Chuang2:Bdi loankhongchlnhvaphuanglrinhrch ch(ip
CHU'dNG 2:
, , ~ ~
HAl TOAN lillONG CIIINII
VA PIIUONG TRINII ~.,tCIICII~P
2.1Baitocmkhongchinh
HadamardgQimQtmo hlnhclla mQtbai loanv~tly la chlnh(well-posed)nC'lI
n6thoamanbatinhch5tsanday:
I. T6n t~inghi~mclh b~dto<ln(Existence),
2.B~dloanc6 khongquamQtnghi~m(Uniqueness),
3.Nghi~mclla batloanphl,lthuQclien tl,lCvaoduki~n(Stability).
Ta c6 th~phatbiEhlkhatni~mchlnh(theonghIaHadamard)dtcoid~lngloan
hQcnhusau:
11;n/1ng/1ia2.1.1
Ch
7 trang |
Chia sẻ: huyen82 | Lượt xem: 1400 | Lượt tải: 0
Tóm tắt tài liệu Chỉnh hóa một số bài phương trình tích chặp, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
o F: X ~ Y la mQtloan tli giua hatkhonggiancljnhchllfin.Phtiongtrlnh
Fx ~y (finx) c1uQcgQila chlnhne'uthoabadi€u ki~nsauday:
, I. Vy E Y,3x EX saochoFx =y,
2. VX1,X2EX, ne'uFx, =Fx2 thlx,=x2,
3. V {x11}C X, ne'u Fx 11~ Fx tIll XI1~ x khi n ~ co.
NhungphtCongtrlnhFx =y khongthoamQttrangdc c1i~uki~ntrenc1tCQcgQi
lakhongchlnh.
Nilanxet2.1.2
I. Di~uki~nt6nt~inghi~mclla phuongtrlnhFx =y c6 th~c1~tc1tiQCkhi!ta md
rQngkhonggiannghi~l11. !
2.TnionghQpphtidngIrlnhFx =y c6quamOtnghi~m,ILi'cJa Lathie'uthongtin.
VI v~yl11u6nd~ltduQcHnhduy nh5tnghi~mta din Omthemthongtin v~
nghi~m.
3. D~c tnCngchinhcita phuongtrlnhkhongchlnhla tlnhkhong6n c1inhct'ta
nghi~m.PhuongtrlnhkhongchinhtrenthlfcIe'khangth~giili c1u'Qcbai vi khi
do d~cta luan luon m~cphili satso'trenelaki~n.Do tinhkhong6n c1jnhclla
nghi<';masatso'giUanghi~mtinhloan va nghi<';mchinhxac co th~rf{tIon,
dLIchosais6Lreneluki~nnho.
Chu'ung2: Bal loan!chongchlnhvaphuunglrinhtIchch('ip
4, Tinh 6n dinhcuanghit$mco lien quande'nchuflnCl'tacackhonggianX va
Y. MQt phudngtrlnhco th~1achinhho~ckhongchinhkhi c1uQcta bie'nd6i
trongcacchuflnkhacnhau.X6t vi d~ldlioi day:
Dnh t6ngchu6iFouriervoi cach~so'gftndungtrongkhonggian12,
Gia sll'
00
fJt) = 2:>11cos(nt)
II~O
TI b?' £ ~' 1 ' ilay all 01 CII =all +-VO1 n;::: va Co=ao'taOUQc:
, n
(1)
f2(t)=IclI cos(nt)
11=0
Khi d6 saiso'trendCi'ki~nlEt:
I I
{ }
-
( J
-
00 2 0012
£1 = I(clI - aJ2 =E I2
11=0 11=1n
VI chu6iso'f -\- hQit\,lneB £1 -+ 0 khi £ -+ 0,
II~In
Ta co
00 1
fl (t)- f2(t)=£I -cos(nt)
1I~1n
Danhgiasaiso'clh t6ngchu6itrongcackhonggiankhacnhau,taco:
. Ne'usaiso'cuat6ngchu6idliQCd(lnhgia trongkhonggiancaeh~lJnlien l~le
C till t6ngchu6iFourierkh6ng6ndjnh, VI:
{
OOI
}
001
IIf2 - fille =sup £I -- cos(nt) =£I - =00,
~ I 11=1n 11=1II
( I ", '" ~1 h" k' )ClUO1so 1-.J- p an y,
1I~1n
. Ne'usaiso'clla t6ngchu6idudcdanhgia trongkh6nggianl} [ 0;n] lhl nha. !
dtnhly Parseva1taduQc:
{
n 2
}
~
{
n "0, 2
\
~
H
00 1
11[2-f1112= flfl(t)-f2(t~dr
.
= - I(cn -aJ = -.8I2~O
0 2 n=1 2 n=1 n
khi £ -+O.Do do t6ngchu6iFourierla 6nc1jnh.
* TruanghQploan tli F kh6ngcompact,phlidngtrlnhFx =y la kh6ngchinh
ne'utathemgiathie'tv~RangeF.
Chuang2: Bih loankh6ngchlnhvaphuangtrlnhtlchch(Lp
Menh c1~2.1.3
Cho F: X ~ Y la loan ta tuye'ntinh lien t~lCva I-I giua hai kh6ng gian
Banach.Gia saRangeF:;t:Y va RangeP=Y. Khi doFI kh6nglien t~lC.
ClllJ'ngminh:
Tli gia thie'tvi: RangeF, SHYfa:
3yEY \ RangeF, 3{yII}c RangeF saochoyn~ Y kllin~ 00
D~ty"=Px,, Vn, taco: Fxn ~ Y khi n ~ 00
Ne'uFI lien t~ICtIll 3M> 0 sao cho:
Ilxnll=llp-'YnllsMIIYnll n=1,2,3...
Do {Yn}laday hQi t\1nen {Yn}laday Cauchy.TiXb5t dfll1gtllLi'ctrensuy ra
{xn}la day Cauchytrongkh6nggianBanachX, nghlala t6nt~ix E X va Xn~ x
khi n ~ 00.
M~tkhac:F lien t~lC=?Fxn"~Fx khi n -j- 00
VI gidi fwnclla day {Fxn}la duynh5tDensuyfa: Fx =Y, nghlafaYE:Ral1geF.
Dii:ll naymallthu:invdi y E Y \ RangeF.V~yFI kh6nglien t~IC. [J
, * PhlfdngtdnhFx =y co th~d~tC11fQctinh6n c1jnhne'llta thuhypkhonggian
nghi~m.
Menh c1~2.1.4
Cho X va Y fa hai kh6nggian(11nhchufln.Gia stiXI c X la mQtkh6nggian
cancompactvaF: XI ~ Y Ia loanttilientl,lCva 1-1.Khi doFI lient~lC.
Chungminh:
X / / ? F-lettoantlf -: Range F ~ Xl
Giclslfy E RangeF vaday {yn}C RangeF thc')a:Yn--t Y khi n "~ 00
Ta phaich(fngminh: p-'Yn-tP-'y khin~oo
D~t F
--I
xn = --<yII Vn, x =F-1y
Ne'uXn~ x thlt6nt~idaycan {Xnk}cuaday {x,,}saochovdim9ik taco:
Ilx", -xI12E>O
(2.1)
Chuang2: Bdi toclnkh6ngchlnhvdphuongtrinhtfchCh(7P
Mal khac,doXI la t~pcompactneBtOnt~lidaycon tXl1klfclla oay {Xl1k} Ve)dJ
X()E X I sao cho: xn --+x() khi 1~ 00k,
VI F lien tl,lC,SHYra YI1 = FIx" )--? F(x,,) khi I-> 00k1 \ k I
~ x =x"
(00 Y11~ y)
(eloF 1aI - I)
~ F(xJ =Y
Tt'((2.1), ta co: Ilxl1kl-xll~£>o
V~ythl: o=llx()-xll=llx-xll~£>o v0Iy.
Nht(v~yphaicoXn~ x khi n --.t00. [I
Kh£ng uinhcua m~nhde (2.1.4)v~nc1ungtrongtruc')nghQpX I C X la khtJllg
. ? X ' X x, X" 1/ X ' I'~ " X" j ' II A.gu:lI1con eua va I = + trongco a t~lpcompactva a '-long glall
conhi:'(uh~lnchieuclJaX.(Xem [41).
2.2 Phu'dngtrinh tich chgp
l;!iflJu1gh I~J. 2. 1
Pht(c1ngtrlnhtinhphancod<;tng:
(K*vXx)= fK(x- t).v(t)dt=u(x),xE R",11~I (22 )
R"
(K, u la cachamehotrude,v la h~llnffn) du(;cgQila phu'(ingtrlnhrichchap.
Ta gc,JihamK Ia nhan,hamu Ia oil ki~nclla pht((ingtrlnhtichch~p(2.2).
2.3Vi duv~tinhkhongchinhcu~hu'dngtrinf:ll!~JL~b~1p
Cho loan lu' A: e(R)-~ L2(R) ut(Qc xac ujnh bc.~i c{Jng! lh(i'c
.HXJ
Av(x)= fK(x-t).v(t)ut,vdi KEL'(R)nL}(R).
-Cf)
Ta Omnghi~mv E L2(R)cuapht(c1nglrlnh : A vex)=u(x)
Phu'cingtrlnh(2.3)c1U\1cvie'tot((iicl<;tngtfehch~p:
(2..) )
+Cf)
(K*vXx)= fK(x - t).v(t}lt=u(x) (2.cj)
-Cf)
Chuang2: Bai loankhongchlnhvaphuangtrinhtIchch(ip
. Ta ch((ngminhr~ngb?1itoclnd;;lI1g(2.4)noi chungla kb6ngcbInb.
Menh dif 2.3.1
ToantuA la tuye'ntinhlient\lC.
CluIngminh:
, TU' dinhly 1.3.1suyraA hoanloanX;lcdinbtrenL2(R).
Vdi mQivj, V2thuOcl}(R) vas,ria dc s6tilyy, taco:
+00
A[s.vJx)+r.vz(x)]= fK(x-t)[S.Vl(t)+r.Vz(t)]dt =
-00
+00 +00
=s fK(x-t).vJt)dt+r fK(x-t).vz(t)dt=s.Av,(x)+r.Av2(X)
-00 --00
::::> A tuye'ntinb.
TheodinhIy 1.3.1,taco:
IIAvllz = IlK * vl12~ IIKIIlllvl12 ::::> A lien t~IC.
, * Phlidngtrlnhtichch~p(2.4)thu'C5ngco nbi€u hdnmOtngbi~m.Xet m~nhd€
saudily:
Menhdif2.3.2
, Pht(dngtrlnh (2.4)co nhi€u nhfltmOtnghi~mkhi va chI khi t~phQp
E ={t ER \ K(t)=o} codOdob~ngkh6ng.
ClllCllK-11lill h:
Ki hi~u:mla dOdotrenR, XM la hamd~ctn(ngtrent~pM.
I
1.::::»Gi;l su phlidngtrlnh(2.4)co nhi€u nhflt:mOtnghi~m,taph;lich((ngminh
m(E)=O.
Th~tv~y,tacobiSudi~n E=~{E(1[-n,n]},0=1
Ne'um(E) *"0 thl t6n t~inoE N sac cho 0 <m(E(1[- no,nJ) <+00
A A
TaIflyVo(t)=XEn[-no,no](t)thl Vo(t)* 0
::::> vo(x)*"0
Chuang2: Bai todnkhi5ngchlnhvaphuangtrinhtlchch~lp --------------
1\
M~Hkhacvo =XEn[-no.n..JEL2(R):::>voEL2(R)
+c.o
Cho u(x)==0,phu'ongtrlnh(2.4)trdthanh fK(x -- t).v(t)dt=0 (2.5)
--co
Khi do phuongtrlnh (2.5)co nhi~uhon I11Qtnghi~l11.£)i~unay tnii vdi gi<l
thiC't.V~ym(E)=O.
1\
2, <=)Gia Sl(m(E)=0,nghIala K(t)1=0 h.k.ntrenR
BiC'ndc5iFourierhaivC'cila phuongtr1nh(2.4)tadl(QC:
1\ 1\ 1\
K (t). vet)= oCt)=>
1\ 1\
vCt)= oCt)1\
K (t)
" NC'u ~ ~e(R) th1v ~L2(R) :phl((jngtr111h(2.4)vo I1ghi~l11.
1\
. NC'uv EL2(R) vaVEL 2(R)th1phl((ingtr1nh(2.4)co nghi~mcluyI1h51. []
Menh c1~2.3.3
Phuong trlnh tich ch{lP d<;lng(2.4)n6i chunglil khong chlnh.
CluIng minh:
1. roantif A JiJ 1-1
Th~tv~y,gillsuA vex)=0
=> (K*v) (x)=0 =>
1\ 1\
K(t).v(t)=0
(1«(t)1=O
Ker A ={a}
h.k.ntrenR )
=>
1\
v(t)==O h.k.ntrenR
=> vex)=0 =>
2. Stf tiin tqinghiQm
1\
Ne'uphuongtrlnh(2.4)co nghi~mvEr}(R) th1~=~ E I}(R). Nhu v~yK
phuongtrlnh(2.4)chuach~cco I1ghi~111v E L\R). Ch~ngh<:tnlily u E L2(R) l11a
1\ 1\ 1\
u==2K.Theogia thie't,K E LI(R) nI}(R)=>KEI}(R)
1\
1\ 1\ 2K - - 2
=>2K E e(R). Tuynhienv==-;:- =2~e(R) =>v ~L (R)
K r--
j!:)H.kH TlrNl-tlF;;)
,Chuang2: Bai loankhongchlnhvaphuangldnh tichchcJp
3. Tfnhtindjnh
.Tli chungminhd 2.,mN cacht6ngquattasoyraRangeA"* L\R)
.B@apd~tngm~nhd~2.1.3tachungminhthemRangeA trom~trangL2(R).
Ki hi~uCc(R)la kh6nggiancachamlien tl,lccogiacompactrenR.
B~t G ={U E e(R)\ ~E Cc(R)} .TnI'och€t tachungtoG c RangeA.
Th~tv~y,H(yutoyythuQcG till ~E Cc(R). VI K E L1(R) Hen J( E C(R),soyra
f\
-~ECc(R) (HchmQthamlien t\lcco giacompactvoi mQthamlien t~IC).
K
MQi hamso'thuQcCc(R)c L2(R) d~uco bi€n d6i FouriernglI'Qc.Do c10t6nt~li
f\
2 f\ U f\ f\ f\
VEL (R) thoa v =- hay K. v=Uf\
K
f\ f\
K"'V=ll K '"v = u.V~yt6n tUE RangeA
=> G c RangeA
, Bay gio H(yu toyy thuQc L2(R), khi c10 ~IE em.). Do CcCR)trll m~ttrong
f\
L\R) Hent6nt~idaytrongCc(R)hQit~lv~ u, tucla t6nt~tiday {un}c G thoa
il~n- ~112~ 0 khi n ~ 00.
IIUn -u112 ~ 0 khi n ~ 00 =>Un ~ U trang e(R)
VI {Un}C G nen {un}c RangeA.
V~y voi U E e(R), t6n t~i day {un}c RangeA tboa Un~ U khi n -+ 00
RangeA=L\R)Dodo
Thea m~nhd~2.1.3,ta soyra A-I kh6nglien t\lC,nghIala nghi~mclla pl1lI'(jng
trlnh(2.4)kh6ngph\1thuQclien t\lCrheadli ki~n.
K€t quad 2.va 3.clIngvoim~nhc1~2.3.2,c15kh~ngc1inhphltdngtrInh(2.4)
noichunglakh6ngchlnh.
._.