CHUONG 3
CONG Ct)
Trongchu'dngnay,chungtoineumQts6b6d€ vacaeh~quacffnthie'tchovi~c
danhgiacaed~iIu'Qngsaunay.
3.1B6d~Carlemanvacaeh~qua
B6 d~3.1(Carleman)
Gill sa w =f(z) Zam(JtPBHBG hlnhvanhkhan0 <r <Izi<R <00 Zenm(Jt
mi~nnhi lienD khongchaadilm 00, wii bientrangC1vabienngoaiC2saDcho
Izi=R tUdnglingvdi C2.
GlJi S Zadifn tich (trong)cila tq.pmi'Jdo C2 baa blJc, s Zadifn tich (ngoai)
cilatq.pdongdo C1baablJc.
Khi do,taco
s~(~Js (3.1)
Beingthacxlly ra j(z) =az+b vdicachlin
11 trang |
Chia sẻ: huyen82 | Lượt xem: 1469 | Lượt tải: 2
Tóm tắt tài liệu Đánh giá các phép biến hình á bảo giác lên hình tròn bị cắt theo các cung tròn đồng tâm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
gsa a,b,a::/:O.
Chungminh:Xemchungminhtrong[4,tr.2I2],ho~c[11,tr.6]-
Tlib6d€ naytasuyrabah~quara'tquailtn;mgd6ivoiPBHBGmi€nnhilien:
H~ qua3.1(djnhnghiamodunmi@nbjlien)
I
I
I
I
I
Gillsami~nhilienD quacacPBHBGj va1; bienZenhaihlnhvanhkhan
H:r<I~<R,
HI :rI <IWII<RI.
11
fJH.J<H.TlrNt-HEN
TH-U \tIEN
001063
Khi d6
R _RJ---. (3.2)r rJ
Tys5naygQiZam6duncilami~n hilienD vadllf/CkYhi~uZamod(D).
Chungminh.
X6t haiPBHBG 101;-Jmi€n HJ leD H va 1;01-1mi€n H leD HJ' Tli b6 d€
3.I,tasuYfa
(~r~(~'r va (~rs(~l
Tlid"R Ro. -= !...-
r rJ
H~ qua3.2(Hnbbiltbie'ncuamodunmi~nnhilien)
Ne'umi~nnhilienA c6cacthankphdnbienkh6ngthaaih6athanhmiltdiim
dllf/Cbie'nbaagiacdandi~pZenmi~nhilienB thz
mod(A) =mod(B). (3.2.a)
Chungminh
GQi1 laPBHBGddndi~pmi€nA leDmi€nB.X6thaiPBHBGg mi€nA
leDhlnhvanhkhanA' : lj <Isl<RJ va h mi€n Bien hlnhvanhkhan
B' : rz<ItI <Rz.Tli h~qua3.1,tasuyfa
mod(A) =RJ va mod(B) =Rz.
lj rz
GQi cp=hot thl cpla PBHBG ddndi~pmi€n A' leDmi€n B'. Khi d6dob6d€
3.1,tac6:mod(A)= RI =Rz =mod(B) -
lj lj
H~ qua3.3(Hnbddndi~ucuamodunmi~nnbilien)
12
GiasacacmMnnhilienD vaDI vfJimoduntlldngangR va !!J...,cotinh
r rJ
chatD c DJ va D ngdncachhaithanhpht1nbiencuaDJ' Khido
R~RJ.
r 1j
(3.3)
DiingthucxayrakhivachikhiD ==DI'
Chungminh
Xet f laPBHBGdondi~pDI len hinh vanhkhan HI : 1j<Iwl<Rl' Khi do
mi€n nhi lien D (c D1)quaphepbienhinh f setrdthanhmi€n nhi lien H voi
bientrongCI (CJ baaquanhho~ctrimgduongtroll Iwl=1j)va bienngoaiCz
(duongtroll Iwl=RJ baaquanhho~ctriingCz).
GQiS ladi~ntich(trong)cuat~pmddoCzbaabQcvas Iadi~ntich(ngoai)
cuat~pdongdo CJ baabQc.
T ,R I' Ad ? H ' h b.:!d); 3 1aco - amo uncua vat eo 0 e .
r
~~(~)z.
M~tkhac,tacoba'td£ngthuchi~nnhien
s ~trR},s ~7rrJz.
Dodo
(~:r 2 ~2(:)'
Tit d6 c6 (3.3) vdi d£ng thlte xay fa (~,)'=~=(~r
Theob6d€ 3.1,CJ vaCzphaila duongtroll Iwl=1jvaIwi=RI' tucla D ==DJ8
13
? ,
Bo de 3.2 (mdrQngb6'd~3.1choPBHKABG bdiThao)
Gidsa w=j(z) Za mQtPBHKABG hinhvanhkhan0 <r <Izl<R <00 Zen
mQtmi~nnhilienD khongchaadiim oc>,vdibientrongC]vabienngoaiCzsaD
choIzi=R tudnglingvdi Cz.
Gri S Zadi~nrich trongcila ti7pmd do Cz baa brc, s Zadi~nrichngoai cila
t(ipdongdo C]baabrc.
Khi do,taco
s~(~)*s. (3.4)
Ddngthacxdyra ~ j(z) =a Izli--lz +b vdicachangso'a("*0)vab.
Chungminh: (Thao[14],tr.521)
R5 rangtantl,limQtPBHBG t=g(w)bie'nmi€n D leumQthlnhvanhkhan
1J< ItI <R] saocho Cz tu'dngungvdi du'ongtroll ItI =Rl' Ap d1;mgbe)d€ 3.1 cho
phepbie'nhlnhngu'<;lcg-], ta co
s~(~},
(3.5)
trongdod~ngthucKayra~ w=g-](t)=a/+bl' vdicaeh~ngs6 a]("*0) va b].
M~t khac phepbie'nhlnh h<;lpt =gf(z) Ia mQtPBHKABG hlnhvanhkhan
r <Izi<R leuhlnhv~lllhkhan1J<ItI<R].
£)~ - z - t hK - -(-) 1 gf( -) I' A PBHKABG b' Kl,lt z =-, t =-, ta t ay t =t z =- rz a mQt len
r 1J 1J
1<Iz/<R leu 1<ItI<R] , nentheo(2.2)va(2.6)taco:
r r]
1
~?
(
R
)
K,
r1 r
14
1trongdod~ngthucxayrat(z)=elzlTlz,lei=1,
hay
1
t =(gofXz)=e-t-lzIK-1z ,lei=1.
rK
Ke'thQpba"td~ngthucvuaneuvoi (3.5)taduQc(3.4)voi ke'tlu~nv€ kha
~ ? d:t h~ d~ 'ica1 b b .nangxayra angt lic trong 0 a =~, = I
rK
3.2CaehamphI}T{p,r,s)vaR{p,r,s)
Cachams6tht!c
1=T(p,r,s)
r =R(P,I,s)
(O~s<r<I),
(0~s <t <1),
pEN, duQCdinhnghlasaochohlnhvanhkhanr <Izi<1tudngdudngbaagiac
voihlnhvanhkhans <Iwl<1bi dt dQcp do;;tn(hlnh3.1)
F; ~ {ws ,; 11<1,; t,argw ~ j 2;}
(j=O,l,...,p-I).
z
G) 1 ~ 1
Hlnh3.1:PBHBG r <Izi<lIen s <I~<1bidt dQcp(=2) do~n.
Dotinhddndi~ucuamodunmiennhilien(xemh~qua3.3),tacocactinhcha"t
saucuahamT(p,r, s) va R(P, I, s):
r <T(p,r,s)<I (0~s <r <I), (3.6)
15
Nhocaec6ngthuccua[10,tr.295],[13,tr.l0l-l04], tatlmdu<jcbi~uthuccua
R(p,t,s) nhusau:
{
-ltK'(tP)
}R(p,t,O)=exp 2pK(tP)
(0<t <1,pEN), (3.14)
voi
I
K(k)=
J ~ dx , K'(k) ~ K(.JI- k'),(1- x2)(I- k2x2)0
vavoi 0 <s <t <1,pEN,
{
-ltK'(U)
}R(p,t,s) =exp 2pK(u) ,
(3.15)
voi U=1+h - .Jh(2+h), trongdo:
h =(1- k)(l- ak), k =4sPIT
[
1+<pj
]
4,
k(1+a) j=l 1+S4PJ-2p
a =sn(b+i 2~bIn~,k). b =K(k) ,
ddaysn(z,k) chisinelipticvoithams6 k.
Vi~ctinhtoaDK(tP) va K'(tP) ([13,tr.1l7],[19,tr.177]),cho
1
R(p,t,o)~ 4 P t khit~O (3.16)
16
T(p,r, s()>T(p,r,S2) (0 SI <S2<r <1), (3.7)
T(p,r(,s) <T(p,r2's) (0 s <lj <r2<1), (3.8)
T(p,r,s) <T(1,r,s) (0 s <r <1,P 2), (3.9)
s <R(p,t,s) <t (0 s <t <1), (3.10)
R(p,tl,s) <R(p,t2's) (0 S <tl <t2<1), (3.11)
R(p,t,sl)<R(P,t,S2) (0 SI<S2<t <1), (3.12)
R(p,t,s) >R(1,t,s) (0 s <t <l,p 2), (3.13)
va
2tr
l-R(p,t,O) ~ 8
2p In p(l- t)
khi t ~ 1. (3.17)
Nho [13,tr.l02-105],taclingchifabi€u thuccuaT(p,r, s) nhu'sau:
1
[
4
T(p,r,O)=4PrfI 1+ r4pj
]
p
j=l 1+r4pj-2p
(O<r<I,pEN), (3.18)
{
a
}
-tri dx
T rs =sex
(p, , ) P 2pK(k)1~(l-x')(l-k'x') ,
0 <s <r <1,pEN , v~iK(k) nhu'tfen,
(3.19)
1- m k(1- h)2 00
[
1+r4pj
]
4
a =- m= h =4rP
k +m' 2h(1-k) , D 1+r4pj-2p .
Tli bi€u thuccuaT(p,r,O)tad~dangtha"yding
1
T(p,r,O)<4Pr (0<r <I,pEN) . (3.20)
Vi v~y,nho(3.6)va(3.7)c6
1
r <T(p,r,s) <4Pr. (3.21)
Tli d6surfa
Vi v~ynho(3.10)va(3.12)c6
4 Pt <R(p,t,s) <t. (3.24)
Tli d6surfa
17
limT(p,r,s) =r (0 s <r <1). (3.22)
p-+oo
Mt khactU(3.20)c6
1--
R(p,t,O)>4 p t (0<t <I, pEN). (3.23)
lim R(p, I,s) = I
p-+oo
(0 ::;s < I < 1). (3.25)
Hannua,tanh~nduQctit(3.16)va(3.17)
T(p,r,O)~ 4P r (3.26)
khi r ~ 0, va
{
2
}
8 -1f
1- T(p,r,0)~ p exp 2p(1- r)
(3.27)
khi r ~ 1.
3.3 Caeb6d@khae
B6 d~3.3(mdrQngmQtba'tdiingthat GrotzschbdiThao)
GidsaD la hlnhvanhkhan R <Izi<1 Irit pn (p E N,n E N u {o})nhal cdl
nlimIren caeduiJngIron donglam 0 saDchoD Irung vdi chfnhno blJi phepquay
,27r
1-
Z = e P z, f la PBHKABG miin D len miin E nlim trong m(it phdng phac
0 <Iwl<1 saDcho duiJngtron Izi =R tUdngang bien trongC] gidi h(;mblJi mQt
t(ipdongchaa gdc tQadQ,duilngtron Izi =1 tUdngang bienngoai C2.Hdn nila,
,27r
1-
gid saE trungvdi chfnhnoblJi phepquayW = e P w.
Khi do
M, ,; T(p,R~,m,)
(3.28)
vdi
m1=min{lwllw E C1}
M1 =max {IwlIw E C1}
(~0),
vaT(p,r,s) lahamph{/-du(lcdinhnghiaIrongphdn3.2.
18
IDdng thuGxdy ra ~ fez) =fo(z)=ah(t), lal=1,t =blzlK-1z, Ibl=1, h za
I I
PBHBG hinhvimhkhanRK <ItI<1 Zenmi~nnhj lienP saDcho ItI=RK tUdng
ringvlii
c,~ {wiIWI= m,}u{wm, ,; 1»1'; M"argw ~ j 2; },
j =O,I,...,p-1 va ItI=1 tUdngringvlii Cz={wJlwI=I}.
Chungminh:Bfftd~ngthuc(3.28)vdiK =1vaC2 la duongtroll Iwl=1lamQt
d.;mgkhaccuabfftd~ngthucGrotzsch[6],tr. 372khongtrinhbaychungminh.
Ngo Thu Luong[11],tr.I8 dachungminhd mi bfftd~ngthuc(3.28)chotru'ong
hQpda lieUcua Grotzschva trlnhbayh;li[11,tr.33]stfma rQngcuaThao[14],
tr.63thanhb6d€ 3.3.
B6d~3.4
Gid saD ZahinhvanhkhanQ <Izl<R trit pn (p E N,n E N u {v})nhat
cdtndmtrencacduongtrimdangtam0 saDchoD trungvlii chinhnobaiphep
.2"
quayZ =e'f;z, f ZaPBHKABGmi~nD Zenmi~nE ndmtrongmijtphdngphac
0 <Iwl<00saDcho duilngtrim Izl=Q tUClngringbien trongC] gilii h~nmQtttJ-p
dongchaagoctQadQ,duilngtrim Izl=R tUdngringbienngoaiC2.Hdnnaa,gid
,z"1-
sit'E trungwJi chinhnobaiphepquayW =e P w.Khido
> mIl
]
mz - Q K ml
T[P.(R) 'M,
(3.29)
vlii
mj=min{lwllwECj}, j =12, ,
19
M2 =max{IWIIwE C2}
va T(p,r,s) Zahamph,!dl1(Jcdinhnghfatrongphdn3.2.
1
Dllng thac xdy ra <;:::)fez) =fo(z)=aH(t), lal=1,t =blz/K-lz, Ibl=1, H Za
1 1 1
PBHBG hlnh vanh khan QK < It1< RK Zenmiin nhi lien P' saD cho It1= RK tl1dng
ilng v{ti
c, ~{wll1<1~M,}u {w In, "11<1"M"argw ~j 2; }.
I
j=O,l,...,p-l va Itl=QK tl1angilngv{ti C] ={wllw1=m1}.
Chung minh: XemchUngminhtrong[20,tr.16],ho~c[11,tr.35]-
B6 d~3.5("D~oham"cuahamngu'fjcho PBHKABG)
V{ticac kY hi~udl1avao11m,!c2.3,gid sa w=fez) ZaPBHKABG cua miin
chaa z = 0 v{tif(O) =0 va m'(O,f) > O.Dt;itg =1-1, ta co:
1
m'(O,f) =M* (O,g)-K, (3.30)
1
M' (0,f) =m* (0,gfK . (3.31)
Chungminh:
LffyR >0 diibe,d~tCR={z:Izi=R}vac~=/(CR),r6rang
t6nt~iWI E C~va Zl E CR saocho
m(R,f) =Iwl! =!f(ZI)!=r (r>O).
D~tLr ={w:Iwl=r}vaL; =g(Lr)
Vi L; n~mtrongIzl:::;R, taco
M(r,g)=lg(WIX=lzJ/=R.
Dodo,tum'(O,/»O,taco
20
,
'
(0 f)
_ I' m(R,f) _ I' r _ I
'
[
M(r,g)
]
-K - M
*
(0 )
-~
m, -1m , -1m ,-1m K - ,gK,R~O - r~O
M( )
- r~O r
RK r,g K
Tu'dngtv,
U(y R >0 diibe,d~tCR={z: Izl=R} va c~=f(CR),rarang
t6ntC;liWzE C~va ZzE CR saocho
M(R,f)=lwzl=lf(zz~=r (r>O),
B~tLr ={w: Iwl=r} va L; =g (Lr)'
Vi Izi~R niimtrongL;, taco
m(r,g)=Ig(wz)1=Izzi=R,
Do do,taco
I
M '(Of) _ I' M(R,f) _ 1' r _ I
'
[
m(r,g)
]
-K - * (0 )-~., - 1m , - 1m , - 1m K - m ,g KR~O - r~O
( )
- r~O r
RK m r,g K
H~ qua3.4
Cho K=l, ta co m'(O,f)=If'(O~va M*(o,g)=lg'(o~,phl1angtrinh (3.30)triJ
thanh1f'(0~=Ig'(ofl,
._.