chu Hoàng Mậu và Cs (2005) đã nhận xét, khả Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 9 năng chịu hạn của cây lúa cạn phụ thuộc tuyến tính vào hàm lượng proline [25]. Xử lý hạn bằng dung dịch sorbitol 5% đối với một số dòng lúa tái sinh từ mô sẹo chịu mất nước, tác giả Đinh Thị Phòng (2001) cho thấy, hàm lượng proline của các dòng chọn lọc khi bị xử lý sorbitol tăng lên và vượt xa so với đối chứng (không bị xử lý) [31]. Tính chống chịu là tính trạng đa gen, được biểu hiện khác nhau trong các giai đoạn phát triển của cây. Trên thực tế vẫn chưa tìm được gen thực sự quyết định tính chịu hạn mà mới chỉ tìm thấy các gen liên quan đến tính chịu hạn. Vì vậy nghiên cứu cơ chế phân tử của tính chịu hạn chủ yếu đi vào hướng chính đó là nghiên cứu biểu hiện và chức năng của các chất và các gen tương ứng liên quan đến khả năng bảo vệ của tế bào khỏi tác động của stress. Một trong những nhóm gen liên quan đến các điều kiện mất nước là các gen mã hóa nhóm protein có tên gọi là LEA (Late embryogenesis abundant protein). LEA không những đóng vai trò điều chỉnh quá trình mất nước sinh lý khi hạt chín, mà còn hạn chế sự mất nước bắt buộc do các điều kiện ngoại cảnh bất lợi như hạn, nóng lạnh... Mức độ phiên mã của LEA được điều khiển bởi ABA và độ mất nước của tế bào. Ngoài ra, những nhóm chất như protein sốc nhiệt (HSP - heat shock protein), MGPT (molecular chaperone), ubiquitin...cũng được đặc biệt quan tâm nghiên cứu [18]. Như vậy, cơ chế chịu hạn của thực vật rất phức tạp, nó không chỉ liên quan đến đặc điểm hình thái giải phẫu của thực vật, mà còn liên quan đến những thay đổi về thành phần hoá sinh trong tế bào, sự điểu chỉnh hoạt động của gen. 1.3. Một số thành tựu nuôi cấy mô và tế bào thực vật vào việc đánh giá khả năng chịu hạn và chọn dòng biến dị xoma Kỹ thuật nuôi cấy mô và tế bào thực vật đã được ứng dụng rộng rãi trong lĩnh vực nghiên cứu về khả năng chống chịu của cây trồng như chịu hạn, chịu muối, chịu nhôm [22], [24], [41]. Chu Hoàng Mậu, Ngô Thị Liêm, Nguyễn Thị Tâm (2006) tiến hành xử lý thổi khô mô sẹo các giống lạc MĐ7, L17, L14, L18, ĐBG, đã nhận thấy mô Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 10 sẹo của 5 giống lạc đều bị mất nước nhanh, khả năng chịu mất nước của các giống có sự khác nhau rõ rệt, cao nhất là giống ĐBG và thấp nhất là L18 [24]. Nguyễn Tường Vân, Lê Trần Bình, Lê Thị Muội (1994) tiến hành đánh giá khả năng chịu muối (NaCl) của các giống lúa CR203, Lốc, C8, Co ở mức độ mô sẹo, sau khi chuyển vào môi trường có bổ sung NaCl 1% và 2%. Sau 12 tuần theo dõi cho thấy khả năng chịu muối của giống Co là cao nhất và giống CR203 có khả năng chịu muối thấp nhất [40]. Bằng kỹ thuật nuôi cấy mô sẹo in vitro, Nguyễn Văn Vinh, Lê Duy Thành và cộng sự (1995) nghiên cứu khả năng chịu nhôm và axit của các giống lúa: ĐC3, CM10, Pokaly, Cườm, Chiêm Bầu, CR203, NN8, OM 861- 20, OM 296 và Tép lai, đã thu được các dòng mô sẹo của giống Pokaly và Cườm có khả năng chịu được AlCl3 ở 600ppm và pH là 2,71. Mô sẹo của giống Tép lai, CR203 chịu được AlCl3 ở 400ppm và pH 2,98 [41]. Tác giả Bùi Thu Thuỷ (2006) tiến hành thổi khô mô sẹo của 5 giống lúa TM, CR 203, U17, KD18 và BT nhận thấy các giống lúa đều bị mất nước nhanh khi xử lý bằng thổi khô. Khả năng chịu mất nước có sự khác nhau rõ rệt, cao nhất là giống TM, thấp nhất là giống U17 [36]. Nguyễn Thị Tâm (2004), xử lý nhiệt độ cao ở giai đoạn mô sẹo của một số giống lúa đã tạo được 197 dòng mô có khả năng chịu nóng ở 400C, 42 0 C và 520 dòng cây xanh. Từ 33 dòng qua 5 thế hệ đã chọn được 2 dòng nổi bật là HR128 với đặc điểm thấp cây, số hạt chắc/bông cao, hàm lượng protein, đường tan, axit amin liên kết trong hạt cao, có khả năng chịu nóng, cứng cây và dòng HR499 với khả năng đẻ nhánh hữu hiệu, số hạt chắc/bông, năng suất khóm, có khả năng chịu nóng cao hơn so với giống gốc [33]. Với sự hoàn thiện về kỹ thuật và điều kiện nuôi cấy đã mở ra nhiều triển vọng cho việc nghiên cứu khả năng chịu hạn và chọn dòng chịu hạn cho nhiều đối tượng cây trồng. Sự ra đời của các giống lúa DR1, DR2 có khả năng chịu hạn cao trong một thời gian ngắn bằng kỹ thuật nuôi cấy mô tế bào thực vật là bằng chứng cho chọn tạo dòng chống chịu bằng kỹ thuật in vitro [30]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 11 1.4. Kỹ thuật RAPD (Random Amplified Polymorphic DNA) trong phân tích hệ gen thực vật Kỹ thuật RAPD là kỹ thuật phân tích sự đa hình chiều dài các phân đoạn ADN được nhân bản ngẫu nhiên, do hai nhóm nghiên cứu của Williams và Cs (1990), Welsh và McClelland (1991) đồng thời xây dựng. Thành phần và các bước của phản ứng RAPD dựa trên cơ sở của phản ứng PCR, chỉ khác ở kích thước mồi và nhiệt độ bắt cặp mồi, nhiệt độ bắt cặp mồi của phản ứng RAPD vào khoảng 350C- 450C. Kỹ thuật RAPD có ưu điểm ở chỗ sử dụng các mồi ngẫu nhiên dài 10 nucleotit. Mồi có thể bám vào bất kỳ vị trí nào có trình tự nucleotit bổ sung trên phân tử ADN khuôn [21]. Do vậy, xác suất đoạn mồi có được điểm gắn trên phân tử ADN mẫu là rất lớn. Sự khác nhau về vị trí và số lượng các đoạn ADN có thể ghép cặp bổ sung với mồi chính là cơ sở của sự đa hình về phổ băng ADN được nhân bản. Sản phẩm được phân tích bằng điện di trên gel agarose hoặc polyacrylamide và có thể quan sát được sau khi gel được nhuộm bằng hóa chất đặc trưng. Vì vậy, tính đa hình thường được nhận ra là do sự có mặt hay vắng mặt của một sản phẩm nhân bản từ một locus [48]. Từ khi ra đời kỹ thuật RAPD đã được ứng dụng rộng rãi cho nhiều đối tượng khác nhau như đậu xanh, đậu tương, đu đủ, lạc, lúa, chuối...trong việc đánh giá đa dạng di truyền giữa các loài và trong phạm vi một loài [34], [47] phân tích và đánh giá bộ genome thực vật nhằm xác định những thay đổi của các dòng chọn lọc ở mức độ phân tử [10], [47]. Ngoài ra còn được ứng dụng hiệu quả trong việc tìm ra các chỉ thị phân tử để phân biệt các giống hay các loài khác nhau... Raina và Cs (2001) đã sử dụng kỹ thuật RAPD và SSR để phân tích sự đa dạng hệ gen, xác định mối quan hệ họ hàng giữa các giống lạc trồng và lạc dại [50]. Đánh giá sự đa dạng của một số dòng lạc trong tập đoàn giống chống chịu bệnh gỉ sắt, sử dụng với 11 mồi ngẫu nhiên, tác giả Bùi Văn Thắng, Đinh Thị Phòng đã thu được 66/109 phân đoạn ADN đa hình [34]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 12 Lê Xuân Đắc và CS (1999) sử dụng 10 mồi ngẫu nhiên để phân tích đa hình và chỉ ra sự sai khác ở mức độ phân tử của các dòng lúa tái sinh từ mô sẹo chịu mất nước [10]. Với 10 mồi ngẫu nhiên, Nguyễn Thị Tâm (2004) đã cho thấy các dòng lúa chọn lọc tạo ra từ mô sẹo lúa chịu nhiệt giống CR203, CS4, ML107 đã có những thay đổi ở mức độ phân tử [33]. Cũng bằng kỹ thuật RAPD, Nguyễn Vũ Thanh Thanh (2003) nghiên cứu đa dạng di truyền của một số giống đậu xanh cho thấy trong 5 mồi ngẫu nhiên chỉ có 3 mồi RA31, RA45, RA46 cho kết quả đa hình, hệ số tương đồng giữa các giống dao động từ 0,41 - 0,80 [32]. Bùi Thị Thu Thủy (2006) sử dụng 5 mồi ngẫu nhiên để so sánh hệ gen của các dòng lúa chọn lọc R1 với giống gốc U17 cho thấy cả 5 mồi đều thể hiện tính đa hình, các dòng chọn lọc có mức độ khác biệt di truyền so với giống gốc từ 0,18 - 0,40 [37]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 13 Chƣơng 2 VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU 2.1. Vật liệu nghiên cứu Sử dụng 3 giống lạc (L08, L23, L24) thu hoạch ở vụ Thu Đông năm 2006 do Viện khoa học Kỹ thuật Nông nghiệp Việt Nam cung cấp và các giống lạc địa phương (LTB LCB, LBK) do sở Nông nghiệp và PTNT các tỉnh Thái Bình, Cao Bằng, Bắc Kạn cung cấp. 2.2. Hoá chất, thiết bị và địa điểm nghiên cứu 2.2.1. Hoá chất Các chất kích thích sinh trưởng BAP; 2,4-D; NAA, hóa chất sử dụng tách chiết ADN: Tris-base1M, BME14M, NaCl5M; SDS5%; EDTA0,5M; Choloroform:isoamyl (24:1); STAB; isopropanol; Ethanol; TE (10mM Tribase+1mM EDTA), các chất khoáng đa lượng, vi lượng, vitamin, proline chuẩn, gelatin... 2.2.2. Thiết bị Cân phân tích điện tử (Thụy Sĩ), máy ly tâm lạnh của hãng Hettich (Đức), máy quang phổ Uvis Cintra 40 (Úc), máy đo pH, tủ sấy Cabrolite (Anh), box cấy, máy điện di, máy PCR... 2.2.3. Địa điểm nghiên cứu - Thí nghiệm nuôi cấy in vitro được thực hiện tại phòng Công nghệ Tế bào- khoa Sinh - KTNN Trường Đại học Sư phạm - Đại học Thái Nguyên. - Thí nghiệm phân tích các chỉ tiêu hóa sinh, phân tử được thực hiện tại phòng Di truyền học, Công nghệ gen, khoa Sinh - KTNN Trường Đại học Sư phạm - Đại học Thái Nguyên. - Thí nghiệm nghiên cứu ngoài đồng ruộng được thực hiện tại phường Tân Thịnh- Thành phố Thái Nguyên từ tháng 2/2008 đến 6/2008. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 14 2.3. Phƣơng pháp nghiên cứu 2.3.1. Phƣơng pháp hóa sinh 2.3.1.1. Phƣơng pháp phân tích hóa sinh ở giai đoạn hạt tiềm sinh Xác định hàm lượng lipit: Dựa vào tính chất hòa tan của dung môi hữu cơ để chiết lipit, dung môi hữu cơ được sử dụng là petroleum ether. Cách làm: Mẫu được sấy khô đến khối lượng không đổi. Bóc vỏ lụa, nghiền nhỏ, cân 0,05g mẫu cho vào tube. Sau đó cho 1,5ml petroleum ether, lắc nhẹ 10 phút, để qua đêm ở 4oC, ly tâm 20 phút với tốc độ 12.000 vòng/phút ở 4 o C, bỏ dịch, lặp lại 3 lần như vậy. Sấy khô mẫu còn lại ở tube ở 70oC đến khối lượng không đổi. Hàm lượng lipit được tính bằng hiệu của khối lượng mẫu trước và sau khi chiết theo công thức sau: Hàm lượng lipit (%) = %100x A BA Trong đó: A: Khối lượng mẫu trước khi chiết (mg) B: Khối lượng mẫu sau khi chiết (mg) Xác định hàm lượng protein: Hàm lượng protein tan xác định theo phương pháp Lowry được mô tả trong tà i liệu của Phạm Thị Trân Châu và Cs (1998) [3]. Mẫu sau khi loại lipit được sử dụng chiết protein. Chiết protein bằng dung dịch đệm photphat citrat (pH=10), để trong 24h ở 4oC, đem ly tâm 20 phút (12.000 vòng/phút), thu lấy dịch. Lặp lại thí nghiệm 3 lần. Dịch thu được của mỗi lần chiết định mức bằng dung dịch đệm lên 10ml và đo hấp thụ quang phổ trên máy UV ở bước sóng 750nm với thuốc thử folin. Hàm lượng protein được tính theo công thức: %100(%)    m HSPLa X Trong đó: X: Hàm lượng protein (% khối lượng khô) a: Nồng độ thu được khi đo trên máy (mg/ml) HSPL: Hệ số pha loãng m: Khối lượng mẫu (mg) Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 15 2.3.1.2. Đánh giá khả năng chịu hạn thông qua phân tích một số chỉ tiêu hóa sinh ở giai đoạn hạt nảy mầm (1) Chuẩn bị mẫu: Hạt lạc sau khi bóc vỏ gỗ được ngâm nước 2 giờ, sau đó ủ ẩm bằng dung dịch MS pha loãng 10 lần chứa sorbitol 5%. Hạt nảy mầm sau các khoảng thời gian ủ 1 ngày, 3 ngày, 5 ngày, 7 ngày, 9 ngày được lấy để xác định hoạt độ enzyme amilase và hàm lượng đường tan, hoạt độ enzyme protease và hàm lượng protein tan. Đối chứng là hạt lạc được ủ bằng dung dịch MS pha loãng 10 lần không chứa sorbitol. (2) Xác định hàm lượng đường tan bằng phương pháp vi phân tích Xác định hàm lượng đường tan theo phương pháp vi phân tích được mô tả trong tà i liệu của Phạm Thị Trân Châu và Cs (1998) [3]. - Nguyên tắc: Trong môi trường kiềm, đường khử kaliferixianua thành kaliferoxianua. Với sự có mặt của gelatin, kaliferoxianua kết hợp với sắt sunphat axit tạo thành phức chất màu xanh bền. - Cách tiến hành: Hạt nảy mầm bóc vỏ lụa, cân khối lượng, chiết bằng nước cất, ly tâm 12.000 vòng/phút, dịch thu được sử dụng làm thí nghiệm. Đo cường độ màu dung dịch trên máy so màu với bước sóng 585nm. Hàm lượng đường tan được tính theo công thức : X (%) = m HSPLba  x 100% Trong đó: X: Hàm lượng đường tan ( % khối lượng tươi) a: Số đo trên máy (mg/ml) b: Số ml dịch chiết HSPL: Hệ số pha loãng m: Khối lượng mẫu (mg) (3) Xác định hoạt độ của enzyme α - amylase Xác định hoạt độ của enzyme α - amylase theo phương pháp Heinkel mô tả trong tài liệu của Nguyễn Lân Dũng (1979) [7]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 16 - Nguyên tắc: Dựa vào tính chất hòa tan của enzyme α - amylase trong dung dịch đệm photphat 0,2M (pH=6,8). - Cách tiến hành: Hạt lạc nảy mầm, bóc vỏ lụa, cân khối lượng, nghiền nhỏ trong đệm photphat 0,2M (pH=6,8), ly tâm 12.000 vòng/phút trong 15 phút ở 4 0 C, dịch thu được sử dụng làm thí nghiệm. Thí nghiệm phân tích hoạt độ enzyme α - amylase được tiến hành trên ống thí nghiệm, ống kiểm tra. Sau đó đo trên máy quang phổ ở bước sóng 560nm. Công thức xác định hoạt độ enzyme α- amylase: ĐVHĐ/mg = m xHSPLCC )21(  Trong đó: C1: Lượng tinh bột còn lại của mẫu kiểm tra (mg/ml) C2: Lượng tinh bột còn lại của mẫu thí nghiệm (mg/ml) HSPL: Hệ số pha loãng m: Khối lượng mẫu (mg) Định tính hoạt độ enzyme α- amylase Thành phần hỗn hợp dịch gồm thạch aga 2%, tinh bột 1%, H2O 100ml, cho hỗn hợp dịch vào bình nón và đun cách thủy cho đến tan thạch, đổ vào đĩa petri dày 4mm để nguội, đục lỗ. Nhỏ 100 µl dịch chiết chứa enzyme vào mồi lỗ, để tủ lạnh qua đêm để enzyme khuyếch tán, chuyển sang tủ ấm ở 30 0C trong 24h. Sau đó nhuộm lugol trong 5 phút và tráng bằng NaCl 1N. (4) Xác định hàm lượng protein tan Hàm lượng protein tan được xác định như mô tả ở mục 2.3.1.1. (5) Xác định hoạt độ enzyme protease Hoạt độ enzyme protease xác định theo phương pháp Anson cải tiến theo mô tả của Nguyễn Văn Mùi (2001) [26]. - Cách tiến hành: Hạt nảy mầm đã bóc vỏ lụa, nghiền nhỏ, chiết bằng đệm photphat pH=6,5, li tâm 12000 vòng/phút trong 15 phút ở 40C, dịch thu được sử dụng làm thí nghiệm. Thí nghiệm phân tích hoạt độ enzyme protease được tiến hành trên ống thí nghiệm, ống kiểm tra, đo trên máy quang phổ ở bước sóng 750nm. Hoạt độ enzyme được tính dựa trên đồ thị đường chuẩn xây dựng bằng tyrozin. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 17 Hoạt độ protease được tính theo công thức: ĐVHĐ/mg= Txm xHSPLxDkn )(  Trong đó: n: Số đo trên máy ống kiểm tra(mg/ml) k: Số đo trên máy ống thí nghiệm(mg/ml) HSPL: Hệ số pha loãng D: Số ml dịch chiết T: Thời gian ủ enzyme với cơ chất m: Khối lượng mẫu (mg) Định tính hoạt độ enzyme protease: Tiến hành tương tự như định tính hoạt độ α- amylase, cơ chất là gelatin 1%. 2.3.2. Phƣơng pháp sinh lý Phương pháp đánh giá khả năng chịu hạn ở giai đoạn cây non theo Lê Trần Bình (1998) [2]. - Chuẩn bị mẫu: Hạt lạc nảy mầm gieo vào các chậu (kích thước 30cm x 30cm) chứa cát vàng đã rửa sạch mỗi chậu trồng 40 cây, 3 chậu cho mỗi giống, thí nghiệm được lặp lại 3 lần trong điều kiện và chế độ chăm sóc như nhau. Thời gian đầu tưới nước cho đủ ẩm, khi cây lạc được 3 lá tiến hành gây hạn nhân tạo. - Đánh giá khả năng chịu hạn của các giống lạc thông qua xác định: + Chỉ số hạn tương đối (S): Chỉ số chịu hạn tương đối được xác định thông qua tỉ lệ cây sống sót (%), khả năng giữ nước (%) của cây non trước và sau hạn 3 ngày, 5 ngày, 7 ngày. Chỉ số chịu hạn được xác định b._.ằng diện tích đồ thị hình sao gồm 6 trục mang các trị số tương ứng a, b, c, d, e, g của một giống. Chỉ số chịu hạn tương đối được tính theo công thức: S = 2 1 sin α (ab + bc + cd + de + eg + ga) Trong đó: α : % cây sống sau 3 ngày hạn; b: % khả năng giữ nước sau 3 ngày hạn; c: % cây sống sau 5 ngày hạn; d: % khả năng giữ nước sau 5 ngày hạn; e: % cây sống sau 7 ngày hạn; g: % khả năng giữ nước sau 7 ngày hạn; α: Góc tạo bởi hai trục mang trị số gần nhau và tính bằng 360/n; S: Chỉ số chịu hạn tương đối của các giống lạc. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 18 + Khả năng giữ nước của cây lạc 3 lá trong điều kiện hạn được xác định theo công thức: W (%)= kxl xl W W x 100% Trong đó: W (%): Khả năng giữ nước của cây sau khi xử lý hạn. Wxl: Khối lượng tươi của cây xử lý(g) Wkxl : Khối lượng tươi của cây không xử lý(g) - Xác định hàm lượng prolin Đánh giá sự biến đổi hàm lượng axit amin proline ở thân lá và rễ cây non 3 lá trước và sau xử lý hạn nhân tạo. Hàm lượng proline được xác định theo phương pháp của Bates và cộng sự (1973) 44. Tách chiết proline: Nghiền 0,5 gam thân, lá cây lạc đã xử lý hạn ở ngưỡng 1, 3, 5 ngày trong cốc và đũa thuỷ tinh bằng nitơ lỏng, thêm 10 ml dung dịch axit sunfosalixilic 3%, li tâm 8000 vòng/phút. Thu dịch làm thí nghiệm. Đo hấp phụ quang phổ ở bước sóng 520 nm. Hàm lượng prolin được tính theo công thức: X%= %100x m AxHSPL Trong đó: X: Hàm lượng prolin(%) A: Nồng độ thu được khi đo trên máy (mg/ml) HSPL: Hệ số pha loãng m: Khối lượng mẫu (mg) 2.3.3. Phƣơng pháp nuôi cấy in vitro 2.3.3.1. Tạo mô sẹo từ phôi lạc Khử trùng hạt Củ lạc được rửa sạch bằng nước máy, phơi khô, bóc vỏ gỗ, hạt lạc được khử trùng trong điều kiện vô trùng bằng cồn 700 trong thời gian 2 phút, tráng lại bằng nước cất khử trùng 1 đến 2 lần. Thêm Javen 60% lắc đều trong 25 phút, sau đó rửa bằng nước cất khử trùng 2 – 3 lần. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 19 %100(%) x W WW W f df L   Tạo mô sẹo Hạt lạc đã khử trùng đặt lên giấy thấm khử trùng bóc bỏ vỏ lụa, phôi tách ra được cấy lên môi trường mô sẹo cơ bản bổ sung 2,4-D12mg/l, saccharose 3%, agar 0,8%, pH từ 5,5 – 5,8. Nuôi trong tối một tuần, sau đó đưa ra dưới ánh sáng đèn phòng nuôi cấy với cường độ 2000lux, thời gian chiếu sáng 12/24 giờ, nhiệt độ 250C trong 3 ngày. 2.3.3.2. Xử lý bằng thổi khô Mô sẹo sau khi để trong tối 10 ngày, được chuyển lên đĩa petri trải giấy lọc vô trùng và thổi khô bằng luồng khí vô trùng của bàn cấy ở các ngưỡng thời gian 3, 6, 9 giờ, sau đó được chuyển lên môi trường tái sinh cây. Xác định độ mất nước của mô sẹo thông qua cân trọng lượng của mô sẹo các giống trước và sau khi thổi khô. Độ mất nước của mô sẹo được tính theo công thức: Trong đó: WL: Độ mất nước (%); Wf: Trọng lượng mô tươi (mg) Wd: Trọng lượng mô khô (mg) 2.3.3.3. Tái sinh cây Mô sẹo sau khi xử lý bằng thổi khô được cấy lên môi trường tái sinh cây có thành phần MS cơ bản, bổ sung BAP 2mg/l. Tỷ lệ sống sót sau 3 tuần được tính theo công thức: %100(%) x N N S T sv v  Trong đó: Sv: Tỷ lệ mô sống sót (%); Ssv: Số mô sống sót; NT: Tổng số mô xử lý. Tỉ lệ tái sinh cây được đánh giá sau 6 tuần nuôi cấy, theo công thức : %100(%) x N N R sv r c  Trong đó: Rc: Khả năng tái sinh cây (%); Nr: Số mô tái sinh cây; Nsv: Số mô sống sót. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 20 2.3.3.4. Tạo cây hoàn chỉnh Cây tái sinh thu được sau đó chuyển lên môi trường ra rễ, có thành phần MS cơ bản, bổ sung NAA 0,3mg/l. Mật độ cấy 6 chồi/bình, theo dõi khả năng tạo rễ sau 4 tuần nuôi cấy. 2.3.3.5. Ra cây và chế độ chăm sóc Khi cây con trong bình nuôi cấy đạt 3-4 lá, rễ dài, dùng panh lấy cây ra khỏi bình cấy, rửa lớp thạch agar bám quanh gốc và rễ bằng nước sạch. Cấy cây vào lỗ của miếng xốp. Đặt các miếng xốp vào khay chứa dung dịch MS pha loãng 10 lần, đặt khay ở nơi có ánh sáng khuyếch tán và ít gió. Sau 2 -3 ngày chuyển ra đất và tiếp tục tưới bằng dung dịch MS pha loãng 10 lần. 2.3.4. Phƣơng pháp nghiên cứu trên đồng ruộng Ngoài đồng ruộng, các dòng lạc của mỗi giống và giống gốc được trồng thành từng dảnh riêng. Chế độ chăm sóc các dòng và giống gốc là như nhau. Theo dõi sự phát triển của các dòng chọn lọc qua các giai đoạn phát triển trong vụ xuân. Đánh giá đặc điểm nông học của các dòng qua các chỉ tiêu: Chiều cao cây, số cành/cây, số quả/cây…Quả của mỗi dòng được đánh dấu và thu hoạch riêng để gieo trồng cho vụ tiếp theo. Mỗi thí nghiệm được nhắc lại 3 lần, sử dụng toán thống kê để xác định trị số thống kê như trung bình mẫu ( X ), phương sai (2), độ lệch chuẩn (), và sai số trung bình mẫu ( X S ), hệ số biến động (Cv). Các số liệu được xử lý trên máy vi tính theo tµi liÖu Nguyễn Hải Tuất vµ Ngô Kim Khôi (1996) [40]. 2.3.5. Phƣơng pháp sinh học phân tử 2.3.5.1. Phƣơng pháp tách chiết ADN tổng số từ lá lạc - Quy trình tách chiết và làm sạch ADN tổng số từ lá lạc theo phương pháp của Doyle J.J và J.L. Doyle [46]. - Xác định hàm lượng ADN trên máy quang phổ model 825-2A của hãng Hewlett Packarrd. - Kiểm tra chất lượng ADN thu được thông qua điện di trên gel agarose 0,8%. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 21 2.3.5.2. Phân tích tính đa hình ADN bằng kỹ thuật RAPD Phản ứng RAPD được tiến hành với 10 mồi ngẫu nhiên, các mồi có trình tự dài 10 nucleotit, thông tin về trình tự của các mồi được trình bày ở bảng 2.1. Bảng 2.1. Trình tự các nucleotit của 10 mồi RAPD sử dụng trong nghiên cứu Tên mồi Trình tự mồi Tên mồi Trình tự mồi ARA42 5’GGAAGCTTGG3’ DTN19 5’GGAAGCCAAC3’ CUM43 5’CAATCGCCGT3’ OPE10 5’GGGAAGGACA3’ DTN05 5’TCGGCGATAG3’ OPM46 5’CCAGACCCTG3’ DTN13 5’ACTGAACGCC3’ USP31 5’AACCGACGGG3’ DTN15 5’GGAGTGGACA3’ UPH04 5’GGAAGTCGCC3’ Mỗi phản ứng PCR có 25 l dung dịch chứa 10mM buffer PCR 1X; 2,5 mM MgCl2; 25M mỗi loại dATP, dCTP, dGTP, dTTP; 200 nM mồi; 0,125 đơn vị Taq polymerase và 10 ng ADN khuôn. Phản ứng PCR-RAPD thực hiện trong máy PCR - Thermal Cycler PTC 100 theo chu trình nhiệt: Bước 1: 940C trong 3 phút; Bước 2: 920C trong 1 phút; Bước 3: 350C trong 1 phút; Bước 4: 720C trong 1 phút, từ bước 2 đến bước 4 lặp lại 45 chu kì; Bước 5: 720C trong 10 phút; Bước 6: giữ ở 40C. Điện di sản phẩm PCR trên gel agarose 1,8%, nhuộm Ethidium bromide và chụp ảnh trên máy soi gel. 2.2.5.3. Phân tích số liệu RAPD Phân tích số liệu theo qui ước: 1 = phân đoạn ADN xuất hiện và 0 = phân đoạn ADN không xuất hiện, khi điện di sản phẩm RAPD với các đoạn mồi ngẫu nhiên. So sánh hệ số tương quan kiểu hình theo phương pháp: Jaccard và phân nhóm UPGMA. Lập biểu đồ hình cây dựa vào giá trị tương quan kiểu hình (r) cao nhất trong chương trình NTSYSpc 2.0. Hàm lượng thông tin tính đa hình (Polymorphism information content = PIC) của mỗi mồi xác định theo công thức: PICi = 1 - Pij 2 . Trong đó Pij là tần số của allen thứ j của kiểu gen i được kiểm tra. Phạm vi giá trị PIC từ 0 (không đa hình) tới 1 (đa hình hoàn toàn). Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 22 CHƢƠNG 3 KẾT QUẢ VÀ THẢO LUẬN 3.1. Hàm lƣợng protein và lipit của các giống lạc nghiên cứu Để đánh giá chất lượng hạt của các giống lạc nghiên cứu, chúng tôi tiến hành phân tích hàm lượng protein và lipit trong hạt tiềm sinh ở các giống lạc L08, L23, L24, LTB LCB, LBK, kết quả được trình bày ở bảng 3.1. Bảng 3.1. Hàm lượng protein, lipit của các giống lạc nghiên cứu (% khối lượng khô) Giống Hàm lượng lipit Hàm lượng protein L24 45,72  0,02 30,86  0,03 L23 43,86  0,01 29,84  0,04 L08 49,65  0,01 31,22  0,01 LTB 46,18 0,03 25,43 0,02 LCB 48,68 0,04 24,21 0,01 LBK 46,03 0,02 26,51 0,03 Bảng 3.1 cho thấy, hàm lượng protein trong hạt các giống lạc dao động từ 24,21% đến 31,22%. Giống L08 có hàm lượng protein cao nhất (31,22%), thấp nhất là LCB (24,21%). Hàm lượng lipit của 6 giống lạc dao động từ 43,86% đến 49,65%. Giống có hàm lượng lipit cao nhất là L08 (49,65%), tiếp đến là giống LCB (48,68%). Giống có hàm lượng lipit thấp nhất L23 (43,86%). Lipit là thành phần cấu tạo quan trọng của màng sinh học, nguồn nguyên liệu cung cấp năng lượng cho cơ thể. Lipit trong lạc dễ tiêu hóa không chứa cholesterol nên việc sử dụng chúng còn có tác dụng phòng và chống một số bệnh xơ cứng động mạnh, bệnh chảy máu mũi. Do vậy, những giống lạc có hàm lượng lipit cao có thể phát triển vùng trồng để làm nguyên liệu sản xuất dầu lạc cung cấp cho đời sống con người. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 23 3.2. KHẢ NĂNG CHỊU HẠN CỦA CÁC GIỐNG LẠC L24 L23, L08, LTB, LCB, LBK 3.2.1. Khả năng chịu hạn của các giống lạc L23, L08, LTB, LCB, LBK ở giai đoạn hạt nảy mầm 3.2.1.1. Ảnh hƣởng của sorbitol 5% đến hoạt độ enzyme  - amylase của các giống lạc nghiên cứu ở giai đoạn hạt nảy mầm Khi hạt nảy mầm, enzyme  - amylase được tổng hợp và hoạt động mạnh, giúp quá trình phân giải tinh bột diễn ra mạnh mẽ để tổng hợp các chất hữu cơ cho sự hình thành cây non, làm cho hàm lượng đường tăng lên kéo theo sự gia tăng áp suất thẩm thấu, dẫn đến tăng khả năng chống lại sự mất nước của lạc ở giai đoạn hạt nảy mầm. Điều này có ý nghĩa quan trọng trong quá trình nảy mầm của hạt, đồng thời thúc đẩy quá trình sinh trưởng, phát triển của mầm, đảm bảo cho cây non có thể sinh trưởng bình thường trong điều kiện thiếu nước. Do đó việc khảo sát đặc điểm phản ứng của các giống lạc ở giai đoạn hạt nảy mầm là một trong những cơ sở để đánh giá tính chịu hạn của cây lạc. Vì vậy, trong nghiên cứu này chúng tôi tiến hành đánh giá tính chịu hạn của các giống lạc thông qua sự thay đổi hoạt độ  - amylase và sự biến động hàm lượng đường tan trong điều kiện hạn sinh lý ở giai đoạn nảy mầm. Kết quả phân tích sự biến động hoạt độ của  - amylase ở giai đoạn hạt nảy mầm khi xử lý dung dịch sorbitol 5% được trình bày ở bảng 3.2 và hình 3.1. Kết quả cho thấy, hoạt độ của  - amylase trong giai đoạn hạt nảy mầm sau khi bị xử lý bởi sorbitol 5% biểu hiện khác nhau giữa các giống lạc và giữa các ngày tuổi. Xu hướng chung của sự biến động này là hoạt độ của  - amylase tăng từ giai đoạn 1 ngày tuổi và cao nhất ở 7 ngày tuổi sau đó giảm dần ở 9 ngày tuổi. Trong đó, giống L24 có hoạt độ của -amylase cao nhất so với các giống còn lại. Ở các giai đoạn 1, 3, 5, 7, 9 ngày tuổi giống L24 có hoạt độ enzyme tương ứng là 0,45 ĐVHĐ/mg, 1,02 ĐVHĐ/mg, 2,13 ĐVHĐ/mg, 2,64 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 24 ĐVHĐ/mg, 1,82 ĐVHĐ/mg. Ở 7 ngày tuổi, giống L24 có hoạt độ enzyme amylase tăng 5,87 lần so với giai đoạn 1 ngày tuổi, tiếp đến là giống LCB (5,48 lần), và thấp nhất là giống L08 (tăng 4,53 lần) so với 1 ngày tuổi. Bảng 3.2. Hoạt độ của  - amylase trong các giai đoạn hạt nảy mầm khi xử lý bởi sorbitol 5% Giống Hoạt độ của - amylase (ĐVHĐ/mg hạt nảy mầm) 1 ngày 3 ngày 5 ngày 7 ngày 9 ngày L24 ĐC 0,410,04 0,790,11 1,620,04 1,780,04 1,520,06 TN 0,450,04 1,020,24 2,130,04 2,640,05 1,820,09 % so ĐC 109,75 129,11 131,48 148,31 119,73 L23 ĐC 0,38  0,01 0,710,04 1,420,02 1,620,02 1,580,05 TN 0,410,03 0,930,16 1,880,03 2,21 0,03 1,760,11 % so ĐC 107,89 130,99 132,39 136,42 111,39 L08 ĐC 0,320,01 0,410,09 1,020,04 1,350,19 0,730,03 TN 0,390,07 0,520,02 1,31 0,04 1,770,07 0,940,07 % so ĐC 121,87 126,83 128,43 131,11 128,77 LTB ĐC 0,320,01 0,480,22 1,150,04 1,360,02 1,090,09 TN 0,390,07 0,590,03 1,470,04 1,790,03 1,380,06 % so ĐC 121,89 122,92 127,83 131,62 126,61 LCB ĐC 0,390,05 0,460,04 1,560,03 1,760,03 1,410,10 TN 0,440,12 0,580,16 2,060,03 2,410,03 1,670,13 % so ĐC 112,82 126,08 132,05 136,93 118,43 LBK ĐC 0,330,12 0,520,12 1,310,04 1,420,03 1,300,08 TN 0,410,13 0,630,04 1,650,05 1,870,04 1,650,12 % so ĐC 124,24 121,15 125,95 131,69 126,92 Kết quả phân tích ở bảng 3.2 đã chứng tỏ, sorbitol 5% ảnh hưởng đến hoạt độ của  - amylase ở giai đoạn hạt nảy mầm của các giống lạc. Bùi Thị Thu Thủy (2005), phân tích hoạt độ của  - amylase ở giai đoạn hạt nảy mầm của một số giống lúa đã nhận thấy, những giống có khả năng chịu hạn đều có hoạt độ  - amylase cao hơn các giống có khả năng chịu hạn kém [35]. Kết quả này cũng phù hợp với những nghiên cứu công bố trên đối tượng lúa cạn, lạc [17], [27]. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 25 1 2 3 4 Hình 3.1. Định tính hoạt độ  - amylase của giống L24 và LTB ở giai đoạn hạt nảy mầm 1, 3, 5, 7 ngày A - LTB ĐC B - L24 ĐC C - LTB TN D - L24 TN 3.2.1.2. Ảnh hƣởng của sorbitol 5% đến sự biến động hàm lƣợng đƣờng tan của các giống lạc nghiên cứu ở giai đoạn hạt nảy mầm Đường tan trong tế bào có vai trò trong việc điều chỉnh áp suất thẩm thấu trong dịch bào khi gặp điều kiện ngoại cảnh bất lợi. Vì vậy, khảo sát hàm lượng đường tan ở giai đoạn hạt nảy mầm để tìm mối liên quan với khả năng chịu hạn của lạc là rất cần thiết. Kết quả xác định hàm lượng đường tan trong giai đoạn hạt nảy mầm được trình bày ở bảng 3.3 và hình 3.2. Kết quả bảng 3.3 cho thấy, ở cả mẫu thí nghiệm và đối chứng hàm lượng đường tan đều tăng ở giai đoạn hạt nẩy mầm 1 ngày tuổi và tăng cao nhất ở giai đoạn 7 ngày tuổi, bắt đầu giảm ở giai đoạn 9 ngày tuổi. Sự biến động hàm lượng đường tan ở các giống lạc có sự khác nhau. Hàm lượng đường ở các mẫu xử lý hạn luôn cao hơn so với đối chứng từ 3,72% - 32,94%. Ở giai đoạn 7 ngày tuổi, giống L24 hàm lượng đường tan cao nhất (7,99%) tăng 1,75 lần so với 3 ngày tuổi và tăng 32,94% so với đối chứng ở giai đoạn 7 ngày tuổi. Giống L08 có hàm lượng đường tan thấp nhất (đạt 5,29% tăng 28,40% so với đối chứng). Nguyễn Vũ Thanh Thanh (2003) phân tích sự biến động hàm lượng đường ở 9 giống đậu xanh cho thấy, giống HB1 là giống chịu hạn nên có hàm lượng đường tan cao nhất trong các giống nghiên cứu [32]. Kết quả nghiên cứu của chúng tôi về hàm lượng đường tan trong giai đoạn nảy mầm của các giống lạc có xử lý bởi sorbitol 5%, phù hợp với những nhận định trước đây Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 26 0 1 2 3 4 5 6 7 8 9 1 3 5 7 9 Ngày H àm lƣ ợn g đƣ ờn g ta n (% ) L24 L23 L08 LTB LCB LBK về tăng áp suất thẩm thấu của tế bào thông qua các phân tử đường tan làm tăng khả năng chịu hạn [20], [35]. B¶ng 3.3. Hàm lượng đường tan của các giống nghiên cứu ở giai đoạn nảy mầm Giống Hàm lượng đường tan (%) 1 ngày 3 ngày 5 ngày 7 ngày 9 ngày L24 ĐC 2,950,29 3,980,32 5,790,13 6,010,25 4,120,05 TN 3,29 0,08 4,560,17 7,610,06 7,990,11 4,540,21 % so ĐC 111,53 114,57 131,43 132,94 110,19 L23 ĐC 2,530,02 4,010,15 5,520,12 5,630,29 3,960,28 TN 2,630,24 4,240,21 6,260,32 6,540,23 4,360,31 % so ĐC 103,95 105,73 113,41 116,16 110,10 L08 ĐC 2,150,24 3,120,17 3,680,26 4,120,09 3,130,26 TN 2,450,09 3,680,32 4,540,32 5,290,02 3,490,23 % so ĐC 113,95 117,62 123,37 128,40 111,50 LTB ĐC 2,160,11 3,410,36 4,010,26 4,180,06 3,340,26 TN 2,480,06 4,080,06 4,820,10 5,310,15 3,500,16 % so ĐC 114,81 119,65 120,20 127,03 104,79 LCB ĐC 2,600,14 3,760,26 5,410,25 5,460,28 4,020,25 TN 2,750,16 4,250,39 6,340,14 6,680,09 4,350,33 % so ĐC 105,76 113,03 117,19 122,34 108,20 LBK ĐC 2,330,30 3,830,11 4,710,16 4,250,23 3,490,12 TN 2,490,21 4,180,34 5,160,37 5,430,17 3,620,13 % so ĐC 106,87 109,14 109,55 127,76 103,72 H×nh 3.2. Biến động hàm lượng đường tan của các giống lạc ở giai đoạn nảy mầm Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 27 3.2.1.3. Mối tƣơng quan giữa hoạt độ enzyme  - amylase và hàm lƣợng đƣờng tan của các giống lạc nghiên cứu ở giai đoạn hạt nảy mầm Chúng tôi tiếp tục khảo sát mối tương quan giữa hoạt độ của  - amylase và hàm lượng đường tan, kết quả phân tích thể hiện ở bảng 3.4. B¶ng 3.4. Tương quan giữa hoạt độ của  - amylase và hàm lượng đường ở giai đoạn hạt nảy mầm Giống Phương trình hồi quy Hệ số tương quan (R) L24 Y = 1,88X+1,65 0,96 L23 Y = 1,84X+1,86 0,89 L08 Y= 1,65X+1,95 0,92 LTB Y= 1,09X+ 2,50 0,83 LCB Y = 1,42X+2,64 0,90 LBK Y= 1,12X+2,50 0,87 Kết quả bảng 3.4 cho thấy, hệ số tương quan (R) của các giống trong khoảng 0,83≤ R≤ 0,96. Điều này chứng tỏ hàm lượng đường tan và hoạt độ của  - amylase có tương quan chặt chẽ và liên quan đến khả năng nảy mầm của hạt. Nghiên cứu đã cho thấy, hàm lượng đường tan phụ thuộc tuyến tính vào hoạt độ của  - amylase. Hoạt độ của enzyme  - amylase càng cao thì hàm lượng đường tan được hình thành do quá trình phân giải tinh bột càng lớn, cung cấp cho quá trình này mầm của hạt, sự sinh trưởng của mầm cũng như điều chỉnh áp suất thẩm thấu của tế bào trong điều kiện cực đoan. Có thể xếp theo thứ tự giảm dần hoạt độ enzyme  - amylase và hàm lượng đường tan giữa các giống như sau: L24> LCB> L23 > LBK> LTB> L08. 3.2.1.4. Ảnh hƣởng của sorbitol 5% đến hoạt độ của protease của các giống lạc nghiên cứu ở giai đoạn hạt nảy mầm Kết quả nghiên cứu ảnh hưởng của sorbitol 5% đến hoạt độ của protease ở giai đoạn hạt nảy mầm được trình bày ở bảng 3.5 và hình 3.3. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 28 Kết quả ở bảng 3.5 cho thấy, hoạt độ của protease của các giống biểu hiện rất khác nhau, dao động từ 0,33 ĐVHĐ/mg đến 0,85 ĐVHĐ/mg. Các giống lạc nghiên cứu đều có hoạt độ protease thấp nhất ở giai đoạn 1 ngày tuổi và cao nhất ở giai đoạn 7 ngày tuổi. Trong 6 giống nghiên cứu, giống L24 có hoạt độ của protease cao nhất đạt 0,85 ĐVHĐ/mg, thấp nhất là giống L08 0,61 ĐVHĐ/mg, cùng ở giai đoạn 7 ngày tuổi. Tương tự như sự biến đổi hoạt độ của amylase, hoạt độ của protease ở mẫu thí nghiệm (xử lý sorbitol 5%) luôn cao hơn đối chứng (không xử lý sorbitol 5%) từ 5,66% - 39,22%. Bảng 3.5. Hoạt độ của protease trong các giai đoạn hạt nảy mầm khi xử lý sorbitol 5% Giống Hoạt độ enzyme protease (ĐVHĐ/ mg hạt nảy mầm) 1 ngày 3 ngày 5 ngày 7 ngày 9 ngày L24 ĐC 0,450,01 0,560,01 0,610,01 0,680,06 0,650,09 TN 0,540,06 0,640,20 0,800,02 0,850,12 0,800,06 % so ĐC 120,00 114,28 131,14 125,00 123,08 L23 ĐC 0,410,07 0,530,04 0,570,05 0,620,07 0,610,05 TN 0,500,03 0,560,04 0,700,05 0,810,09 0,720,07 % so ĐC 121,95 105,66 122,80 130,65 118,03 L08 ĐC 0,290,06 0,410,27 0,460,10 0,470,10 0,430,05 TN 0,330,06 0,470,05 0,550,09 0,610,12 0,520,01 % so ĐC 113,79 114,63 119,57 129,79 120,93 LTB ĐC 0,330,03 0,380,11 0,450,01 0,510,12 0,460,09 TN 0,390,06 0,460,02 0,590,06 0,710,04 0,620,03 % so ĐC 118,18 121,05 131,11 139,22 134,78 LCB ĐC 0,420,09 0,550,02 0,590,07 0,650,12 0,620,07 TN 0,480,06 0,590,08 0,740,02 0,830,05 0,780,09 % so ĐC 106,67 107,27 125,42 127,69 125,80 LBK ĐC 0,360,05 0,410,06 0,510,03 0,590,10 0,480,03 TN 0,420,06 0,480,08 0,660,09 0,770,04 0,670,12 % so ĐC 116,67 117,07 129,41 130,51 125,00 Enzyme protease trong hạt có thể được tổng hợp từ trước ở dạng tiền chất và tồn tại song song với protein dự trữ, nhưng cũng có một số được tổng hợp trong qua trình nảy mầm của hạt. Nhiều nghiên cứu đã cho rằng tăng ASTT của tế bào thông qua các phân tử chất tan làm tăng khả năng chống Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 29 chịu của cây trồng, các chất hòa tan sẽ dần được tích lũy trong tế bào chất nhằm chống lại sự mất nước và tăng khả năng giữ nước của chất nguyên sinh [18]. Kết quả nghiên cứu của chúng tôi phù hợp với những nhận định của các tác giả trước đây khi nghiên cứu về ảnh hưởng của hạn sinh lý đến hoạt độ của protease trên các đối tượng lúa, lạc, đậu tương [17], [19]. 1 2 3 4 H×nh 3.3. Định tính hoạt độ protease của giống L24 và LTB ở giai đoạn nảy mầm A - L24 ĐC ; B - LTB ĐC ; C - LTB TN ; D - L24 TN 3.2.1.5. Ảnh hƣởng của sorbitol 5% đến hàm lƣợng protein của các giống lạc nghiên cứu ở giai đoạn hạt nảy mầm Kết quả phân tích ảnh hưởng của sorbitol 5% đến hàm lượng protein ở giai đoạn hạt nảy mầm được trình bày ở bảng 3.6 và hình 3.4. Hàm lượng protein trong hạt nảy mầm của các giống lạc tăng mạnh từ giai đoạn 3 ngày tuổi và đạt cao nhất ở giai đoạn 7 ngày tuổi, đến 9 ngày tuổi hàm lượng protein bắt đầu giảm. Ở tất cả các giống nghiên cứu, mẫu thí nghiệm luôn cao hơn mẫu đối chứng. Cụ thể, hàm lượng protein của giống L24 ở giai đoạn 1 ngày tuổi chỉ đạt 16,51%, đến giai đoạn 5 ngày tuổi đạt 22,34%, tiếp tục tăng đến giai đoạn 7 ngày tuổi đạt 28,79% và giảm xuống chỉ còn 26,33% ở giai đoạn 9 ngày tuổi. Trong đó, giống L24 có hàm lượng protein cao nhất đạt 28,79% (tăng 43,31% so với ĐC), thấp nhất là giống L08 đạt 22,61% (tăng 39,48% so với ĐC) cùng ở giai đoạn 7 ngày tuổi. Điều này cũng phù hợp với kết quả mà chúng tôi thu được về sự biến động hoạt độ enzyme protease. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 30 0 5 10 15 20 25 30 35 1 3 5 7 9 Ngày H àm lƣ ợn g pr ot ein (% ) L24 L23 L08 LTB LCB LBK B¶ng 3.6. Hàm lượng protein tan của các giống nghiên cứu ở giai đoạn nảy mầm Giống Hàm lƣợng protein tan (%) 1 ngày 3 ngày 5 ngày 7 ngày 9 ngày L24 ĐC 13,280,26 14,040,16 16,080,19 20,090,17 19,070,42 TN 16,510,23 18,040,12 22,340,15 28,790,25 26,330,47 % so ĐC 124,32 128,49 138,93 143,31 138,07 L23 ĐC 12,340,12 13,370,46 15,820,25 19,620,11 18,710,16 TN 15,280,06 17,420,33 21,230,11 27,070,19 25,340,18 % so ĐC 123,82 130,29 134,19 137,97 135,44 L08 DC 11,250,09 11,480,09 13,420,15 16,210,24 15,530,23 TN 13,280,35 15,210,25 18,250,18 22,610,17 21,070,12 % so ĐC 122,67 132,49 135,89 139,48 135,67 LTB ĐC 10,400,04 12,620,29 14,220,31 18,050,10 18,600,17 TN 13,200,15 16,800,36 19,010,40 24,950,04 22,800,49 % so ĐC 126,92 133,12 133,68 138,22 122,58 LCB ĐC 12,600,15 14,010,21 16,200,31 19,520,28 18,900,28 TN 15,660,28 17,960,48 21,470,02 27,300,16 25,650,13 % so ĐC 124,28 127,92 132,53 139,86 135,71 LBK ĐC 11,280,18 13,140,25 15,120,37 19,500,37 19,200,25 TN 14,710,03 17,300,41 19,810,01 26,800,18 23,600,14 % so ĐC 130,41 131,65 131,02 137,40 122,91 Hình 3.4. Biến động hàm lượng protein của các giống lạc ở giai đoạn nảy mầm Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 31 Tuy vậy, khi xử lý hạn bằng dung dịch sorbitol 5% thì hàm lượng protein tan cũng chỉ đạt đến giới hạn nhất định tùy thuộc vào khả năng chịu hạn của giống. 3.2.1.6. Mối tƣơng quan giữa hoạt độ enzyme protease và hàm lƣợng protein của các giống lạc nghiên cứu ở giai đoạn hạt nảy mầm Phân tích mối tương quan giữa biến động hoạt độ enzyme protease với sự thay đổi hàm lượng protein trong hạt ở giai đoạn hạt nảy mầm cho thấy hàm lượng protein phụ thuộc tuyến tính vào hoạt độ enzyme protease. Hệ số tương quan giữa hàm lượng protein và hoạt độ enzyme protease, phương trình hồi quy của sự phụ thuộc đó được trình bày ở bảng 3.7 Kết quả ở bảng 3.7 cho thấy, hàm lượng protein phụ thuộc chặt chẽ vào hoạt độ của protease với hệ số tương quan dao động từ 0,81 đến 0,99. Hoạt độ của protease càng cao thì quá trình phân giải protein dự trữ càng lớn, cung cấp nguyên liệu cho quá trình nảy mầm của hạt cũng như điều chỉnh áp suất thẩm thấu của tế bào trong điều kiện cực đoan. Có thể xếp theo thứ tự giảm dần hoạt độ enzyme protease và hàm lượng protein tan giữa các giống như sau: L24> LCB> L23 > LBK> LTB> L08. Bảng 3.7. Tương quan giữa hoạt độ của protease và hàm lượng protein ở giai đoạn hạt nảy mầm Giống Phương trình hồi quy Hệ số tương quan (R) L24 Y = 30,93X- 4,18 0,99 L23 Y = 37,40X- 3,79 0,92 L08 Y= 19,90X+ 6,90 0,97 LTB Y=24,00X+ 5,63 0,92 LCB Y = 24,50X+ 5,04 0,81 LBK Y= 25,50X+ 4,52 0,93 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 32 3.2.1.7. Nhận xét về khả năng chịu hạn của các giống lạc trong điều kiện hạn sinh lý ở giai đoạn hạt nảy mầm (1) Ảnh hưởng của dung dịch sorbitol 5% đến các chỉ tiêu nghiên cứu của các giống lạc ở giai đoạn hạt nảy mầm có sự khác biệt và phụ thuộc vào khả năng chịu hạn của từng giống. Trong đó, ở tất cả các chỉ tiêu theo dõi giống L24 đều đạt mức cao nhất và thấp nhất là giống L08. Các mẫu thí nghiệm luôn cao hơn so với đối chứng. (2) Hàm lượng đường tan và hoạt độ enzyme  - amylase, hàm lượng protein tan và hoạt độ enzyme protease có mối tương quan thuận chặt chẽ. 3.2.2. Khả năng chịu hạn của các giống lạc L24 L23, L08, LTB, LCB, LBK ở giai đoạn cây non 3 lá bằng phƣơng pháp gây hạn nhân tạo 3.2.2.1. Đánh giá khả năng chịu hạn của các giống lạc ở giai đoạn cây non 3 lá Nghiên cứu khối lượng rễ, thân, lá ở giai đoạn cây còn non là cơ sở để đánh giá khả năng chống chịu của cây. Kết quả nghiên cứu về khối lượng tươi của rễ, của thân lá, khối lượng khô của rễ, của thân lá được trình bày trong bảng 3.8 và 3.9. Bảng 3.8. Khối lượng tươi, khô của rễ cây non 3 lá sau khi xử lý hạn Giống TGXL (ngày) Khối lượng rễ tươi (g) Khối lượng rễ khô (g) ĐC Xử lý hạn % so ĐC ĐC Xử lý hạn % so ĐC L24 3 0,58±0,02 0,52±0,04 89,66 0,106±0,001 0,078±0,003 70,00 5 0,61±0,01 0,25±0,03 40,98 0,113±0,003 0,054±0,001 45,45 7 0,68±0,01 0,12±0,02 17,65 0,132±0,002 0,035±0,001 23,08 L23 3 0,56±0,03 0,45±0,02 80,36 0,091±0,002 0,061±0,002 66,67 5 0,58±0,03 0,23±0,03 39,66 0,103±0,001 0,053±0,001 50,00 7 0,65±0,04 0,10±0,01 15,38 0,118±0,003 0,026±0,001 27,27 L08 3 0,45±0,02 0,39±0,02 86,67 0,063±0,001 0,051±0,001 71,43 5 0,56±0,01 0,15±0,01 26,79 0,091±0,002 0,030±0,001 33,33 7 0,61±0,01 0,06±0,01 9,83 0,102±0,001 0,021±0,001 20,00 LTB 3 0,44±0,03 0,39±0,03 88,64 0,074±0,001 0,061±0,002 85,71 5 0,57±0,02 0,17±0,03 29,83 0,082±0,001 0,043±0,001 50,00 7 0,63±0,01 0,08±0,01 12,70 0,100±0,012 0,022±0,001 30,00 LCB 3 0,58±0,01 0,50±0,02 86,20 0,097±0,002 0,072±0,004 77,77 5 0,65±0,02 0,27±0,01 41,54 0,108±0,004 0,063±0,001 60,00 7 0,71±0,01 0,12±0,01 16,90 0,131±0,001 0,030±0,013 23,07 LBK 3 0,50±0,02 0,40±0,02 80,00 0,072±0,001 0,060±0,002 85,71 5 0,55±0,03 0,20±0,04 36,36 0,091±0,006 0,051±0,014 55,55 7 0,61±0,01 0,10±0,07 16,39 0,112±0,004 0,020±0,006 27,27 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 33 Kết quả cho thấy, các giống lạc đều có sự khác nhau về các chỉ tiêu nghiên cứu. Trong đó giống L24 có các chỉ tiêu đạt giá trị cao nhất. Ở giai đoạn hạn 5 ngày trọng lượng rễ tươi giống L24 gấp 1,67 lần so với giống L08. Giống L24 và giống LCB có khối lượng khô của rễ lớn nhất đạt 0,03g ở giai đoạn 7 ngày hạn. Các giống L08, L23, LTB, LBK đều đạt 0,02 g. Qua các giai đoạn xử lý bởi hạn, ở tất cả các giống đều quan sát thấy trọng lượng rễ tươi và thân lá tươi, trọng lượng rễ khô, thân lá khô giảm đi nhanh chóng. Giống L24 ở thời điểm hạn 3 ngày có trọng lượng rễ tươi là 0,52g, sau hạn 7 ngày là 0,12g, trọng lượng thân lá tươi từ 4,46g (hạn 3 ngày) giảm xuống còn 2,46g (hạn 7 ngày). Trọng lượng rễ và thân lá tươi ở các giống nghiên cứu đều giảm so với đối chứng, ở 7 ngày hạn trọng lượng thân lá tươi giảm từ (44,61% - 53,18%), trọng lượng rễ giảm từ (82,55%-90,17%) so với đối chứng. Khối lượng của rễ và thân lá giảm đi nhanh chóng là do hiện tượng mất nước của cây qua các giai đoạn xử lý bởi hạn. Kết quả nghiên cứu của chúng tôi phù hợp với một số nghiên cứu trước đây trên lúa, lạc, ngô [23], [28], [29]. Bảng 3.9. Khối lượng tươi, khô của thân lá cây non 3 lá sau khi xử lý hạn Giống TGXL (ngày) Khối lượng thân lá tươi (g) Khối lượng thân lá khô (g) ĐC Xử lý hạn % so ĐC ĐC Xử lý hạn % so ĐC L24 3 4,84±0,04 4,46±0,01 92,15 0,65±0,01 0,46±0,02 95,91 5 4,86±0,10 3,05±0,01 62,76 0,78±0,02 0,32±0,03 41,03 7 4,92±0,11 2,46±0,02 50,00 0,82±0,03 0,31±0,01 40,80 L23 3 4,45±0,06 3,53±0,02 79,33 0,58±0,01 0,38±0,02 65,52 5 4,76±0,07 3,68±0,08 77,31 0,62±0,02 0,30±0,02 48,39 7 4,82±0,03 2,67±0,09 55,39 0,78±0,03 0,28±0,05 35,90 L08 3 3,25±0,06 2,23±0,07 68,62 0,48±0,03 0,32±0,01 66,67 5 3,96±0,05 2,18±0,14 55,05 0,60±0,02 0,26±0,03 43,33 7 4,28±0,01 2,12±0,02 49,53 0,64±0,01 0,23±0,01 35,94 LTB 3 3,29±0,12 2,41±0,10 73,25 0,50±0,01 0,33±0,02 66,00 5 3,86±0,10 2,18±0,05 56,48 0,58±0,02 0,28±0,03 48,28 7 4,25±0,03 1,99±0,04 46,82 0,64±0,02 0,24±0,01 37,50 LCB 3 4,53± 0,05 3,57±0,06 78,80 0,60±0,03 0,41±0,02 68,33 5 4,78±0,07 2,61±0,09 54,60 0,72±0,01 0,32±0,03 44,44 7 4,85±0,09 2,48±0,04 51,13 0,79±0,03 0,28±0,02 35,44 LBK 3 4,27±0,13 3,35±0,05 78,45 0,54±0,02 0,35±0,03 64,81 5 4,45±0,03 2,42±0,04 54,38 0,60±0,02 0,28±0,02 46,67 7 4,78±0,05 2,35±0,03 49,16 0,67±0,01 0,22±0,01 32,84 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 34 3.2.2.2. Ảnh hƣởng của hạn nhân tạo đến tỷ lệ cây sống , khả năng giữ nƣớc và chỉ số chịu hạn tƣơng đối của các giống lạc L24, L23, L08, LTB, LCB, LBK ở giai đoạn cây non Giai đoạn cây non là một trong các thời kỳ mẫn cảm của lạc đối với điều kiện khô hạn . Nhiều nghiên cứu thấy rằng , khi bị hạn lượng nước trong tế bào giảm gây tổn thương cho cây . Ở các giống khác nhau sẽ có phản ứng khác nhau để làm giảm hoặc tránh gây tổn thương cho cây . Do đó chún g tôi đã khảo sát khả năng chịu hạn của các giống lạc trong điều kiện gây hạn nhân tạo thông qua theo dõi một số chỉ tiêu v ề khả năng sống, khả năng giữ nước và chỉ số chịu hạn tương đối của các giống lạc L24, LCB, L23, LBK, LTB, L08. Kết quả được trình bày ở bảng 3.10 và hình 3.5. Theo dõi thí nghiệm cho thấy, ở 3 ngày sau khi bị xử lý hạn đã bắt đầu ảnh hưởng tới cây lạc 3 lá nhưng mức độ thấp, một số lá b ắt đầu héo . Sau 5 và 7 ngày xử lý hạn, mức độ ảnh hưởng đã tăng lên rõ rệt. Đặc biệt, sau 7 ngày hạn tất._. ADN được nhân lên trong khi đó các mẫu còn lại không xuất hiện. Hình 3.13: Hình ảnh điện di sản phẩm PCR-RAPD của 6 mẫu lạc với mồi DTN15 và DTN19 M-Marker 1kb; 1.LCB; 2. D2; 3. D18; 4. D21; 5. D67; 6. D121 (←: xuất hiện; →: không xuất hiện) Mồi USP31: Trên phạm vi vùng phân tích thu được 49 phân đoạn ADN với kích thước dao động trong khoảng 300bp-1500bp. Ba dòng D18, D21và D67 cho số phân đoạn lớn nhất (9 phân đoạn), ở kích thước khoảng 1500bp, giống LCB, D2, D121 không xuất hiện phân đoạn ADN và ở kích thước khoảng 1000bp, hai mẫu LCB và D2 cũng không xuất hiện phân đoạn ADN. Các phân đoạn còn lại đều xuất hiện ở tất cả các mẫu. Mồi UPH04: Tổng số có 8 phân đoạn ADN xuất hiện, trong đó có 2 phân đoạn cho tính đa hình. Kích thước các phân đoạn được nhân bản dao động từ 300bp-1800bp. Các dòng D18, D21, D67 và D121 xuất hiện các phân đoạn ADN với kích thước 1500bp và 1800bp. M 1 2 3 4 5 6 1 2 3 4 5 6 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 56 Hình 3.14: Hình ảnh điện di sản phẩm PCR-RAPD của 6 mẫu lạc với mồi USP31và UPH04 M-Marker 1kb; 1.LCB; 2. D2; 3. D18; 4. D21; 5. D67; 6. D121 (←: xuất hiện; →: không xuất hiện) Sự xuất hiện hay biến mất các phân đoạn ADN chứng tỏ các dòng lạc có nguồn gốc từ mô sẹo chịu mất nước đã có sự thay đổi ở mức độ gen. 3.4.2.2. So sánh sự khác nhau của các dòng chọn lọc so với giống gốc ở mức độ phân tử Các số liệu số phân tích PCR-RAPD được xử lý và phân tích trong chương trình NTSYSpc version 2.0 nhằm tìm ra khoảng cách di truyền giữa các mẫu lạc nghiên cứu thông qua hệ số tương đồng di truyền và biểu đồ hình cây. Để kiểm tra phương pháp phân nhóm, chúng tôi đã tiến hành xác định giá trị tương quan kiểu hình theo ba phương pháp tính hệ số di truyền (phương pháp của Jaccard, của Nei & Li, của Sokal) với bốn kiểu phân nhóm (WPGMA, UPGMA, liên kết hoàn toàn và liên kết đơn lẻ). Biểu đồ hình cây được thiết lập dựa trên giá trị tương quan cao nhất với các giá trị khi r  0,9: tương quan rất chặt, r = 0,8 - 0,9: tương quan chặt, r = 0,7 - 0,8: tương quan tương đối chặt, r  0,7: tương quan không chặt. M 1 2 3 4 5 6 1 2 3 4 5 6 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 57 Bảng 3.22. Giá trị tương quan kiểu hình (r) theo 3 cách tính về hệ số tương đồng Phương pháp Kiểu phân nhóm UPGMA WPGMA Liên kết hoàn toàn Liên kết đơn lẻ SM 0,98848 0,98844 0,98801 0,98828 Dice 0,98689 0,98686 0,98646 0,98669 Jaccard 0,98860 0,98856 0,98809 0,98838 Bảng 3.22 cho thấy, với ba cách tính hệ số di truyền giống nhau và bốn kiểu phân nhóm đều phản ánh mối tương quan kiểu hình của 6 mẫu lạc là rất chặt (hệ số r đạt từ 0.98646 tới 0.98860). Trong đó giá trị tương quan kiểu hình (r) lớn nhất 0.98860 khi tính theo hệ số di truyền Jaccard và kiểu phân nhóm UPGMA. Vì vậy, sơ đồ hình cây được thiết lập theo hệ số di tryền giống nhau Jaccard và kiểu phân nhóm UPGMA. Kết quả bảng 3.23 cho thấy, hệ số sai khác di truyền của 5 dòng tạo được so với giống gốc từ 0,0318 - 0,2055. Dòng D2 có độ sai khác thấp nhất so với giống gốc (0,0318), dòng D18 có sự sai khác lớn nhất so với giống gốc (0,2055). Như vậy, cả 5 dòng cây mới tạo được đã thể hiện mức độ sai khác về sự tương đồng so với giống gốc tuy không lớn. So sánh hệ số sai khác di truyền giữa các dòng cho thấy, sự khác biệt lớn nhất tìm thấy ở dòng D2 và D121, hai dòng D21 và D67 không có sự sai khác. Như vậy, trong 6 mẫu lạc nghiên cứu đã có sự phân tách giữa các dòng mới tạo được và giống gốc đồng thời giữa các dòng mới tạo được cũng có sự khác biệt nhất định. Bảng 3.23. Hệ số sai khác di truyền của các dòng và giống gốc Giống LCB D2 D18 D21 D67 D121 LCB 0,0000 D2 0,0318 0,0000 D18 0,2055 0,1831 0,0000 D21 0,1644 0,1918 0,0423 0,0000 D67 0,1644 0,1918 0,0423 0,0000 0,0000 D121 0,1781 0,2056 0,0564 0,0417 0,0417 0,0000 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 58 Hình 3.15 cho thấy mức độ sai khác giữa các dòng và giống gốc. Các dòng và giống có hệ số tương đồng di truyền gần nhau được xếp vào một nhóm, sự liên hệ giữa các nhóm cũng được thể hiện. - Nhánh 1: Bao gồm giống gốc LCB và dòng D2, có sự sai khác so với 4 dòng còn lại là 19% (1- 0,81). - Nhánh 2: Bao gồm 4 dòng D18, D21, D67 và D121, được chia thành 2 nhóm phụ: nhóm phụ 1 chỉ có dòng D18, nhóm phụ 2 gồm các dòng D21, D67, D121. Trong đó hai dòng D21 và D67 không có sự khác biệt về mặt di truyền khi phân tích với 10 mồi ngẫu nhiên, hai dòng này có sự tương đồng với dòng D121 là 0,9583 và dòng D18 là 0,9577. Tuy nhiên để có thể kết luận hai dòng mới trên có giống nhau hoàn toàn hay không thì nên sử dụng nhiều mồi để phân tích tiếp theo. Hình 3.15. Sơ đồ hình cây thể hiện mối quan hệ di truyền giữa các dòng chọn lọc và giống gốc A. LCB gốc; A-1. D2; A-2. D18; A-3. D21; A-4. D67; A-5. D121 Như vậy, mặc dù chỉ sử dụng 10 mồi ngẫu nhiên để phân tích nhưng cũng chỉ ra sự đa dạng di truyền của cả 5 dòng lạc so với giống gốc . Sự đa hình các sản phẩm của RAPD là kết quả của sự thay đổi các điểm gắn của primer (ví dụ: đột biến điểm) hoặc do sự thay đổi nhiễm sắc thể trong các vùng được nhân bản sẽ gây ra sự thay đổi về kích thước hay ngăn cản sự nhân bản của ADN mẫu. Do đó các đa hình thường được nhận ra do Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 59 sự có mặt hay vắng mặt của một sản phẩm nhân bản từ một locus [48]. Các nghiên cứu gần đây cho thấy RAPD là một phương pháp hiệu quả trong việc phân tích nguồn gốc các loài, xác định các đặc tính của cây có nguồn gốc từ nuôi cấy mô tế bào [10], [47]. 3.4.3. Nhận xét về sự đa hình ADN của một số dòng lạc có nguồn gốc từ mô sẹo chịu mất nƣớc (1) Phân tích tính đa hình của 6 mẫu lạc với 10 mồi ngẫu nhiên thì có 6/10 cho tính đa hình. Trong đó mồi DTN19 cho tính đa hình cao nhất với giá trị PIC=0,55; các mồi còn lại giá trị PIC<0,5. (2) Hệ số sai khác di truyền giữa các dòng chịu mất nước so với giống gốc LCB từ 0,0318 - 0,2055. So sánh hệ số sai khác di truyền giữa các dòng cho thấy, sự khác biệt lớn nhất tìm thấy ở dòng D2 và D121. (3) Biểu đồ hình cây và hệ số tương đồng di truyền của 6 mẫu lạc nghiên cứu được xếp thành 2 nhánh chính: - Nhánh 1: gồm giống gốc LCB và dòng D2. - Nhánh 2: gồm 2 nhóm phụ (nhóm phụ 1: dòng D18; nhóm phụ 2: Dòng D21, D67, D121). Những kết quả này chứng tỏ các dòng tạo ra từ mô sẹo chịu mất nước của giống lạc địa phương Cao Bằng đã có những thay đổi ở mức phân tử trong bộ gen. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 60 KẾT LUẬN VÀ ĐỀ NGHỊ 1. Kết luận 1. Khả năng chịu hạn của 6 giống lạc ở giai đoạn hạt nảy mầm, giai đoạn cây non 3 lá và ở mức độ mô sẹo được sắp xếp theo thứ tự sau: L24> LCB> L23 > LBK> LTB >L08. 2. Ngưỡng chọn dòng chịu hạn của các giống lạc phụ thuộc vào khả năng chịu mất nước của mô sẹo từng giống. Đối với các giống LBK, LCB, L23 là 9 thổi khô và giống LTB, L08 là 6h thổi khô. Đã tiến hành sàng lọc được 159 dòng mô và 315 dòng cây xanh có khả năng chịu hạn. 3. Quần thể R0 có mức độ biến động cao ở nhiều tính trạng nông học, cho phép lựa chọn được những dòng có tính trạng mong muốn. 4. Sử dụng kỹ thuật RAPD với 10 mồi ngẫu nhiên để so sánh hệ gen của một số dòng R1 có nguồn gốc từ giống LCB cho thấy: (a) Có 6/10 cho tính đa hình (b) Hệ số sai khác di truyền giữa các dòng chịu mất nước so với giống gốc LCB từ 0,0318 - 0,2055. Điều đó khẳng định các dòng có nguồn gốc từ mô sẹo chịu mất nước có sự thay đổi trong ADN genome. 2. Đề nghị Tiếp tục theo dõi, phân tích các dòng của các giống lạc L24, LCB, L23, LBK, LTB, L08 ở các thế hệ tiếp theo về các đặc điểm nông học, hóa sinh, khả năng chịu hạn... để chọn ra các dòng triển vọng có khả năng chịu hạn cao. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 61 CÔNG TRÌNH ĐÃ CÔNG BỐ 1. Nguyễn Thu Giang, Nguyễn Thị Tâm, Chu Hoàng Mậu (2008), "Đặc điểm phản ứng của các giống lạc L24, LCB, L23, LBK, LTB,L08 trong điều kiện hạn sinh lý ở giai đoạn hạt nảy mầm", Tạp chí Khoa học và Công nghệ, Số 2(46), tr. 97- 104. 2. Nguyễn Thu Giang, Nguyễn Thị Tâm, Chu Hoàng Mậu (2008), "Sự biến động hàm lượng proline Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 62 TÀI LIỆU THAM KHẢO 1. Lê Trần Bình, Lê Thị Muội (1998), Phân lập gen và chọn dòng chống chịu ngoại cảnh bất lợi ở cây lúa, Nxb Đại học Quốc gia, Hà Nội. 2. Lê Trần Bình, Lê Thị Muội, Hồ Hữu Nhị (1997), Công nghệ sinh học thực vật trong cải tiến giống cây trồng, Nxb Nông nghiệp, Hà Nội. 3. Phạm Thị Trân Châu, Nguyễn Thị Hiền, Phùng Gia Tường (1998), Thực hành hóa sinh học, Nxb Giáo dục, tr. 3 - 27. 4. Phạm Thị Trân Châu, Trần Thị Áng (1999), Hóa sinh học, NXB Giáo dục, tr.14 - 77. 5. Nguyễn Khoa Chi (1987), Cây đậu phộng, Nxb Thành phố Hồ Chí Minh, tr. 4 - 59 6. Nguyễn Hữu Cường, Nguyễn Thị Kim Anh, Đinh Thị Phòng, Lê Thị Muội, Lê Trần Bình (2003), " Mối tương quan giữa hàm lượng proline và tính chống chịu ở cây lúa", Tạp chí Công nghệ sinh học 1 (1), tr. 85 - 95. 7. Nguyễn Lân Dũng (1979), Một số phương pháp nghiên cứu vi sinh vật học, tập 3, Nxb Hà Nội, tr. 116 - 120. 8. Ngô Thế Dân, Nguyễn Xuân Hồng, Đỗ Thị Dung, Nguyễn Thị Chinh, Trần Đình Long, Nguyễn Thị Đào, Phạm Văn Toản, Gowda C. L. (2000), Kỹ thuật đạt năng suất lạc cao ở Việt Nam, Nxb Nông nghiệp, Hà Nội, tr. 2 - 138. 9. Lê Song Dự, Nguyễn Thế Côn (1979), Giáo trình cây lạc, Nxb Nông nghiệp, Hà Nội, tr. 7 - 44. 10. Lê Xuân Đắc, Đinh Thị Phòng, Lê Thị Muội, Lê Trần Bình (1999). "Sử dụng kỹ thuật RAPD để đánh giá tính đa hình ADN của một số dòng chọn lọc từ mô sẹo của giống lúa C71". Hội nghị Công nghệ Sinh học toàn quốc, Nxb Khoa học và Kỹ thuật, Hà Nội, tr. 1341-1347. 11. Trần Văn Điền (1990), Giáo trình cây lạc, Trường Đại học Nông nghiệp , Nxb Nông Nghiệp, Hà Nội, tr. 6 - 81. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 63 12. Nguyễn Danh Đông, Ngô Ngọc Đăng, Nguyễn Thế Côn, Dương Văn Nghĩa, Lê Quang Hanh, Ngô Đức Dương (1984), Cây lạc, Nxb Hà Nội, tr. 3 - 239. 13. Trần Kim Đồng, Nguyễn Quang Phổ, Lê Thị Hoa (1991), Giáo trình sinh lý cây trồng, Nxb Giáo dục. 14. Điêu Thị Mai Hoa, Trần Thị Thanh Huyền (2007), "Sự biến đổi hàm lượng amino acid proline ở rễ và lá đậu xanh dưới tác động của tress muối NaCl", Báo cáo khoa học hội nghị toàn quốc, Nxb KH&KT, tr. 482-485. 15. Nguyễn Xuân Hồng, Đỗ Thị Dung, Nguyễn Thị Chính, Vũ Thị Đào, Phạm Toàn Thắng, Trần Đình Long (2000), Kỹ thuật đạt năng suất lạc cao, Nxb Nông nghiệp, Hà Nội. 16. Trần Văn Lài (1991), Yếu tố sinh học hạn chế sản xuất lạc ở Việt Nam, tiến bộ kỹ thuật về trồng lạc và đậu đỗ ở Việt Nam, Nxb Nông nghiệp, Hà Nội. 17. Ngô Thị Liêm, Chu Hoàng Mậu (2006), "Đặc điểm phản ứng các giống lạc trong điều kiện hạn sinh lý", Tạp chí Nông nghiệp và PTNT, (84), tr 82-87. 18. Trần Thị Phương Liên (1999), Nghiên cứu đặc tính hóa sinh và sinh học phân tử của một số giống đậu tương có khả năng chịu nóng, chịu hạn ở Việt Nam, Luận án Tiến sĩ Sinh học, Hà Nội, tr. 18 - 36. 19. Trần Thị Phương Liên, Nông Văn Hải (2005), "Protein dự trữ và protease hạt cây trồng", Tạp chí Công nghệ Sinh học, 3(4), tr. 37 -45. 20. Trần Thị Phương Liên, Lê Thị Muội (2004), Nghiên cứu thành phần đường tan trong chọn giống ở đậu tương, Báo cáo khoa học - Những vấn đề nghiên cứu cơ bản trong khoa học sự sống, Nxb Khoa học & Kỹ thuật, tr. 473 -475. 21. Lê Đình Lương, Quyền Đình Thi (2002), Kỹ thuật di truyền và ứng dụng, Nxb Đại học Quốc Gia, Hà Nội. 22. Nguyễn Hoàng Lộc, H. T. T Ngọc, Lê Trần Bình, Lê Thị Muội (1992), "Nghiên cứu khả năng chịu mất nước ở mô sẹo thuốc lá nuôi cấy in Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 64 vi tro", Tạp chí sinh học, (14), tr. 31- 37. 23. Nguyễn Văn Mã, Cao Bá Cường, Nguyễn Thị Thanh Hải (2005), Một số chỉ tiêu sinh lý của giống lạc chịu hạn, Những vấn đề nghiên cứu cơ bản trong khoa học sự sống, Nxb Khoa học & Kỹ thuật, tr. 504 - 507. 24. Chu Hoàng Mậu, Ngô Thị Liêm, Nguyễn Thị Tâm (2006), "Đánh giá khả năng chịu hạn của một số giống lạc bằng kỹ thuật nuôi cấy in vitro", Hội nghị Khoa học và Công nghệ Toàn quốc 2006, Nxb KH&KT, tr. 202 -209. 25. Chu Hoàng Mậu, Nguyễn Thị Vân Anh (2005), "Khảo sát chất lượng hạt và khả năng chịu hạn của một số giống lúa cạn địa phương ở vùng núi phía Bắc", Tạp chí Nông nghiệp và PTNT, (17), tr. 19 -23. 26. Nguyễn Văn Mùi (2001), Thực hành hóa sinh học, NXB Đại học Quốc Gia, Hà Nội, tr. 86 - 127 27. Nguyễn Thị Thu Ngà, Nguyễn Thị Tâm (2007), "Ảnh hưởng của hạn sinh lý đến một số chỉ tiêu sinh hóa ở giai đoạn nảy mầm của một số giống lạc", Tạp chí Nông nghiệp và PTNT, (6), tr. 34 - 39. 28. Nguyễn Thị Thu Ngà, Nguyễn Thị Tâm (2007), "Đánh giá khả năng chịu hạn ở mức độ mô sẹo và giai đoạn cây non của các giống lạc", Báo cáo khoa học tại hội nghị toàn quốc 2007 - Những vấn đề nghiên cứu cơ bản trong khoa học sự sống, Nxb KH&KT, tr. 805 - 808 29. Phạm Thị Thanh Nhàn, Chu Hoàng Mậu, Nguyễn Thị Tâm (2007), "Một số đặc trưng chịu hạn của một số giống ngô nếp (Zea may L.) địa phương ở giai đoạn mô và cây non", Báo cáo khoa học tại hội nghị toàn quốc 2007 - Những vấn đề nghiên cứu cơ bản trong khoa học sự sống, Nxb KH&KT, tr. 784 - 787. 30. Đinh Thị Phòng, Nguyễn Văn Tĩnh, Lê Trần Bình, Lê Thị Muội (1998), "Kết quả chọn tạo và triển khai sản xuất hai giống lúa mới DR1 và DR2 bằng công nghệ tế bào thực vật", Tạp chí Khoa học và Công nghệ, (36), tr. 1- 9. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 65 31. Đinh Thị Phòng (2001), Nghiên cứu khả năng chịu hạn và chọn dòng chịu hạn ở lúa bằng công nghệ tế bào thực vật, Luận án Tiến sĩ Sinh học, Viện Công nghệ Sinh học, Hà Nội. 32. Nguyễn Vũ Thanh Thanh (2003), Nghiên cứu thành phần hóa sinh hạt và tính đa dạng di truyền của một số giống đậu xanh có khả năng chịu hạn khác nhau, Luận văn thạc sĩ Sinh học, Trường Đại học Sư phạm- Đại học Thái Nguyên, tr. 48 - 67. 32. Nguyễn Thị Tâm (2004), Nghiên cứu khả năng chịu nóng và chọn dòng chịu nóng ở lúa bằng công nghệ tế bào thực vật", Luận án Tiến sĩ Sinh học, Viện Công nghệ Sinh học, Hà Nội. 34. Bùi Văn Thắng, Trần Văn Dương, Đinh Thị Phòng, Nguyễn Văn Thắng, Lê Thị Muội, Lê Trần Bình (2003), "Đánh giá tính đa dạng của một số dòng lạc trong tập đoàn chống chịu bệnh gỉ sắt bằng kỹ thuật RAPD", Báo cáo khoa học, Hội nghị Công nghệ Sinh học Toàn Quốc, Nxb KH&KT, Hà Nội, tr. 805-809. 35. Bùi Thị Thu Thủy, Nguyễn Thị Tâm, Nguyễn Mạnh Quỳnh (2006), "Ảnh hưởng của hạn sinh lý đến một số chỉ tiêu hóa sinh ở hạt nảy mầm của một số giống lúa", Tạp chí Nông nghiệp và PTNT, 12(2), tr. 29 - 33. 36. Bùi Thị Thu Thủy, Nguyễn Thị Tâm (2006), "Tạo vật liệu khởi đầu cho chọn dòng chịu hạn ở một số giống lúa bằng công nghệ tế bào thực vật", Tạp chí Nông nghiệp và PTNT, (17), tr. 29 - 32. 37. Bùi Thị Thu Thủy, Nguyễn Thị Tâm (2006), "Đánh giá sự đa hình ADN của một số dòng lúa có nguồn gốc từ mô sẹo thổi khô giống U17", Tạp chí Khoa học và Công nghệ, Đại học Thái Nguyên, 39, tr. 65 - 71 38. Chu Thị Thơm, Phan Thị Lài, Nguyễn Văn Tó (2006), Kỹ thuật trồng và chăm sóc cây lạc, Nxb Lao Động, Hà Nội, tr. 2 - 86. 39. Nguyễn Hải Tuất, Ngô Kim Khôi (1996), Xử lý thống kê kết quả nghiên cứu thực nghiệm trong nông, lâm, ngư nghiệp trên máy vi tính, Nxb Nông nghiệp, Hà Nội. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 66 40. Nguyễn Tường Vân, Lê Trần Bình, Lê Thị Muội (1994), Chọn dòng chịu muối ở lúa bằng công nghệ nuôi cấy tế bào thực vật, Kỷ yếu viện CNSH, Nxb KH&KT, Hà Nội, tr. 19 - 27. 41. Nguyễn Văn Vinh, Lê Duy Thành, Lê Trần Bình, Lê Thị Muội (1995), "Nghiên cứu khả năng chịu nhôm và acid của các giống lúa DDC3,CM10, Pokaly, Cườm, Chiêm Bầu, C202, NN8, OM861-20, OM296 và Tép lai", Tạp chí Di truyền học và ứng dụng, (4), tr. 23 - 26. 42. Vũ Văn Vụ, Vũ Thanh Tâm, Hoàng Minh Tấn (1997), Sinh lý học thực vật, Nxb Giáo dục, Hà Nội, tr. 125 - 224. Tiếng nƣớc ngoài 43. Adkind S. W., Kunanuvatchaidach R., Godwin I. D., 1995. Somaclonal variation in rice- drought tolerant and other agronomic characters. Australia journal of Botany, 4 (2), tr.201-209. 44. Bates L.S., (1973), Rapid determination of free protein for water-stress studies, Plant and Soil, 39, pp.205-207. 45. Delauney A., Verma DPS., (1993), Proline biosynthesis and osmoregulation in plan, Plant J, 4, pp. 215 – 223. 46. Doyle J.J and J.L. Doyle, 1987. Phytochemistry Bulletin, pp. 11-15. 47. Dinh Thi Phong, Le Thi Muoi, Le Tran Binh (2001), RAPD variability in rice (Oryza sativa L.) plants derived from desisccation-tolerance calli, Euphytica 00, pp.1-7. 48. Foolad M. R., Siva A., and Rodriguer L. R, (1995). Application of polymerase chain reaction (PCR) to plant genome analysis. In: Plant Cell, Tissue and Organ Culture. Fundamental methods. Springer Verlag, Berlin, Heideberg, p. 281-298. 49. Hu ACA., Delauney AJ., Verma DPS. (1992), A bifunctional enzyme (P5CS) catalyses the first two steps in proline biosynthesis in plants, Proc Natl Acad Sci USA, 83, pp. 1203 – 1207. 50. Raina SN V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001), "RAPD and ISSR figerprints as useful genetic markers for analysis of Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 67 genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea L.) cultirs and wild species" Genome, 44(5), 763- 772. 51. Zheng K L., Zhou Z. M., Wang G. L., Lou Y. K., Xiong Z. M., (1989). Somatic cell culture of rice cultivars with difference grain types: Somaclonal variation in some grain quality characters. Plant cell, tissue and organ culture 18: 201 - 208. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 68 LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả nghiên cứu trong luận văn là trung thực và chưa được ai công bố. Tác giả Nguyễn Thu Giang Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 69 LỜI CẢM ƠN Tôi xin bày tỏ lòng biết ơn sâu sắc tới TS. Nguyễn Thị Tâm đã tận tình hướng dẫn, chỉ bảo và tạo mọi điều kiện giúp đỡ tôi hoàn thành công trình nghiên cứu này. Tôi xin chân thành cảm ơn PGS. TS Chu Hoàng Mậu - Đại học Thái Nguyên, Ban lãnh đạo Trường Đại học Sư phạm - Đại học Thái Nguyên, Ban chủ nhiệm khoa Sinh - Kỹ thuật Nông nghiệp và các thầy cô giáo, cán bộ của Khoa, sự giúp đỡ của Ths. Nguyễn Thị Thu Ngà, KTV Đào Thu Thủy (Phòng thí nghiệm Công nghệ Tế bào), CN Nguyễn Ích Chiến (Phòng thí nghiệm Di truyền học) và CN Nguyễn Thị Hồng Liên đã giúp đỡ tôi hoàn thành công trình nghiên cứu này. Tôi xin cảm ơn Trung tâm thực nghiệm đậu đỗ - Viện Khoa học Nông nghiệp Việt Nam, Sở Nông nghiệp và Phát triển Nông thôn các tỉnh Cao Bằng, Bắc Kạn, Thái Bình đã cung cấp các giống lạc có chất lượng cao làm vật liệu nghiên cứu cho đề tài luận văn này. Tôi xin chân thành cảm ơn Ban giám hiệu trường Đại học Y khoa Thái Nguyên, Bộ Môn Hóa Sinh - Khoa Khoa học cơ bản, gia đình, bạn bè cùng đồng nghiệp đã tạo điều kiện giúp đỡ, động viên và khích lệ tôi trong suốt quá trình học tập và hoàn thành luận văn. Tác giả luận văn Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 70 Trang MỞ ĐẦU........................................................................................................................................ 1 Chƣơng 1. Tổng quan tài liệu.................................................................................. 3 1.1. Giá trị kinh tế, đặc điểm nông sinh học và tình hình sản xuất lạc trên thế giới và ở Việt Nam................................................................................................................................................. 3 1.2.Tính chịu hạn ở thực vật.......................................................................................................... 5 1.3. Một số thành tựu nuôi cấy mô và tế bào thực vật vào việc đánh giá khả năng chịu hạn và chọn dòng biến dị soma…………………………...................................... 9 1.4. Kỹ thuật RAPD trong phân tích hệ gen thực vật…………………….......... 11 Chƣơng 2. Vật liệu và phƣơng pháp........................................................................................ 13 2.1. Vật liệu.................................................................................................... .............. 13 2.2.. Hóa chất, thiết bị và địa điểm nghiên cứu……………………………………… 13 2.3. Phương pháp nghiên cứu……………………………………………………...... 14 2.3.1. Phương pháp hóa sinh………………………………………............................. 14 2.3.2. Phương pháp sinh lý………………………………………............................... 17 2.3.3. Phương pháp nuôi cấy in vitro………………………………………................ 18 2.3.4. Phương pháp nghiên cứu trên đồng ruộng …………………………………... 20 2.3.5. Phương pháp sinh học phân tử ………………………………………………. 20 Chƣơng 3. Kết quả và thảo luận……………………………………….................... 22 3.1. Hàm lượng protein và lipit của các giống lạc nghiên cứu ……………................ 22 3.2. Khả năng chịu hạn của các giống lạc L24, LCB, L23, LBK, LTB, L08 …………… 23 3.2.1. Khả năng chịu hạn của các giống lạc L24, LCB, L23, LBK, LTB,L08 ở giai đoạn hạt nảy mầm………………………………………………………………………….. 23 3.2.2. Khả năng chịu hạn của các giống lạc L24, LCB, L23, LBK, LTB,L08 ở giai đoạn cây non 3 lá bằng phương pháp gây hạn nhân tạo..................................................................................... 32 3.2.3. Khả năng chịu hạn của các giống lạc L24, LCB, L23, LBK, LTB,L08 ở giai đoạn mô sẹo............................................ 39 3.2.4. Phân nhóm các giống lạc nghiên cứu dựa trên sự phản ứng ở giai đoạn mô sẹo, giai đoạn hạt nảy mầm và giai đoạn cây non…………………………………………………. 43 3.3. Tạo vật liệu khởi đầu cho chọn dòng chịu hạn ở các giống lạc bằng kỹ thuật nuôi cấy in vitro........................................................................................................ 45 3.3.1 Kết quả sàng lọc dòng tế bào chịu hạn bằng kỹ thuật thổi khô, tái sinh cây và tạo cây hoàn chỉnh........................................................................................................ 45 3.3.2. Phân tích mức độ biến động di truyền một số đặc điểm nông học quần thể R0 ............................................................................................................................. ......... 45 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 71 3.3.3. Nhận xét về chọn dòng tế bào chịu mất nước và đặc điểm nông học quần thể R0 ................................................................................................................................ 50 3.4. Đánh giá sự thay đổi ADN genome của một số dòng lạc có nguồn gốc từ mô sẹo chịu mất nước......................................................................................................... 51 3.4.1. Kết quả tách chiết ADN tổng số 51 3.4.2. Phân tích đa hình ADN bằng kỹ thuật RAPD 52 3.4.3. Nhận xét về sự đa hình ADN của một số dòng lạc có nguồn gốc từ mô sẹo chịu mất nước 58 KẾT LUẬN VÀ ĐỀ NGHỊ.................................................................................................... 60 CÔNG TRÌNH ĐÃ CÔNG BỐ............................................................................................... 61 TÀI LIỆU THAM KHẢO........................................................................................................ 62 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 72 DANH MỤC CÁC BẢNG Trang Bảng 2.1. Trình tự các nucleotit của 10 mồi RAPD sử dụng trong nghiên cứu......... 21 Bảng 3.1. Hàm lượng protein, lipit của các giống lạc nghiên cứu ......................... 22 Bảng 3.2. Hoạt độ của  - amylase trong giai đoạn hạt nảy mầm khi xử lý bởi sorbitol 5%................................................................................................ 24 Bảng 3.3. Hàm lượng đường tan của các giống nghiên cứu ở giai đoạn nảy mầm.... 26 Bảng 3.4. Tương quan giữa hoạt độ của  - amylase và hàm lượng đường ở giai đoạn hạt nảy mầm................................................................................................ 27 Bảng 3.5. Hoạt độ của protease trong các giai đoạn hạt nảy mầm khi xử lý sorbitol 5%.............................................................................................................. 28 Bảng 3.6. Hàm lượng protein tan của các giống nghiên cứu ở giai đoạn nảy mầm... 30 Bảng 3.7. Tương quan giữa hoạt độ của enzyme protease và hàm lượng protein ở giai đoạn hạt nảy mầm.............................................................................. 31 Bảng 3.8. Khối lượng tươi, khô của rễ cây non 3 lá sau khi xử lý hạn ....................... 32 Bảng 3.9. Khối lượng tươi, khô của thân lá cây non 3 lá sau khi xử lý hạn ................ 33 Bảng 3.10. Tỷ lệ cây sống, khả năng giữ nước và chỉ số chịu hạn tương đối của 6 giống lạc ……………………..……………………………………………. 35 Bảng 3.11. Biến động hàm lượng proline ở thân và lá của các giống lạc trong đi ều kiện hạn nhân tạo ...................................................................................... 36 Bảng 3.12. Biến động hàm lượng proline ở rễ của các giống lạc trong đi ều kiện hạn nhân tạo ................................................................................................... 37 Bảng 3.13. Tương quan giữa hàm lượng proline và chỉ số chịu hạn............................ 38 Bảng 3.14. Độ mất nước của mô sẹo phôi lạc (%)...................................................... 40 Bảng 3.15. Tỷ lệ sống sót của mô sẹo sau xử lý mất nước (%)……………………… 41 Bảng 3.16. Khả năng tái sinh của mô sẹo sống sót sau xử lý thổi khô (%)................. 42 Bảng 3.17 Hệ số khác nhau về sự biểu hiện kiểu hình của các giống lạc…………... 44 Bảng 3.18. Mức độ biến động di truyền quần thể R0 giống lạc LCB ............................. 46 Bảng 3.19. Độ sạch và hàm lượng ADN của các mẫu lạc nghiên cứu .......................... 52 Bảng 3.20. Tổng số phân đoạn ADN được nhân bản của các mẫu lạc khi phân tích với 10 mồi ngẫu nhiên................................................................................ 53 Bảng 3.21. Phân tích đa hình về phân đoạn ADN được nhân bản với 10 mồi ngẫu nhiên.......................................................................................................... 54 Bảng 3.22. Giá trị tương quan kiểu hình (r) theo 3 cách tính về hệ số tương đồng..... 56 Bảng 3.23. Hệ số sai khác di truyền của các dòng và giống gốc.................................. 57 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 73 DANH MỤC CÁC HÌNH Trang Hình 3.1. Định tính hoạt độ  - amylase của giống L24 và LTB ở giai đoạn hạt nảy mầm 1, 3, 5, 7 ngày ............................................................... 25 Hình 3.2. Biến động hàm lượng đường tan của các giống ở giai đoạn nảy mầm ............................................................................................ 26 Hình 3.3. Định tính hoạt độ protease của giống L24 và LTB ở giai đoạn hạt nảy mầm ...................................................................................... 29 Hình 3.4 Biến động hàm lượng protein của các giống lạc ở giai đoạn nảy mầm….. 30 Hình 3.5. Đồ thị hình rada thể hiện khả năng chịu hạn của các giống lạc ở giai đoạn cây non.............................................................................. 35 Hình 3.6. Hàm lượng proline ở thân và lá trong điều kiện hạn nhân tạo.......... 36 Hình 3.7. Hàm lượng proline ở rễ của các giống lạc nghiên cứu trong điều kiện hạn nhân tạo............................................................................. 37 Hình 3.8. Độ mất nước của mô sẹo phôi lạc khi xử lý thổi khô (%) ............. 40 Hình 3.9. Tỷ lệ sống sót của mô sẹo sau khi xử lý thổi khô (%)…………… 42 Hình 3.10 Sơ đồ mô tả quan hệ giữa các giống lạc dựa trên sự biểu hiện kiểu hình của 72 tính trạng........................................................................ 44 Hình 3.11. Một số hình ảnh về biến dị quả của các dòng chọn lọc từ giống LBK .................................................................................................... 49 Hình 3.12. Một số hình ảnh các dòng tái sinh có nguồn gốc từ mô sẹo chịu mất nước giống LCB ngoài đồng ruộng.............................................. 50 Hình 3.13. Hình ảnh điện di sản phẩm PCR-RAPD của 6 mẫu lạc với mồi DTN15 và DTN19............................................................................ 55 Hình 3.14. Hình ảnh điện di sản phẩm PCR-RAPD của 6 mẫu lạc với mồi USP31và UPH04…………………………………………………. 55 Hình 3.15 Sơ đồ hình cây thể hiện mối quan hệ di truyền giữa các dòng chọn lọc và giống gốc................................................................................ 58 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 74 NHỮNG CHỮ VIẾT TẮT 2,4D 2,4-Dichlorphenoxyacetic acid ABA Axit abscisic ADN Axit deoxyribonucleic ASTT Áp suất thẩm thấu bp Base paire (Cặp bazo) BAP 6 – Benzyl Amino Purin Cs Cộng sự ĐVHĐ Đơn vị hoạt độ ĐVMS Đơn vị mô sẹo HSPL Hệ số pha loãng kb Kilobase LEA Late Embryogenesis Abundant Protein (Protein tổng hợp với số lượng lớn ở giai đoạn cuối của quá trình hình thành phôi) MS Murashige – Skoog NAA Naphthyl Acetic Acid PCR Polymerase Chain Reaction PIC Polymorphism Information Content PP Pellagra Preventive (Vitamin PP) RAPD Random Amplified Polymorphic DNA (Đa hình các phân đoạn ADN được nhân bản ngẫu nhiên) TAE Tris acetate EDTA TGXL Thời gian xử lý Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên 75 ._.

Các file đính kèm theo tài liệu này:

  • pdfLA9380.pdf
Tài liệu liên quan