Thuật ngữ viết tắt
Viết tắt
Tiếng anh
Tiếng việt
3G
Third Generation
Thế hệ thứ ba
ADC
Analog- to- Disgital Converter
Bộ chuyển đổi tương tự sang số
AGC
Automatic Gain Control
Điều khiển độ lợi tự động
AWGN
Additive White Gaussian Noise
Tạp âm Gaussian trắng cộng
BER
Bit Error Rate
Tỉ số lỗi bít
BPM
Bi-Phase Modulation
Điều chế pha cơ hai
CATV
Cable Television or Community Antenna Television
Truyền hình cáp hay truyền hình anten cộng đồng
CE
Consummer Equipment
Thiết b
93 trang |
Chia sẻ: huyen82 | Lượt xem: 2562 | Lượt tải: 5
Tóm tắt tài liệu Công nghệ truyền thông UWB, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ị người dùng
CMOS
Complementary Metal-oxide-Semiconductor
Bán dẫn ôxít kim loại bổ xung
DS-CDMA
Direct Sequence-CDMA
Đa truy nhập phân chia theo mã - chuỗi trực tiếp
DSP
Digital Signal Processing
Xử lý tín hiệu số
DVD
Digital Video Disc, Digital Versatile Disc
DVD
EDGE
Enhanced Data Rates for GSM Evolution
Tốc độ số liệu tăng cường để phát triển GSM
FCC
Federal Communications Commission
Uỷ ban truyền thông liên bang
FDM
Frequency Division Multiplexing
Ghép kênh phân chia theo thời gian
FDMA
Frequency Division Multiple Access
Đa truy nhập phân chia theo tần số
FH
Frequency Hopping
Nhảy tần
FHSS
Frequency Hopping Spread Spectrum
Trải phổ dùng nhảy tần
GPRS
General Packet Radio Service
Dịch vụ vô tuyến gói chung
GPS
Global Positioning System
Hệ thống định vị toàn cầu
GSM
Global System for Mobile Communications
Hệ thống toàn cầu cho truyền thông di động
HDTV
High-Definition Television
Tivi có độ phân giải cao
IP
Internet Protocol
Giao thức Internet
ISI
InterSymbol Interference
Nhiễu giao thoa ký hiệu
LCD
Liquid Crystal Display
Màn hình tinh thể lỏng
LNA
Low Noise Amplifier
Bộ khuyếch đại tạp âm thấp
LOS
Line-of-Sight
Tầm nhìn thẳng
MAC
Medium Access Control
Điều khiển truy nhập phương tiện
MAI
Multiple Access Interference
Nhiễu đa truy nhập
MB-OFDM
Multiband-OFDM
Ghép kênh phân chia theo tần số trực giao - đa băng
MPEG
Moving Picture Experts Group
Nhóm các chuyên gia về ảnh động
OFDM
Orthogonal Frequency-Division Multiplexing
Ghép kênh phân chia theo tần số trực giao
OOK
On-Off Keying
Khoá On-Off
PAM
Pulse Amplitude Modulation
Điều chế biên độ xung
PAN
Personal Area Network
Mạng khu vực cá nhân
PDA
Personal Digital Assistants
Trợ giúp số cá nhân
PN
Pseudo Noise
Giả tạp âm
PPM
Pulse Position Modulation
Điều chế vị trí xung
PSD
Power Spectral Density
Mật độ phổ công suất
QoS
Quality of Service
Chất lượng dịch vụ
SNR
Signal- to - Noise Ratio
Tỉ số tín hiệu trên tạp âm
SS
Spread Spectrum
Trải phổ
STB
Set-Top Box
Hộp kết nối từ nguồn nội dung đến Tivi
SVGA
Super Video Graphics Array
Mảng đồ hoạ Video cấp cao
TDMA
Time Division Multiple Access
Đa truy nhập phân chia theo thời gian
TH
Time Hopping
Nhảy thời gian
THSS
Time Hopping Spread Spectrum
Trải phổ dùng nhảy thời gian
UMTS
Universal Mobile Telecommunications System
Hệ thống viễn thông di động toàn cầu
USB
Universal Serial Bus
Bus nối tiếp toàn cầu
UWB
Ultra WideBand
Băng tần siêu rộng
VGA
Video Graphics Array
Mảng đồ hoạ Video
WCDMA
Wideband Code Division Multiple Access
Đa truy nhập phân chia theo mã băng rộng
WLAN
Wireless Local Area Network
Mạng nội bộ không dây
WPAN
Wireless PAN
Mạng nội bộ cá nhân không dây
WUSB
Wireless USB
Bus nối tiếp toàn cầu vô tuyến
XVGA
eXtended Video Graphics Array
Mảng đồ hoạ Video mở rộng
Lời nói đầu
Ngày nay, công nghệ truyền thông vô tuyến đang phát triển với tốc độ rất nhanh trên toàn thế giới, và các lĩnh vực của nó cũng đang thay đổi mạnh mẽ do sự xuất hiện của các chuẩn mới từ sự phát triển nhanh chóng về các dịch vụ thông tin của Internet, như là: các ứng dụng đa phương tiện bao gồm: MP3, truyền dữ liệu băng thông rộng trong một số dịch vụ video đặc biệt. Một vài hệ thống vô tuyến đã tồn tại hoặc đang còn được phát triển (3G và WLAN) được thiết kế để hỗ trợ loại dịch vụ đa phương tiện này và truyền dẫn video chất lượng thấp. Nhu cầu truyền thông dữ liệu với tốc độ bít lớn hơn qua mạng vô tuyến đã xuất hiện, nó xuất phát từ việc sử dụng thiết bị điện tử trong nhà và ngoại vi máy tính sao cho tiện lợi nhất. Các công nghệ vô tuyến như Bluetooth, hồng ngoại,…, chưa đáp ứng được yêu cầu về tốc độ truyền dữ liệu của các ứng dụng video với tốc độ lớn. Công nghệ truyền thông UWB ra đời nhằm thoả mãn các yêu cầu về truyền dẫn dữ liệu với tốc độ lớn, do đó nó có thể tạo ra một bước đột biến trong lĩnh vực truyền thông với khoảng cách nhỏ bởi một loạt các ứng dụng thú vị đã được đề xuất. Ngoài ra, một lý do quan trọng làm xuất hiện công nghệ UWB là yêu cầu hoạt động với độ chính xác cao của các radar trong quân sự. Các xung UWB có những tính năng đặc biệt tốt cho những ứng dụng radar này. Xuất phát từ tính hấp dẫn này mà em quyết định chọn công nghệ UWB làm đối tượng nghiên cứu trong đồ án tốt nghiệp đại học của mình. Nhưng do sự hạn chế về thời gian, nên trọng tâm của đề tài là nghiên cứu khía cạnh ứng dụng công nghệ UWB trong lĩnh vực truyền thông, do vậy đồ án tốt nghiệp mà em chọn là:
“công nghệ truyền thông ultra wideband”
Nội dung của đề tài tập chung vào các vấn đề cơ bản được phân ra thành từng chương với những nội dung chính như sau:
Chương 1: Tổng quan về công nghệ truyền thông UWB.
Chương 2: Phân tích tín hiệu UWB
Chương 3: Bộ thu phát tín hiệu UWB. Trong đó tập chung chính vào vấn đề bộ thu tín hiệu UWB.
Chương 4: So sánh UWB với các công nghệ truyền thông vô tuyến băng rộng khác.
Chương 5: Phân tích nhiễu.
Chương 6: Kết luận.
Chương 7: Phụ lục.
Đồ án đã làm rõ được các vấn đề cơ bản liên quan đến công nghệ truyền thông này.
Do còn nhiều hạn chế về mặt nhận thức, và nội dung của đồ án cũng cần sự hiểu biết sâu rộng về nhiều vấn đề của viễn thông, nên chắc chắn đồ án còn nhiều điểm cần được chỉnh sửa. Em xin chân thành cảm ơn tất cả những ý kiến đóng góp từ phía các thầy cô, bạn bè và tất cả những ai quan tâm đến công nghệ này để đồ án có thể tiếp tục được phát triển hoàn thiện.
Chương 1
Tổng quan về công nghệ truyền thông UWB
1.1 Tổng quan về các hệ thống truyền thông vô tuyến
Hình vẽ 1-1dưới đây cho thấy một quá trình phát triển của công nghệ truyền thông vô tuyến.
Hình 1-1: Tổng quan về các hệ thống truyền thông vô tuyến
Theo hình vẽ này, chúng ta có thể dễ dàng nhận ra rằng xu hướng phát triển của các hệ thống cũ. Chúng được nâng cấp từng bước để có thể tiến lên mạng băng rộng. Con đường đi lên mạng băng rộng của từng hệ thống là khác nhau do công nghệ sử dụng trước đó là khác nhau. Xét về khía cạnh thay đổi để có thể được nâng cấp lên thế hệ mạng băng rộng thì các hệ thống như GSM hay TDMA thì phải thay đổi nhiều hơn do công nghệ TDMA được sử dụng ngay từ đầu. Trái lại, các hệ thống CDMA lại tiến lên mạng thế hệ thứ ba với ít sự thay đổi hơn cũng vì công nghệ CDMA đã được ứng dụng trước đó.
1.1.1 3G và WLAN
Trong hệ thống 3G, như UMTS hay CDMA-2000, tốc độ dữ liệu của người dùng có thể được cung cấp lên tới 2 Mbps trong môi trường tĩnh, trong khi đó khi di động thì tốc độ dữ liệu hỗ trợ sẽ thấp hơn. Với khả năng về thông lượng như trên có thể hỗ trợ dịch vụ dữ liệu đa phương tiện hoặc truyền video chất lượng thấp. Kích thước của một tế bào (cell) của hệ thống 3G nhỏ hơn hệ thống 2G hiện tại, như GSM, khoảng 300 mét trong khu vực đô thị và có thể lớn hơn trong vùng nông thôn (xem thêm hình 1-2).
Hình 1-2: Phạm vi truyền dữ liệu RF
So với 3G,WLAN có thể cung cấp thông lượng dữ liệu cao hơn (xem hình 1-3). Ví dụ: các sản phẩm Wi-Fi (802.11b) đã sẵn sàng trên thị trường cung cấp cho người dùng tốc độ dữ liệu lên đến 11 Mbps về lý thuyết và độ phủ sóng lên đến 100 mét. Trong tương lai WLAN có thể cung cấp tốc độ dữ liệu lên dến 54 Mbps theo lý thuyết (802.11a/g), và giao thức MAC mới được thiết kế có làm cho hệ thống hỗ trợ mạng ad-hoc, dịch vụ được đồng bộ hoá, và thích ứng liên kết động với điều khiển QoS. Do vậy, toàn bộ hệ thống WLAN có thể trở thành một nền tảng tốt cho truyền dẫn video.
1.1.2 Hỗ trợ tốc độ truyền dẫn cao hơn-UWB
Trong các hệ thống sau này, tốc độ dữ liệu ngày càng được đẩy (xem hình 1-4) lên và các ứng dụng trong truyền thông vô tuyến ngày càng quan trọng.
Tuy nhiên, khoảng cách giữa nhu cầu về tốc dộ truyền dẫn và tốc độ dữ liệu có thể đáp ứng vẫn tồn tại. Trong bảng 1-1, cho ta thấy chúng ta cần các tuyến hơn 100 Mbps mới có thể đáp ứng truyền dẫn luồng dữ liệu MPEG-2, đó là yêu cầu mới cho mạng gia đình hay mạng khu vực cá nhân (PAN). Trong khi đó, các hệ thống đang tồn tại như 3G hay WLAN không thể đáp ứng được yêu cầu này. Do đó, một công nghệ mới đã xuất hiện – UWB.
802.11 Thông lượng dữ liệu theo khoảng cách
Hình 1-3: Thông lượng dữ liệu WLAN theo khoảng cách
Hình 1-4: So sánh tốc độ bit giữa các hệ thống truyền thông vô tuyến
1.2 Lịch sử của UWB
Lý thuyết truyền thông hiện đại xuất phát từ những nỗ lực của những nhà nghiên cứu truyền thông, họ muốn hiểu công việc mình đang làm trong một điều kiện khái quát nhất. Giới hạn của hệ thống truyền thông vô tuyến số phụ thuộc chủ yếu vào bốn quy luật cơ bản và các lý thuyết nền tảng, lần lượt tương ứng với: Maxwell và Hertz, Shannon, Moore, và Metcalfe. Quy luật đầu tiên là quy luật tự nhiên, trong khi hai quy luật cuối cùng là quy luật hoạt động. Thứ tự của chuỗi những quy luật theo đúng thời điểm khám phá và tầm quan trọng của chúng. Khi mà lĩnh vực truyền thông vô tuyến đã trưởng thành, những mối quan tâm chính và liên quan trực tiếp được nâng lên dần dần theo hướng về phía sau danh sách những quy luật cơ bản. Nếu không đánh giá cao các lý thuyết của Maxwell và Hertz, thì không thể có sự truyền dẫn vô tuyến của sóng điện từ được điều khiển. Nếu không có hiểu biết về các lý thuyết của Shannon, thì việc sử dụng hiệu quả phổ tần thông qua xử lý tín hiệu phức tạp sẽ không thể thành công. Ultra-wideband đang đối mặt với thay đổi này, có lẽ từ hai quy luật đầu tiên, trong khi truyền thông băng hẹp đã chuyển sang hai quy luật cuối cùng.
Các chuẩn hiển thị
VGA
SVGA
XVGA
SXVGA
Số điểm ảnh ngang
640
800
1024
1280
Số điểm ảnh dọc
480
600
768
1024
Tổng điểm ảnh
307200
480000
786432
1310720
Tổng số bít (mầu 16 bít)
4915200
7680000
12582192
20971520
Tổng số bít (mầu 24 bít)
7372800
11520000
18874368
31457280
Mbps tại chuyển động tối thiểu 30 khung (mầu 16 bít)
147
230
377
629
Mbps tại chuyển động tối thiểu 30 khung (mầu 24 bít)
221
345
566
943
Mbps sau khi nén
6-32
15-50
20-70
30-100
Các ứng dụng
MPEG-2 DVD
Máy chiếu
Máy chiếu xách tay
Màn hình máy tính
Bảng 1-1: Dữ liệu mong đợi cho truyền dẫn video
Mặc dù thường được coi như là một bước đột phá trong truyền thông vô tuyến, nhưng UWB cũng đã trải qua hơn 40 năm phát triển công nghệ. Nền tảng lớp vật lý cho truyền dẫn xung UWB đã được thiết lập bởi Sommerfeld một thế kỷ trước (1901) khi ông muốn ngăn chặn sự tán xạ của xung trong miền thời gian bằng cách dùng một cái nêm dẫn hoàn hảo. Trong thực tế, có người đã cho rằng UWB xuất phát từ thiết kế truyền dẫn khoảng đánh lửa của Marconi và Hertz vào cuối những năm 1890. Nói một cách đơn giản hơn, hệ thống truyền thông vô tuyến đầu tiên đã dựa trên UWB. Do những hạn chế về công nghệ, nên truyền thông băng hẹp được quan tâm nhiều hơn UWB. Khá giống với trải phổ hay đa truy nhập phân chia theo mã (CDMA), UWB theo con đường tương tự như vậy với việc thiết kế ban đầu dành cho radar và truyền thông trong quân đội.
Sau khi phát triển mạnh từ 1994, thời điểm mà các hoạt động nghiên cứu không còn là điều bí mật, UWB có được đà phát triển mạnh vào năm 1998. Những mối quan tâm đến UWB chỉ được “châm ngòi” từ khi FCC phát hành một báo cáo và quy định vào tháng 2 năm 2002 về việc cho phép triển khai mang tính thương mại với yêu cầu mặt nạ phổ (xem 1.4) cho cả các ứng dụng trong nhà và ngoài trời.
Như vậy, nguồn gốc của UWB không phải là một điều mới mẻ, nhưng UWB xuất hiện với mục đích chủ yếu là để sử dụng lại phổ tần rộng lớn (3.1-10.6 GHz) đã được FCC cấp phát.
1.3 Ưu điểm của hệ thống UWB
Mặc dù truyền thông dựa trên xung là một trong những phương pháp truyền tin cổ điển nhất sử dụng sóng điện từ, nó không được coi như là một phương tiện truyền thông mãi cho đến thời gian gần đây. Một vài đặc điểm của hệ thống này có thể được nhấn mạnh, mặc dù trong đó có một số đặc điểm giống như các hệ thống băng rộng phổ biến đã tồn tại (như CDMA hoặc OFDM):
1.3.1 Tiềm năng cho một tốc độ bit dữ liệu cao
Giới hạn của Shannon chỉ ra rằng dung lượng tối đa có thể đạt được trong một kênh với tạp âm Gaussian trắng cộng (AWGN) cùng với SNR và độ rộng băng W là:
(1-1)
SNR không có thứ nguyên và W có đơn vị là Hz. Dung lượng tăng theo hàm logarit với công suất (tương ứng với SNR) và tuyến tính với độ rộng băng. Điều đó không có nghĩa là một hệ thống vô tuyến UWB sẽ hoạt động sát với dung lượng kênh bởi vì một số tín hiệu đã sử dụng một phần băng tần đó. Nhưng do tín hiệu UWB sử dụng một băng tần rất lớn nên cần ít công suất hơn để truyền một tốc độ bit như nhau với một xác suất lỗi không đổi.
1.3.2 Xác suất bị ngăn chặn thấp
Đặc điểm này cũng giống với các hệ thống CDMA và OFDM. Cấu trúc của tín hiệu UWB rất phức tạp về độ rộng băng (các xung rất hẹp) cũng như là mã PN (cung cấp khả năng truy nhập đường truyền). Một quy tắc xác định đơn giản cho thấy cả độ phức tạp cũng như là thời gian cần thiết để nghe lén một tín hiệu tỉ lệ với bình phương công suất của cả độ rộng băng và chiều dài mã, làm cho tín hiệu UWB trở nên vô cùng khó khăn trong việc khoá nếu như cấu trúc của nó không được biết trước.
1.3.3 Khả năng chống đa đường
Trong truyền thông băng hẹp cổ điển, fading xuất hiện như là một khái niệm có trạng thái cố định có liên quan đến đa đường. Đa đường xuất hiện khi một hoặc nhiều hơn tiếng vọng của một tín hiệu tới một bộ thu theo nhiều độ trễ khác nhau (xem hình 1-6). Nếu một vài tín hiệu xảy ra xung đột trong thời gian của một ký hiệu thì nó chịu fading, do tại thời điểm quyết định ký hiệu, các thành phần này tạo nên tính xây dựng hoặc phá vỡ và không thể được tách. Trong hình 1-5, một hình ảnh thể hiện 2 đường vọng của một tín hiệu hình sin và cách thức chúng kết hợp.
Các xung UWB đủ hẹp sao cho hai tiếng vọng liên tiếp không xung đột và có thể được nhận dạng tiếp theo là được thêm vào các ký hiệu tương ứng. Nếu như các xung có độ rộng 1 ns, để xảy ra xung đột, hai tiếng vọng phải có đường đi mà độ lệch về khoảng cách dưới 30 cm. Nếu như xung chỉ có độ rộng 0.2 ns thì các đường này chỉ cách nhau 6 cm. Xác suất của sự xuất hiện này trong môi trường trong nhà thì nhỏ hơn nhiều so với trường hợp tín hiệu băng hẹp. Hình 1-7 minh hoạ cho điều này trong trường hợp các xung là đơn chu kỳ. Lưu ý rằng đa đường được tách và phân biệt một cách dễ dàng, một máy thu RAKE được triển khai đơn giản để tận dụng ưu điểm đó. Xem thêm phần 2.5.1.
1.3.4 Độ phức tạp của bộ thu.
Lời khẳng định này dựa trên một thực tế rằng UWB được phát minh như là các hệ thống băng gốc. Một ADC có thể được đặt ngay sau bộ khuyếch đại tạp âm thâp (LNA) và phần sau của hệ thống có thể được hoạt động trên miền tín hiệu số. Không cần vòng khoá pha hay tần số. Sau khi FCC đưa ra một số quy định thì điều này không còn hoàn toàn đúng vì loại tín hiệu được phép sử dụng có một phổ tần bắt đầu tại 3.1 GHz. Có thể nói rằng phương pháp đơn giản nhất để thực hiện giải điều chế loại tín hiệu này là sử dụng một bộ nhân tần, hoặc là trong miền tương tự hoặc trong miền số.
1.3.5 Mật độ phổ công suất phát cực thấp
Do độ rộng băng tần của tín hiệu UWB lớn hơn nhiều độ rộng băng của hệ thống truyền thông vô tuyến cũ, một dung lượng kênh cao hơn có thể đạt được thậm trí trong cả môi trường mà SNR thấp. Cũng theo lý thuyết của Shannon:
(1.2)
Trong trường hợp một hệ thống UWB sử dụng phổ tần 2 GHz hoạt động với SNR là 0dB, dung lượng kênh có thể tính theo C=2.log2(1+1)=2 Gbps. Theo kết quả này, chúng ta có thể thấy rằng một hệ thống UWB với công suất tín hiệu thấp vẫn có thể duy trì tốc độ dữ liệu cao, và đặc điểm này sẽ khiến cho UWB là một giải pháp lý tưởng cho lớp vật lý của mạng PAN.
Hình 1-5: Đa đường trong một tín hiệu băng hẹp
Vì công suất tín hiệu thấp (xem hình 1-8) và băng tần khả dụng lớn nên các hệ thống UWB hoạt động tương tự như các hệ thống trải phổ. Tuy nhiên, so với dạng trải phổ cơ bản như các hệ thống chuỗi trực tiếp và nhảy tần thì UWB không dựa vào chuỗi trải phổ và chuỗi nhảy để tạo ra tín hiệu băng tần rộng. Thay vào đó, hệ thống UWB sử dụng các xung có độ rộng cực ngắn để tạo ra băng tần hệ thống siêu rộng.
So với các hệ thống truyền thông băng hẹp khác, hoạt động trong chế độ giới hạn băng tần, UWB hoạt động trong chế độ giới hạn công suất (xem hình 1-9). Do đó, công suất tín hiệu UWB trong bất kỳ kênh băng hẹp đơn nào cũng rất nhỏ và nhiễu tới các thiết bị như đầu cuối 802.11a và điện thoại di động 3G có thể bỏ qua về mặt nguyên lý.
Hình 1-6: Một trường hợp của hiện tượng đa đường với ứng dụng trong nhà
Hình 1-7: Đa đường trong tín hiệu UWB
Hình 1-8: Mức công suất phát của tín hiệu UWB và tín hiệu băng hẹp cũ
1.4 Thách thức đối với UWB
Trong khi UWB có nhiều lý do khiến nó trở thành một công nghệ hữu ích và hấp dẫn cho truyền thông trong tương lai và nhiều ứng dụng khác thì cũng còn một số thử thách cần phải vượt qua để có thể trở thành công nghệ phổ biến và có mặt ở khắp nơi.
Có lẽ vấn điều dễ thấy nhất là vấn đề điều khiển. Truyền thông vô tuyến luôn luôn phải quy định sao cho tránh được nhiễu từ các người dùng khác nhau trên cùng một phổ tần. Vì UWB chiếm một băng tần rất rộng nên có nhiều đối tượng sử dụng mà phổ tần của nó sẽ bị ảnh hưởng và cũng cần đảm bảo rằng UWB sẽ không gây nhiễu đến các hệ thống truyền thông vô tuyến đã tồn tại. Trong nhiều trường hợp, các đối tượng sử dụng này phải trả tiền để có được quyền sử dụng riêng phổ tần.
Một thử thách khác là việc thống nhất chuẩn hoá cho hoạt động kết hợp giữa các thiết bị UWB. Tại thời điểm hiện tại, chưa có sự thống nhất rõ ràng và khả năng của một vài chuẩn UWB đang cạnh tranh vẫn còn là điều rất được mong đợi (xem thêm 1.5).
Ngoài ra còn rất nhiều các vấn đề về kỹ thuật và triển khai. Một số vấn đề về mặt kỹ thuật có thể kể đến như: khả năng cùng tồn tại với các hệ thống truyền thông cũ, tạo ra tín hiệu UWB với độ rộng xung rất hẹp, thu tín hiệu đa đường, nhiễu giao thoa ký hiệu đặc biệt trong môi trường tầm nhìn bị che khuất (non-line-of-sight), các bộ chuyển đổi tương tự sang số (ADC) tốc độ lấy mẫu cao, và đồng bộ hoá. Lời hứa về các thiết bị giá thành thấp còn đó, nhưng độ phức tạp tăng lên do phải giải quyết vấn đề nhiễu và hoạt động với công suất thấp có thể sẽ đẩy giá thành lên tương tự như các thiết bị vô tuyến hiện tại.
Hình 1-9: Mặt nạ phổ được đưa ra bởi FCC cho các hệ thống UWB trong nhà
1.5 Chuẩn hoá
Nhóm tác nhiệm IEEE 802.15.3a, nghiên cứu nhằm tìm ra lớp vật lý PAN thế hệ kế tiếp, đang coi UWB là một giải pháp tốt nhất cho lớp vật lý. Mặc dù nhiều đề xuất được đưa ra, hai trong số đó là DS-CDMA và MB-OFDM, chúng đang là những ứng cử viên đầy hứa hẹn và vẫn tiếp tục ganh đua nhằm đạt được sự chấp thuận từ phía uỷ ban chuẩn hoá.
Đề xuất DS-CDMA, được đưa ra bởi Freescale ( trước kia là Xtreme Spectrum) và kết hợp với các công ty khác, chia toàn bộ phổ tần được cấp phát thành hai băng. Mặc dù đề xuất ban đầu bao chùm toàn bộ băng tần 7.5 GHz, nhưng phiên bản sau đã vượt ra ngoài phổ tần đó. Dải tần cho đề xuất này là từ 3.2 – 5.15 GHz và 5.825 – 10.6 GHz. Sơ đồ DS-CDMA sử dụng M-ary Bi-Orthogonal Keying và một sơ đồ mã hoá CDMA cho việc ghép kênh và phân kênh. Hình 1-10 sẽ giải thích thêm về vấn đề này.
Hình 1-10: Dạng sóng ở miền thời gian và tần số của đề xuất DS-CDMA.
Đề xuất MB-OFDM được đưa ra bởi một nhóm các công ty lớn như Intel, TI …. Theo đề xuất này thì phổ tần được chia thành 14 băng ( mỗi băng có độ rộng là 528 MHz) và các thiết bị được phép lựa chọn băng tần động hoặc tĩnh để sử dụng cho việc truyền dẫn. Hơn nữa, OFDM được sử dụng cho từng băng một. Dữ liệu được điều chế một cách thích hợp và sử dụng băng tần của nó. Toàn bộ phổ tần được chia thành 4 nhóm riêng biệt. chỉ nhóm A được dự định cho các thiết bị thế hệ đầu tiên bởi vì sự giới hạn về mặt công nghệ hiện tại. Các nhóm còn lại được dự phòng cho nhu cầu sử dụng trong tương lai. Hình 1-11, hình 1-12 sẽ giải thích thêm về vấn đề này.
Sơ đồ mà DS-CDMA đưa ra nhằm đạt được tốc độ cao, công suất tiêu thụ thấp, giá thành thấp và kích thước nhỏ. Tuy nhiên, việc xử lý tín hiệu ở tốc độ cao cỡ 100Mbps và trong miền số là mối quan tâm chính cho các nhà thiết kế hệ thống. Đồng bộ thời gian, sự lựa chọn về mặt công nghệ (SiGe hay CMOS) và mức độ ISI (inter symbol interference) là các vấn đề quan trọng trong đề xuất này. Trái lại, MB-OFDM được xem như một giải pháp thực tế hơn như: giảm được độ nhạy trong việc đồng bộ thời gian và có thể dễ dàng sử dụng CMOS. Tuy nhiên, một câu hỏi lớn đặt ra cho hệ thống này là độ phức tạp của mạch điện, MAI và sự đồng ý của FCC. Trước khi sự bế tắc này có thể được giải quyết bởi uỷ ban chuẩn hoá, cả hai nhóm đã quyết định triển khai các đề xuất của mình và xác minh lại tính khả dụng của nó.
Hình 1-11: Dạng sóng trên miền thời gian và tần số của đề xuất MB-OFDM
Hình 1-12: Kế hoạch phân chia băng tần của đề xuất MB-OFDM.
1.6 Các ứng dụng của UWB
UWB xuất hiện cùng với một tiềm năng to lớn về một tập các ứng dụng rộng rãi, hấp dẫn, như thể hiện trong hình 1-13.
Về cơ bản, các ứng dụng này có thể được chia thành 3 nhóm:
Truyền thông và cảm biến
Định vị và theo dõi
Radar
Hình 1-13: Tổng quan về các ứng dụng mà UWB có thể cung cấp.
1.6.1 Truyền thông và cảm biến
Các ứng dụng trong truyền thông tạo ra một số cơ hội thú vị nhất trong thị trường khách hàng. Khả năng ứng dụng của UWB trong truyền thông là vô cùng rộng lớn, theo đó hệ thống truyền thông có thể được cải thiện, tăng cường,nâng cấp. Các ứng dụng trong truyền thông có thể được chia ra làm hai khu vực - tốc độ dữ liệu thấp và cao. Cả hai đều yêu cầu công suất thấp và dung lượng cao, chúng là các biểu tượng cho chất lượng của UWB.
1.6.1.1 Tốc độ dữ liệu thấp
Các thiết bị tốc độ dữ liệu thấp xung quanh chúng ta trong thế giới công nghệ - nhưng chúng thường được nối bởi dây dẫn hoặc cáp. Chúng ta sử dụng các thiết bị này để nhập dữ liệu vào hoặc lấy dữ liệu từ các máy tính, để phát hiện những kẻ đột nhập vào nhà, và để cho vô vàn mục đích khác. Theo cách thức có hiệu quả, các thiết bị dữ liệu tốc độ thấp có thể là không dây, nhưng giải pháp trên thị trường ngày nay bị ràng buộc bởi nhiễu tầm nhìn thẳng với các thiết bị khác, các vấn đề công suất, ngoài ra các vấn đề khác thì không quan trọng lắm trong việc đạt được một thoả hiệp hoàn hảo. UWB không bị giới hạn bởi tầm nhìn thẳng đột ngột như là ánh sáng hồng ngoại, vì chiều dài sóng lớn khi so sánh và có thể uốn cong hoặc truyền xuyên qua các đối tượng mà không gặp trở ngại gì về kết nối. Nó cũng bị ảnh hưởng bởi các bóng và nhiễu của ánh sáng có liên quan khác nhưng ít hơn trường hợp ánh sáng hồng ngoại. Vì UWB hoạt động ở mức công suất rất thấp và theo phương thức không liên tục, nhiễu cũng không đáng kể - điều đó có nghĩa là hàng trăm thiết bị có thể hoạt động trong cùng một không gian mà không xâm phạm đến mỗi thiết bị khác. Trước hết chúng ta xét chi tiết hơn ứng dụng đầu tiên mà cũng là ứng dụng quan trọng nhất của UWB, WPAN, một lĩnh vực đang tạo ra cho UWB những lợi thế to lớn trên thị trường thiết bị.
Sự nổi lên của môi trường nhà số được cấu thành bởi nhiều thiết bị CE khác nhau (như bộ nghe nhạc, xem video số), các thiết bị di động (như điện thoại tổ ong và PDA), và các thiết bị máy tính cá nhân (như máy tính PC xách tay) sẽ hỗ trợ một lượng lớn các ứng dụng. Các thiết bị này có thể phân chia ra làm 3 loại không hoàn toàn tách biệt (Xem hình 1-14):
PC và Internet
Các thiết bị điện tử cho người tiêu dùng (CE) và hệ thống quảng bá
Các thiết bị cầm tay và di động
Các thiết bị này thông thường được đặt trong các phòng khác nhau và được dùng cho nhiều chức năng khác nhau. Tuy nhiên, chủ nhân của chúng vẫn hy vọng chúng có thể tương tác được với nhau-bộ chạy MP3 trao đổi file với PC, bộ ghi hình số thông tin với STB,…. Sự hội tụ của các loại thiết bị này cần phải có một công nghệ vô tuyến chung cho phép chúng có thể cùng hoạt động và phân phối thông lượng dữ liệu cao cho nhiều ứng dụng, ứng dụng tốc độ cao. Hiện tại, các loại thiết bị này sử dụng các giao diện và và khuôn dạng nội dung khác nhau.
Thế hệ PC, CE, và các ứng dụng di động yêu cầu tốc độ kết nối hơn tốc độ dữ liệu đỉnh của công nghệ Bluetooth 1Mbps, nó được sử dụng cho nhiều thiết bị để có thể tạo ra WPAN như ngày hôm nay. Nhưng có nhiều thiết bị không thể đáp ứng được giá thành và công suất theo các thiết bị vô tuyến 802.11a/b/g cho Wi-Fi Networking.
Trong khi Wi-Fi nhanh hơn nhiều so với Bluetooth, nhưng nó vẫn không thể phân phối hết được hiệu năng để cho phép sử dụng có hiệu quả nhiều luồng video chất lượng cao đồng thời. Công nghệ UWB cung cấp một thông lượng như đã được yêu cầu bởi thế hệ kế tiếp của các thiết bị đã hội tụ. Ngoài ra với sự hỗ trợ của các hãng công nghiệp lớn, như WIMedia Alliance, sẽ đảm bảo chắc chắn sự hoạt động tương tác qua tập các giao thức, bao gồm IEEE 1394, USB, và Universal Plug and Play (UPnP*), khiến cho UWB trở thành một giải pháp công nghệ băng rộng tạo ra WPAN tốc độ cao, giá thành thấp, và công suất tiêu thụ thấp.
Hình 1-14: Sự hội tụ của các loại thiết bị
Công nghệ UWB có thể tích cực một dải rộng lớn các ứng dụng cho WPAN, có thể liệt kê một số ứng dụng chính ở dưới đây:
Thay thế cáp giữa các thiết bị CE đa phương tiện, như máy ảnh số, máy chạy MP3 xách tay, bởi kết nối vô tuyến.
Tạo ra kết nối WUSB cho các PC và ngoại vi PC, bao gồm máy in, máy quét, và các thiết bị lưu trữ ngoài khác.
Thay thế cáp trong các thiết bị sử dụng công nghệ Bluetooth thế hệ kế tiếp, như điện thoại tổ ong 3G, cũng như là kết nối dựa trên IP/UpnP cho thế hệ các thiết bị di động PC/CE dựa trên IP kế tiếp.
Tạo ra ad-hoc có kết nối vô tuyến tốc độ bit cao cho các CE, PC và các thiết bị di động.
1.6.1.1.1 Kết nối vô tuyến ngoại vi PC
Đối với kết nối vô tuyến thiết bị ngoại vi PC, công nghệ UWB có thể đưa hiệu năng và độ tiện lợi như đã từng thấy trong USB sang một mức độ tiếp theo. Hiện tại, USB hữu tuyến có một thị phần đáng kể như là sự lựa chọn cáp kết nối cho nền tảng PC (hình 1-15). Nhưng cáp cũng chỉ có thể được sử dụng theo phương thức này. Công nghệ Bluetooth đã giải quyết vấn đề này ở một mức độ nhất định, ngoại trừ vấn đề giới hạn về hiệu năng và hoạt động tương tác. Một giải pháp WUSB sử dụng UWB cung cấp cho đối tượng sử dụng có quyền hy vọng về USB không cần dùng cáp. Điều đó đã giải thoát kết nối USB, UWB đã có được một sự tăng trưởng đáng kể về thị phần thiết bị kết nối ngoại vi PC. WUSB Working Group sẽ định nghĩa một đặc tả hứa hẹn cung cấp tốc độ lên đến 480 Mbps (tương đương với USB 2.0) trong phạm vi 10 m.
Với WUSB, một người sử dụng có thể mang một thiết bị di động, như là PMP (Portable Media Player), tới gần nguồn nội dung, như một PC, máy tính xách tay, hoặc một đĩa cứng bên ngoài, khi mà quá trình nhận thực và trao quyền hoàn thành, video có thể được chuyển vào PMP để xem sau.
Hình 1-15: Các thiết bị tương tác với nhau thông qua USB
1.6.1.1.2 Kết nối đa phương tiện vô tuyến cho các thiết bị CE
Liên quan mật thiết với kết nối ngoại vi PC là kết nối đa phương tiện vô tuyến cho thiết bị điện tử âm thanh và hình ảnh cho người tiêu dùng (CE). Lợi ích mà các kết nối này đem lại về mặt tốc độ thì cũng không thua kém các kết nối hữu tuyến, nhưng lợi ích to lớn nhất mà kết nối vô tuyến này đem lại là sự dễ dàng trong khi sử dụng và hiệu quả truyền dữ liệu cao. Một lớp rộng lớn thiết bị thuộc lĩnh vực giải trí (hình 1-16) bao gồm: Bộ đọc DVD, HDTV, STB, bộ ghi video cá nhân (PVR), bộ chạy MP3 và Stereo, máy ảnh số, và các thiết bị CE khác dễ thấy ở khắp gia đình. UWB có thể kết nối một màn hình plasma treo tường hoặc HDTV đến một STB hoặc một bộ chạy DVD, mà không gặp khó khăn gì và đảm bảo tính thẩm mỹ do không có cáp. UWB cũng có thể tạo ra đa luồng tới đa thiết bị đồng thời. Điều này tạo ra nhiều điều vô cùng hấp dẫn ví như khả năng xem nội dung cùng hoặc khác nhau trên nhiều thiết bị trong cả nhà.
UWB cũng có thể kết nối các thiết bị giữa PC và các thiết bị giải trí, như máy quay xách tay số đến PC để sử dụng các trình xử lý ảnh số hoặc tới một LCD cỡ lớn để xem. Kết nối một máy ảnh số đến một máy tính cá nhân xách tay để chỉnh sửa, biên dịch, và gửi ảnh thông qua e-mail đến một thành viên trong gia đình trong khi đang ngồi ở một hotspot công cộng. UWB đề xuất nhiều lợi ích độc nhất cho các loại sử dụng này (bảng 1-2). Với WPAN sử dụng UWB, khi các thiết bị trong phạm vi gần, chúng có thể nhận ra nhau và trao đổi thông tin xuất hiện khi người dùng bấm nút Play.
Đặc điểm
Lợi ích
Thông lượng tốc độ cao
Nhanh, truyền với chất lượng cao
Tiêu thụ công suất thấp
Tuổi thọ bin của các thiết bị cầm tay dài
Thiết bị vô tuyến được chuẩn hoá, dựa trên Silicon
Giá rẻ
Tuỳ chọn kết nối hữu tuyến
Tiện lợi và linh động
Bảng 1-2: Các đặc điểm và lợi ích của UWB trong môi trường PC và giải trí
Các thiết bị CE xách tay, như máy quay số, máy ảnh số, bộ chạy MP3, và bộ chạy video cá nhân được mong đợi sẽ tạo ra một thị trường chính của UWB thời kỳ đầu.
1.6.1.1.3 Thay thế cáp và truy nhập mạng đối với các thiết bị máy tính di động
Đối với những người sử dụng nhiều loại thiết bị di động, quản lý cáp có thể là một sự bất tiện lớn nhất là khi các thiết bị này cần phải kết nối với nhau. Nhiều thiết bị, như là thiết bị trợ giúp cá nhân số, kết nối thông qua cổng USB, nhưng các thiết bị khác, như điện thoại tổ ong 3G, có thể yêu cầu một bộ đấu nối đặc biệt hoặc một bộ thích ứng cho cáp USB. Công nghệ UWB cho phép các thiết bị này vận hành cùng nhau-không cần cáp-ngay khi chúng đặt gần nhau. UWB cũng có thể được sử dụng để tạo ra truy nhập mạng công suất thấp, tốc độ cao trong các khu vực hotspot.
Vùng phủ Internet Hotspot đang tạo ra một điểm hấp dẫn về một thị trường rộng mở cho truy nhập Internet băng thông rộng đối với các thiết bị máy tính di động tại một vùng xa xôi. Ngày nay, hai công nghệ đang tạo ra những Hotspot là: WLAN 802.11a/b/g và WPAN dựa trên công nghệ Bluetooth. Cả hai đều có những giới hạn về đánh địa chỉ cho các nhu cầu hỗn hợp về kết nối băng thông rộng: dung lượng không gian cao nhằm phục vụ nhiều người trong một không gian cho trước và tiêu thụ công suất thấp. UWB sẽ giúp vượt qua những khó khăn này và có thể tạo ra cho một người được cải thiệnđáng kể khi lĩnh vực này trưởng thành.
Hình 1-16: Kết nối các thiết bị trong lĩnh vực giải trí
1.6.1.1.4 Các kết nối ad-hoc giữa các thiết bị sử dụng UWB
Giống như công nghệ Bluetooth, mọi thiết bị s._.ử dụng UWB đều có thể là nguồn phát và thu nội dung. Các thiết bị có thể được kết nối trực tiếp với nhau thông qua WUSB. Lúc đó, độ tiện lợi sẽ được nâng lên một cấp độ khác (hình 1-17).
Hình 1-18 thể hiện một sự kết hợp công nghệ tạo ra một sự tiện lợi chưa từng có. Trong đó WLAN và LAN hữu tuyến, WUSB (có thể sử dụng UWB khi công nghệ này đã trưởng thành, khi đó tốc độ truyền dữ liệu có thể lên đến hàng Gbps) và USB hữu tuyến.
1.6.1.1.5 Mạng cảm biến
Tất cả các loại bộ cảm biến đề xuất một cơ hội khác cho UWB phát triển tốt đẹp. Hiện tại các bộ cảm biến đang được sử dụng mạnh mẽ trong nhiều ứng dụng. Nhiều loại bộ cảm biến được dùng để bảo vệ nhà cửa, ô tô, và các tài sản khác. Việc cài đặt các hệ thống an ninh hiện đại tiêu tốn thời gian và đắt đỏ.
Hình 1-17: Các thiết bị Dual-role kết nối trực tiếp với nhau theo WUSB
Tại sao vậy? Bởi vì chi phí cho dây dẫn là khá nhiều và tiêu tốn nhiều thời gian để cài đặt. Thông thường, các gia đình cắt bớt các góc, chỉ đặt các bộ cảm biến có dây này tại các lối vào có thể nhìn thấy. Với một giải pháp không dây, chi phí cho việc cài đặt và bảo dưỡng có thể giảm xuống một cách bất ngờ, phạm vi bao phủ có thể được mở rộng và độ tin cậy được tăng lên. UWB có thể được dùng như là liên kết truyền thông trong mạng cảm biến, và tín hiệu UWB tự nó có thể thực hiện chức năng như là bộ cảm biến. Nó còn có thể được làm một cách đặc biệt để xây dựng các bong bóng an ninh xung quanh một khu vực cho trước cần được bảo vệ, bao gồm các vùng cảnh báo biến đổi. Hãy tưởng tượng xem còn có gì khác có thể được thực hiện với ý tưởng này để tạo ra sự an toàn, an ninh, và một cái đầu thanh thản. Robert Frost đã viết trong Mending Walls, “ Hàng rào tốt làm nên hàng xóm tốt”. Một hàng rào tốt nhất phải khó bị nhận thấy hoặc tàng hình: lĩnh vực của UWB.
Các bộ cảm biến cũng đang được dùng trong các trạm y tế để kiểm tra tốc độ xung, nhiệt độ, và các dấu hiệu sống quan trọng khác. Ngày nay, một bệnh nhân bị trói buộc bởi dây và cáp khi việc theo dõi y học mở rộng được yêu cầu. Một lần nữa, UWB có thể được dùng để truyền tải thông tin cảm biến không cần dây, nhưng cũng có thể thực hiện chức năng như là một bộ cảm biến hơi thở, nhịp tim, và trong một số trường hợp, cho xử lý ảnh y học.
Hình 1-18: Phối hợp công nghệ tạo ra một kịch bản hấp dẫn
Một mạng cảm biến UWB giải phóng bệnh nhân khỏi mớ lộn xộn của các bộ cảm biến có dây. Giải pháp UWB tạo ra một “ thái độ rối rít” dễ chịu cho bệnh nhân khi cần thiết phải theo dõi cố định.
1.6.1.2 Tốc độ dữ liệu cao
Vì băng tần khả dụng đối với người dùng được mở rộng, các ứng dụng sẽ tiếp tục phát triển và lấp đầy băng tần khả dụng trong khi nhu cầu gia tăng. Thêm vào sự gia tăng tập chung vào băng tần, vấn đề gia tăng điện thoại di động và du lịch đã thúc đẩy nhu cầu về khả năng dịch chuyển băng tần, ám chỉ đến công nghệ không dây. Các ứng dụng sớm nhất của UWB sẽ lấy các nhu cầu thị trường cho truyền dẫn dữ liệu tốc độ cao hơn đang tồn tại làm trọng tâm. Tuy nhiên, nhu cầu không dây có khả năng đa phương tiện đã đang ép buộc những hành động mới của tổ chức chuẩn hoá không dây. Giải pháp UWB sẽ nổi lên với các tính năng hoàn toàn phù hợp với các ứng dụng này bởi vì băng tần khả dụng cao. Đặc biệt, các ứng dụng đa phương tiện mật độ cao, như là dùng trực tuyến đa phương tiện tại các “ điểm nóng” như sân bay hoặc trung tâm hàng hoá thậm trí cả các đơn vị cộng đồng, sẽ yêu cầu băng tần không như công nghệ “băng hẹp” sóng liên tục hiện tại. Khả năng đóng gói chặt “ các tế bào” UWB băng tần cao vào các vùng này mà không làm giảm chất lượng sẽ thúc đẩy sự phát triển các giải pháp UWB. UWB cho phép download phim ảnh với tốc độ cao. Các màn hình video có độ phân giải cao cỡ lớn trở nên phổ biến với mức giá chấp nhân được. Các thiết bị này có thể đạt được lợi ích to lớn từ khả năng dung lượng cao của UWB để truyền nội dung video qua đường vô tuyến từ các nguồn video đến một màn hình treo trên tường.
1.6.2 Định vị và bám
Định vị và bám trên một phạm vi lớn, ví dụ như GPS, đã thay đổi phương pháp chúng ta đi lại. Định vị và theo dõi trong một phạm vị nhỏ hơn có thể thay đổi cách tổ chức và theo dõi các đối tượng của chúng ta. Các ứng dụng có thể cải thiện sự an toàn của tài sản, giúp chúng ta tìm thìa khoá xe và thậm trí giúp ta giữ liên lạc tốt với những đứa trẻ của mình khi chúng ở xa.
1.6.2.1 Định vị
Ngày nay, có nhiều công nghệ cho phép chúng ta định vị trên phạm vi toàn cầu với độ chính xác, điều mà trước kia không thể thực hiện được. Chúng ta đã chuyển từ việc dùng la bàn sang dùng GPS. Giờ đây, hãy tưởng tượng các khả năng đó đang dẫn đến một bước tiến mới - vào bên trong nhà. Mặc dù UWB không phải là một giải pháp hiệu quả cho định vị ngoài trời (do khoảng cách quá ngắn), nhưng nó vẫn là một giải pháp tuyệt vời đối với các vấn đề khoảng cách ngắn. Một vài biến thể của UWB có thể được sử dụng để xác định khoảng cách giữa hai trạm thu phát UWB bên trong nhà. Bộ định vị UWB có thể được đặt một cách chiến lược trong một mạng báo hiệu chỉ đường bằng biển không dây dọc theo một con đường chạy qua đồng quê để đánh dấu tuyến. Chúng có thể được dùng để tìm người trong nhiều tình huống, như là nhân viên cứu hoả trong các toà nhà đang cháy, sĩ quan cảnh sát trong tình trang nguy hiểm, người trượt tuyến bị thương trên một sườn tuyết, người đi bộ đường dài bị thương ở một vùng xa xôi, hoặc những đứa trẻ bị lạc trong công viên.
1.6.2.2 Bám
Với kỹ thuật bám tiên tiến, chúng ta không chỉ biết vị trí của các đối tượng mà còn bám theo sự chuyển động của nhiều vật đặc biệt khác. Ví dụ, các đối tượng được lưu giữ trong kho có thể được theo dõi từ lúc nhập kho cho đến lúc xuất kho và thậm trí đến tận đích cuối cùng của chúng. Bất kỳ một chuyển động nào trong một cơ quan tổ chức cũng có thể được theo dõi. Nhờ có theo dõi tài sản, hàng hoá, nên đã cải thiện đáng kể khả năng làm đơn giản hoá việc lưu trữ và phân phối tài sản, hàng hoá và các dịch vụ trong khi làm tăng khả năng điều khiển kiểm kê.
Vì tính chất di động của con người và các đối tượng tăng lên, những thông tin mới nhất và chính xác về vị trí trở thành một nhu cầu thị trường thích đáng. Trong khi GPS và một số công nghệ E911 hứa hẹn tạo ra một mức độ chính xác nào đó bên ngoài nhà, thì các công nghệ theo dõi bên trong nhà hiện tại vẫn còn không ít khó khăn và có độ chính xác khoảng từ 3 đến 10 mét. Triển khai UWB là một sự bù đắp cho GPS và E911 nó cho phép sự định vị chính xác và theo dõi các đối tượng chuyển động trong nhà với độ chính xác vài centimét. Điều này lần lượt làm cho có thể cung cấp nội dung định vị rõ ràng và thông tin tơí từng cá thể về chuyển động, và theo dõi các tài sản có giá trị cao về mặt an ninh và sử dụng có hiệu quả. Trong khi đây là một thị trường mới mẻ, độ chính xác được cung cấp bởi UWB sẽ thúc đẩy sự trưởng thành thị trường và sự phát triển các ứng dụng mới trong lĩnh vực này. Các hệ thống UWB có thể làm việc trong môi trường phức tạp trong đó có nhiều người, tài sản, và các tác động qua lại. Các vị trí như là bệnh viện, khu an ninh, trung tâm đào tạo, và các nơi làm việc phân tán khác có thể đạt được ích lợi to lớn bằng việc truyền thông có hiệu quả hơn và nhanh hơn. Việc lưu trữ tự động các hoạt động phức tạp không có cấu trúc giải phóng con người khỏi nhiệm vụ quản lý. Lý lịch thiết bị có thể được cá nhân hoá, tự động chia sẻ thiết bị, để con người có thể đạt được sự thoải mái hơn với các tài sản sẵn có. Sự đo lường thời gian thực và sự kiểm toán nơi làm việc cung cấp cho người quản lý thông tin cần thiết để có được một quyết định thực tế chính xác. Các mức độ an ninh chưa từng có có thể đạt được bằng sự theo dõi vị trí con người và các tài sản quan trọng.
1.6.3 Radar
Tín hiệu UWB làm xuất hiện radar độ rõ nét cao với giá rẻ. Với các khả năng của radar mới này được tạo ra bởi sử bổ xung của UWB, thị trường radar sẽ phát triển mạnh mẽ và radar sẽ được dùng trong nhiều khu vực mà không cần phải để tâm. Một số ứng dụng radar mới mang tính then chốt trong đó UWB dường như có vai trò cốt yếu bao gồm các bộ cảm biến tự động, bộ cảm biến tránh xung đột, túi khí thông minh, bộ cảm biến an ninh cá nhân, điều tra chính xác, và các ứng dụng an toàn công cộng xuyên tường. Những vòm an ninh được trang bị radar dựa trên radar chính xác đã thể hiện khả năng phát hiện chuyển động gần các khu vực được bảo vệ, như là các khu vực có tài sản giá trị cao, khu vực công chức, hoặc các khu vực bị hạn chế. Vòm này có thể được cấu hình bằng phần mềm để phát hiện chuyển động ngang qua cạnh của vòm, nhưng có thể bỏ qua các chuyển động bên trong hoặc đằng sau cạnh vòm.
Ngày nay, khả năng phát hiện chuyển động xuyên tường là một thực tế. Các thiết bị này gửi hàng triệu xung UWB trên một giây, tạo ra một tín hiệu như thế, trong hầu hết các hoàn cảnh, có thể xuyên qua hầu hết vật liệu nhà cửa, như bê tông rắn chắc, khối bê tông, lớp đá, gạch, gỗ, nhựa, ngói, và sợi thuỷ tinh. Kết quả này là một phương tiện nhận biết những mối nguy hiểm hoàn toàn mới với nhiều công dụng. Thiết bị radar này nhằm phục vụ cho quân đội và đội ngũ chiến lược thi hành luật pháp. Hoạt động của radar dành cho phương tiện trong băng từ 22 đến 29 GHz được cho phép dưới các điều lệ của UWB bằng cách dùng anten định hướng trên các ô tô. Các thiết bị này có thể phát hiện vị trí và chuyển động của các đối tượng gần một phương tiện đi lại, tích cực khả năng tránh xung đột, sự hoạt hoá túi khí được cải thiện, và hệ thống giảm sóc thích ứng với điều kiện đường xá tốt hơn. Hình 1-19 là hình ảnh thể hiện về các thiết bị cụ thể.
Hình 1-19: Các radar chống chộm, tránh xung đột và đo độ cao chính xác
Cuối cùng, để kết thúc phần ứng dụng của UWB, chúng ta sẽ tìm hiểu một mảng khá ngạc nhiên, UWB thông qua dây (UWB over wires)
Công nghệ UWB có thể hoạt động thông qua dây dẫn và cáp. Điều này có thể làm tăng gấp đôi băng tần khả dụng cho hệ thống truyền hình cáp (CATV) mà không cần thay đổi hạ tầng đã tồn tại. Công nghệ over-wire cho cáp đồng trục có thể cung cấp tới 1.2 Gbps cho đường xuống và 480 Mbps cho đường lên trong băng tần bổ xung, với giá thành thấp, trên nhiều kiến trúc mạng khác nhau. Tín hiệu UWB có thể được đặt tại đầu cuối cáp và được trích ra tại cơ ngơi người dùng. Công nghệ UWB wire - line không gây nhiễu hay làm giảm chất lượng truyền hình, Internet tốc độ cao, thoại hoặc các dịch vụ khác đã được cung cấp bởi hạ tầng CATV. Công nghệ này sẽ tạo cho người vận hành các khả năng đối với hạ tầng đã tồn tại để cung cấp tốt hơn các chức năng và làm tăng tổng thu nhập. Hệ thống này sử dụng các kỹ thuật mới để kết hợp hoàn hảo truyền thông UWB vô tuyến và UWB hữu tuyến.
Sự kết hợp công nghệ này tạo ra độ rộng băng tần mạng vô tuyến khổng lồ cho việc mở rộng nội dung được đảm bảo an toàn theo tất cả các đường từ văn phòng đầu cuối của nhà cung cấp cáp đến một loạt các thiết bị mạng không dây. Điều này chuyển đổi trung tâm giải trí gia đình thành cổng mạng và hub không dây.
Chương 2
Phân tích tín hiệu UWB
Sau khi nắm được những đặc điểm cơ bản nhất về UWB và những thuộc tính của nó trên miền thời gian và tần số, chúng ta tiếp tục với việc phân tích tín hiệu UWB, trong chương này dạng xung sử dụng và các kỹ thuật điều chế trong UWB sẽ được trình bầy.
2.1 Định nghĩa tín hiệu UWB
Định nghĩa một tín hiệu UWB về các mặt có liên quan là một điều gì đó không thực sự rõ ràng.
Sau đây là một số khả năng:
Một tín hiệu với một độ rộng băng lớn hơn 500 MHz.
Một tín hiệu với độ rộng băng lớn hơn 20% tần số trung tâm.
Những định nghĩa này cho phép một tín hiệu CDMA với một tốc độ 1 chip/ns hoặc một tín hiệu OFDM với độ rộng băng tần tổng cộng vượt ra khỏi chuẩn 802.11. Trong đồ án này, chúng ta coi rằng tín hiệu UWB được cấu thành từ rất nhiều xung hẹp (cỡ 1 ns hoặc thậm trí còn hẹp hơn).
2.2 Các dạng xung đơn chu kỳ
Có rất nhiều dạng xung được sử dụng trong các hệ thống truyền thông vô tuyến. Tuy nhiên, tuỳ thuộc vào đặc tính của phổ tần hoạt động của hệ thống mà dạng xung nào được lựa chọn. Đối với hệ thống UWB phổ tần hoạt động cho các ứng dụng trong nhà được FCC cấp phát từ 3.1-10.6 GHz. Do phổ tần cố định như vậy nên việc chọn lựa dạng xung cũng là một vấn đề quan trọng. Nhằm tuân theo đặc tả của FCC, hai loại dạng xung được nghiên cứu: xung Gaussian và xung Raised Cosin.
2.2.1 Xung đơn chu kỳ Gaussian
Xung Gaussian đơn chu kỳ là một tín hiệu băng rộng, tần số trung tâm và độ rộng băng phụ thuộc vào độ rộng của chu kỳ đơn. Trong miền thời gian, xung đơn chu kỳ Gaussian có dạng:
(2-1)
Trong đó là hệ số thời gian xác định độ rộng của đơn chu kỳ. Trong miền tần số, biến đổi Fourier của xung đơn chu kỳ Gaussian là:
(2-2)
Tần số trung tâm fc phải thoả mãn:
(2-3)
Chúng ta có thể thấy rằng fc tỉ lệ với nghịch đảo của và độ rộng băng -3dB vào khoảng 116% fc (xem phụ lục A). Vì vậy, với = 0.033ns thì tần số trung tâm fc = 6.85 GHz và độ rộng băng -3dB xấp xỉ 7.5 GHz. Hình 2-1 thể hiện một dạng sóng điển hình của xung đơn chu kỳ Gaussian và phổ tần của nó.
Hình 2-1: Xung đơn chu kỳ Gaussian và phổ tần của nó
2.2.2 Xung Raised Cosin
Trong đặc tả của FCC, mặt nạ PSD cho tín hiệu UWB có dạng hình chữ nhật. Dễ thấy rằng xung dạng Gaussian không hoàn toàn phù hợp với quy định này. Do vậy, xung Raised Cosin được giới thiệu để có thể thích hợp hơn với quy định về PSD của FCC. Hình 2-2 thể hiện xung Raised Cosin trên miền thời gian và tần số. Xung Raised Cosin có thể được mô tả trong miền tần số như sau:
(2-4)
Trong đó, B là băng tần tuyệt đối. f1 và được cho dưới đây:
Với là tần số -6dB của xung Raised Cosin. Vì mục đích tận dụng toàn bộ băng tần được FCC chấp thuận 7.5 GHz nên giá trị của được thiết lập là 3.75 GHz.
Dạng sóng tương ứng trên miền thời gian được tính như sau:
(2-5)
Do h(t) là tín hiệu băng tần thấp (-, +) nên cần được dịch đến tăng tần tín hiệu mong muốn. Trong trường hợp phổ tần của xung Raised Consin chiếm toàn bộ băng tần được FCC cấp phát thì xung băng gốc phải chuyển sang tần số trung tâm fc (6.85 GHz). Do đó, xung được phát đi sẽ là:
(2-6)
rc(t) và RC(f) được thể hiện trong hình 2-2.
Hình 2-2: Xung Raised Cosin và phổ năng lượng của nó
2.2.3 Lựa chọn dạng xung
Bằng cách so sánh hai dạng xung đã được đề xuất, chúng ta cần lựa chọn một dạng để sử dụng cho hệ thống UWB. Ta thấy rằng, mặc dù xung Raised Cosin có các thuộc tính phổ khá đẹp, khá khớp với mặt nạ phổ hình chữ nhật được FCC đưa ra nhưng loại xung này rất khó tạo ra bởi một mạch điện đơn giản. Trái lại, xung đơn chu kỳ Gaussian thì có thể được tạo ra một cách khá đơn giản, và do đó thường được lựa chọn để sử dụng cho các hệ thống UWB.
2.3 Dãy xung và chuỗi giả tạp âm
Sau khi giới thiệu một số dạng xung UWB thì việc truyền dẫn các xung – chuỗi xung cần được xem xét. Trước tiên chúng ta tạo ra xung Gaussian đơn chu kỳ tại những thời điểm cách nhau bởi khoảng thời gian lặp (xem hình 2-3) và chuỗi xung này có thể được mô tả như sau:
(2-7)
Trong đó Tf là chu kỳ khung, bằng với khoảng thời gian giữa hai xung liên tiếp, gm(t) là xung Gaussian đơn chu kỳ. Chuỗi xung trên có một tần số lặp xung xác định là 1/Tf. Dựa trên mật độ phổ năng lượng của xung Gaussian đơn chu kỳ GM (hình 2-1), mật độ phổ công suất (PSD) có thể được viết như sau:
(2-8)
Trong đó và lần lượt là trung bình và phương sai của biên độ xung, trong trường hợp chuỗi xung tuần hoàn, chúng lần lượt là 1 và 0. Do đó, ta có:
(2-9)
Chúng ta thấy rằng trong miền tần số, chuỗi xung đơn đều đặn sẽ tạo ra các nhánh công suất theo các khoảng 1/Tf. Điều này được kiểm chứng bằng kết quả mô phỏng trong hình 2-3. Do vậy, công suất tín hiệu UWB trải rộng theo đường phổ. Nhưng nếu PSD phẳng, công suất phát có thể tối đa theo quy định của FCC. Chúng ta kết luận rằng chuỗi xung tuần hoàn không tận dụng được tài nguyên tần số một cách có hiệu quả và cần được cải thiện. Để có thể làm mịn đường phổ, yếu tố then chốt để tối ưu việc sử dụng phổ tần, chúng ta cần loại bỏ sự tương quan của chuỗi xung tuần hoàn trong miền thời gian. Một phương pháp hữu dụng để giải quyết vấn đề này là làm cho các xung xuất hiện ngẫu nhiên trong miền thời gian, do vậy nhiều sự tương quan có thể tránh được trong chuỗi xung và đường phổ có thể được nén lại. Phương pháp này được thể hiện trong hình 2-4 và chuỗi xung với xung đơn chu kỳ Gaussian có thể được mô tả như sau:
(2-10)
Trong đó là số ngẫu nhiên thuộc (0, Tf). PSD của chuỗi xung này có thể thu được như sau:
(2-11)
Từ đó ta thấy rằng chỉ là một bản mở rộng của phổ năng lượng của xung Gaussian đơn chu kỳ và không có nhánh nào trong đó.
Hình 2-3: Chuỗi xung tuần hoàn và phổ của nó
Hình 2-4: Chuỗi xung có vị trí ngẫu nhiên và phổ tần
Sở dĩ như vậy là do tất cả các xung xuất hiện ngẫu nhiên hoàn toàn và tuyệt đối không có thông tin tương quan về vị trí xung. Thuộc tính trên được khẳng định lại bằng kết quả mô phỏng trong hình 2-4.
là độ dịch thời gian (nhiều nano giây) có thể được áp dụng cho từng xung. Tập hợp {} có thể được thiết kế giống như mã giả tập âm (PN). Trong hệ thống đa truy nhập, mỗi một người dùng có một chuỗi mã ngẫu nhiên duy nhất. Chỉ bộ thu hoạt động với cùng một mã ngẫu nhiên mới có thể giải mã truyền dẫn. Nếu không biết trước mã nhảy thời gian duy nhất này thì tín hiệu không thể được tách ra thậm trí ngay cả trong trường hợp mà bộ thu đặt rất gần bộ phát. Phương pháp để gán cho từng xung UWB một khoảng thời gian này còn được sử dụng như là một kỹ thuật đa truy nhập.
Để hiểu thêm về một kỹ thuật đa truy nhập và khả năng ứng dụng của chúng trong UWB, ta xét thêm một số kỹ thuật đa truy nhập khác (xem phần kỹ thuật đa truy nhập).
2.4 Các phương pháp điều chế trong UWB
Như chúng ta đã biết, một xung đơn UWB không mang thông tin. Chúng ta phải thêm thông tin số vào xung tương tự, điều này được thực hiện bằng điều chế. Trong các hệ thống UWB, có một số phương pháp điều chế cơ bản và chúng ta sẽ xét chi tiết ở phần sau.
Thông thường, chúng ta định nghĩa hai dạng điều chế cơ bản cho truyền thông UWB. Chúng được thể hiện trong hình 2-5 (kỹ thuật điều chế dựa trên thời gian và kỹ thuật điều chế dựa trên dạng xung).
Điều chế vị trí xung (PPM)
Kỹ thuật dựa trên thời gian Kỹ thuật dựa trên dạng xung
Điều chế xung đối cực (BPPM)
OOK PAM
Phương pháp điều chế dạng xung cơ bản (như điều chế xung trực giao)
Hình 2-5: Phân loại các phương pháp điều chế trong UWB
Một phương pháp điều chế phổ biến nhất trong truyền thông UWB là điều chế vị trí xung (PPM), trong đó mỗi xung được trễ hoặc gửi trước thang thời gian bình thường. Do vậy, một hệ thống truyền thông cơ hai có thể được thiết lập với một độ dịch thời về phía trước hoặc sau. Bằng cách chỉ rõ thời gian trễ chính xác cho từng xung, một hệ thống M-ary có thể được tạo ra.
Một phương pháp thông dụng khác sử dụng kỹ thuật đảo ngược xung: điều đó có nghĩa là tạo ra một xung với pha ngược lại. Đây được gọi là kỹ thuật điều pha cơ hai (BPM).
Một kỹ thuật điều chế hấp dẫn khác là điều chế xung trực giao, trong đó yêu cầu các dạng xung đặc biệt mà khi được tạo ra chúng phải trực giao nhau.
Ngoài ra còn có một số kỹ thuật điều chế nổi tiếng khác như OOK. Trong kỹ thuật điều chế OOK, sự có mặt hoặc vắng mặt của xung thể hiện thông tin số “1” hoặc “0” một cách tương ứng. Điều chế biên độ xung (PAM) là kỹ thuật sử dụng sự biến đổi biên độ xung để mang thông tin số.
Hơn nữa, một vài kỹ thuật điều chế truyền thống khác không áp dụng được trong truyền thông UWB. Ví dụ: kỹ thuật điều tần được sử dụng rộng rãi lại rất khó áp dụng trong UWB, vì mỗi xung mang quá nhiều thành phần tần số.
Chúng ta lần lượt kiểm tra từng kỹ thuật điều chế có thể áp dụng trong UWB này. Trước tiên, chúng ta xét hai kỹ thuật điều chế phổ biến nhất: PPM và BPM. Một sự so sánh đơn giản hai kỹ thuật điều chế này được thể hiện trong hình 2-6. Trong hình 2-6(a), một chuỗi xung không được điều chế dùng để so sánh. Xét một ví dụ cho trường hợp PPM, xung tượng trưng cho bít thông tin “1” bị trễ đi (xung bị dịch sang phải). Xung tượng trưng cho bít “0” được gửi đi trước xung không được điều chế (xung bị dịch sang trái) trong hình 2-6 (b). Đối với trường hợp BPM, xung bị đảo ngược tượng trưng cho bít “0” trong xung không bị đảo tượng trưng cho bít “1”. Xem hình 2-6 (c) để thấy rõ hơn vấn đề này. Sau đây chúng ta sẽ đi xét chi tiết lần lượt từng phương pháp một.
2.4.1 Điều chế vị trí xung
Như đã đề cập trước, tham số quan trọng trong điều chế vị trí xung là độ trễ của xung. Bằng cách định nghĩa một xung cơ bản với dạng xung tuỳ ý p(t), chúng ta có thể điều chế dữ liệu bởi tham số trễ để tạo ra các xung si như thể hiện trong phương trình 2-12, trong đó t là thời gian.
(2-12)
Xét một ví dụ, chúng ta đặt , , , ta sẽ tạo ra một hệ thống PPM 4-ary. Và theo đó, ta có:
(2-13)
(a) Các xung không được điều chế
(b) Điều chế vị trí xung
(c) Điều pha hai mức
Hình 2-6: So sánh kỹ thuật điều chế vị trí xung và điều pha hai mức trong UWB
Bộ thu phân biệt “1”, “0” bằng thời gian đến của nó, hoặc độ trễ giữa các xung (xem thêm hình 2-7).
Hình 2-7: Điều chế vị trí xung
Lợi ích lớn nhất của PPM xuất phát từ tính đơn giản của nó và lỏng lẻo trong việc điều khiển độ trễ. Trái lại, hoạt động của hệ thống UWB lại yêu cầu một độ chính xác rất cao về thời gian. Do đó, có thể coi đây là một nhược điểm của phương pháp điều chế này. Ngoài ra điều chế vị trí xung có tác dụng làm phẳng phổ tín hiệu, do đó làm giảm nhiễu tới các hệ thống vô tuyến cũ. PPM cho phép sử dụng kỹ thuật thu sử dụng bộ lọc thích ứng tối ưu. Bộ thu sử dụng một bộ tương quan để tách tín hiệu dưới mức tạp âm. So với các hệ thống sử dụng phương pháp điều chế khác, hệ thống sử dụng PPM cho phép đồng bộ hoá tốt hơn và yêu cầu độ chính xác định thời lớn hơn.
Xác suất lỗi bít được tính theo công thức sau, với điều kiện sử dụng bộ lọc thích ứng ở bộ thu:
(2-14)
Trong đó:
Q(): là hàm Q.
Eb: là năng lượng trung bình trên một bít.
N0: là mật độ phổ công suất tạp âm tại bộ thu.
Q() là hàm được định nghĩa như sau:
(2-15)
Hình vẽ không gian tín hiệu và xác suất lỗi bít được thể hiện trong hình 2-10 và 2-11.
2.4.2 Điều pha hai mức BPM (hay điều chế đối cực- Antipodal Modulation)
Kỹ thuật điều chế đối cực thể hiện bít “1” bởi một xung dương và bít “0” bởi một xung âm. Tức là có sự chuyển pha 180 độ giữa bít “0” và “1”. Xem hình 2-8 để hiểu thêm về kỹ thuật điều chế này và PPM trong UWB. Theo hình 2-8 chúng ta thấy rằng Nc xung UWB dùng để truyền một bít dữ liệu, khoảng cách giữa hai xung liên tiếp là Tf, cả bít thông tin và chuỗi giả tạp âm đều tham gia điều chế xung UWB. Như vậy có nghĩa là để truyền bít dữ liệu “1” không có nghĩa là dùng toàn xung UWB duơng.
Về mặt toán học, chúng ta có thể biểu diễn tín hiệu BPM như sau. , =-1,1. Trong đó p(t) như đã đề cập trong 2.3.1, được coi như là tham số dạng xung. Theo đó chúng ta dễ dàng nhận thấy sự đảo ngược xung cơ bản p(t) sẽ tương ứng với bít “0” và bít “1” được phát đi.
Ta có thể biễu diễn tín hiệu UWB sử dụng điều pha cơ hai khi có một chuỗi bít được đưa vào để điều chế xung UWB như sau:
(2-16)
Trong đó bj là giá trị {-1, +1} phụ thuộc vào bít dữ liệu.
Xác suất lỗi bít được tính theo công thức sau, với điều kiện sử dụng bộ lọc thích ứng ở bộ thu:
(2-17)
Hình vẽ không gian tín hiệu và xác suất lỗi bít được thể hiện trong hình 2-10 và 2-11.
Hình 2-8: Mã hoá “0”, “1” trong UWB
Một trong số các lý do để sử dụng điều chế xung đối cực, đặc biệt trong sự so sánh với kỹ thuật điều chế vị trí xung (PPM), là độ lợi 3-dB trong hiệu suất sử dụng công suất. Điều đó có nghĩa là nếu muốn đạt được cùng một tỉ lệ lỗi bit thì các phương pháp điều chế như OOK, PPM phải dùng năng lượng bit (Eb) gấp đôi. Đây là một thuộc tính của phương pháp điều chế này.
Trên đây đã giới thiệu hai phương pháp chính thường được sử dụng trong truyền thông UWB. Ngoài ra còn một số phương pháp điều chế khác cũng được đề xuất trong quá trình nghiên cứu nhằm tìm ra một phương pháp điều chế thích hợp nhất cho truyền thông UWB. Do đó việc đề cập các phương pháp điều chế khác là cần thiết để có được một cái nhìn toàn diện hơn về các kỹ thuật điều chế mà UWB đã trải qua trên cả phương diện lý thuyết cũng như trong thực tế.
2.4.3 Các phương pháp điều chế khác
Hình vẽ 2-9 thể hiện các phương pháp điều chế này.
Trong hình 2-9 (a) là một chuỗi xung chưa được điều chế dùng để so sánh. Hình 2-9 (b) là một ví dụ về điều chế biên độ xung trong đó xung với biên độ lớn tượng trưng cho bit “1” và xung có biên độ nhỏ hơn tượng trưng cho bít “0”. Hình 2-9 (c) là kỹ thuật điều chế on-off keying. Đây là phương pháp điều chế khá quen thuộc. Hình 2-9 (d) thể hiện một ví dụ về điều chế xung trực giao trong đó bít “1” được tượng trưng bởi một xung Hermitian cấp 3 được điều chỉnh và bít “0” được tượng trưng bởi một xung Hermitian cấp hai được điều chỉnh. Sau đây chúng ta sẽ xem xét thêm về từng kỹ thuật vừa nêu.
2.4.3.1 Điều chế xung trực giao
Điều chế xung trực giao là một tập con của điều chế dạng xung với thuộc tính là các dạng xung phải trực giao với nhau. Ưu điểm chính của việc sử dụng các xung trực giao không liên quan trực tiếp đến phần điều chế, nhưng nó lại rất hữu ích khi sử dụng các kỹ thuật đa truy nhập. Tuy nhiên, do việc điều chế dạng xung cơ sở thì không phải là một vấn đề hấp dẫn trong cả lý thuyết và thực tế. Điều này được lý giải là do nếu thực hiện nó thì độ phức tạp thêm vào các mạch điện, bộ nhớ và còn nhiều điều khác là không nhỏ mới có thể tạo được các dạng xung cơ sở. Và do đó nếu không bắt buộc thì chúng ta không nên thực hiện phương pháp này. Tuy vậy, để đánh giá rõ ảnh hưởng của độ phức tạp của hệ thống mà chỉ với những lời đánh giá này là không đủ. Trong phạm vi nghiên cứu của đồ án chỉ có thể đánh giá một cách khái quát nhằm đưa được các kết luận cần thiết. Điều không may mắn là tham số dạng xung thì không còn phù hợp để mô tả tập hợp xung cơ sở và ở đây chúng ta đặt nhãn cho mỗi xung một cách đơn giản là p1, p2, …pi và giả thiết rằng các xung này được thiết kế sao cho trực giao với nhau.
Hình 2-9: Các phương pháp điều chế khác
Việc nghiên cứu các phương pháp tạo ra các xung trực giao này không nằm trong phạm vi nghiên cứu của đồ án.
Cả ba kỹ thuật điều chế như đã trình bầy ở trên - điều chế vị trí xung, điều chế xung đối cực, điều chế xung trực giao -đã được đề xuất sử dụng trong truyền thông UWB. Ngay khi các tác nhà nghiên cứu quan tâm đến các dạng điều chế nhằm đề xuất sử dụng cho UWB thì chưa có một nỗ lực đáng kể nào tập chung vào phương pháp điều chế biên độ xung cũng như on-off keying. Tuy nhiên, như đã đề cập thì sự đầy đủ khi nghiên cứu về một vấn đề luôn luôn là cần thiết đặc biệt với trong lĩnh vực nghiên cứu lý thuyết. Do vậy các khả năng sử dụng của chúng cũng được thảo luận dưới đây.
2.4.3.2 Điều chế biên độ xung
Điều chế biên độ xung (PAM) cho UWB có thể được trình bầy theo phương trình (2-14).
>0 (2-14)
Trong đó tham số dạng xung nhận các giá trị dương. Xét một ví dụ, chúng ta đặt =1, 2 và ta có tập xung cơ hai s1=p(t), s2=2p(t).
Nói chung, điều chế biên độ xung không phải là một phương pháp hấp dẫn cho truyền thông cự ly ngắn. Lý do chính bao hàm một thực tế rằng một tín hiệu được điều chế biên độ mà có biên độ nhỏ thì dễ bị ảnh hưởng của tạp âm hơn phần có biên độ lớn hơn. Hơn nữa, lượng công suất lớn hơn được yêu cầu để phát các xung có biên độ cao hơn. Đối với các hệ thống sin, các hệ thống sử dụng điều chế biên độ thường được phân biệt với các hệ thống sử dụng phương pháp điều chế góc là yêu cầu độ rộng băng tần hẹp và không hiệu quả trong việc sử dụng công suất. Do vậy, ưu điểm lớn nhất (độ rộng băng tần hẹp) dường như không có ý nghĩa đối với UWB, và hầu hết các ứng dụng UWB lại coi yếu tố công suất như là một vấn đề cốt yếu. Đó cũng là lý do tại sao mà điều chế biên độ lại không được quan tâm đến trong UWB.
2.4.3.3 On-Off keying
On-Off keying (OOK) trong UWB có thể được coi như là một dạng điều chế dạng xung trong đó tham số dạng xung có thể là 0 hoặc 1 như thể hiện trong phương trình (2-15).
=0, 1 (2-15)
Xung “on” được tạo ra khi =1 và xung “off” khi =0; do đó s1=p(t) và s2=0.
Khó khăn cơ bản của OOK là sự có mặt của đa đường, trong đó các tiếng vọng của những xung ban đầu hoặc những xung khác khiến nó trở nên khó khăn trong việc xác minh sự vắng mặt của một xung. OOK cũng là phương pháp điều chế cơ hai, tương tự như BPM nhưng nó không thể được mở rộng thành một phương pháp điều chế M-ary như PPM, PAM, OPM.
Xác suất lỗi giống như trường hợp PPM.
Không gian tín hiệu và xác lỗi bít xem trong hình 2-10 và 2-11.
2.4.4 Tổng kết về các phương pháp điều chế
Trong phần này chúng ta đưa ra sự tổng hợp đánh giá về các phương pháp điều chế cho truyền thông UWB trong bảng 2.1. Bảng này tổng hợp lại các ưu điểm và nhược điểm của từng phương pháp điều chế đã nêu.
Hình 2-11 sẽ cho chúng ta thấy BER của một số phương pháp điều chế. Theo đó, xác suất lỗi của PPM cũng không khác gì so với OOK, cao hơn so với BPM. Sau khi đã đưa ra những ý kiến đánh giá về điểm mạnh và điểm yếu của từng phương pháp điều chế thì việc quyết định một phương pháp khả dụng nhất là rất quan trọng. Xét một cách toàn diện thì PPM là phương pháp điều chế được có nhiều ưu điểm hơn cả mặc dù đó không phải là phương pháp mà hiệu quả về công suất là tối ưu so với BPM.
Phương pháp điều chế
Ưu điểm
Nhược điểm
PPM
Đơn giản
Cần đồng bộ một cách chính xác
BPM
Đơn giản, tiết kiệm công suất phát (độ lợi 3 dB)
Chỉ điều chế hai mức
OPM
Trực giao cho đa truy nhập
Phức tạp
PAM
Đơn giản
Khả năng chống tạp âm kém, công suất sử dụng lớn
OOK
Đơn giản
Chỉ điều chế cơ hai, khả năng chống tạp âm kém
Bảng 2-1: Tổng hợp ưu nhược điểm của các phương pháp điều chế
Hình 2-10: Không gian tín hiệu của OOK, PPMvà BPM
Có ba lý do chính dẫn đến kết luận trên. Thứ nhất, do đa đường là nguyên nhân chính gây ra tính mất ổn định về mặt thời gian nhưng PPM có thể tận dụng đặc tính này rất tốt để có thể thích ứng với kênh vô tuyến có phản xạ và cũng như có thuộc tính về phổ tín hiệu rất tốt. Trái lại, điều chế BPSK mã hoá dữ liệu cần phát bởi cực tính xung nên có thể bị méo khi truyền trong kênh vô tuyến có phản xạ một cách dễ dàng. Thứ hai, do Philips đang làm việc nhằm triển khai bộ định thời chính xác, đó là._.
Các file đính kèm theo tài liệu này:
- DA2075.doc