CHUONG4
HE BI DONG VA TfNH TOr -Oil
Choh~a =(X, U, V, A, B, C, D) . H~dU9CgQilabi dQngn~utoantV
T=(~ ~}XEBU~XEBV
latoantVco.Ta cohamtruy~n8(z)cuah~bi dQngthuQcv~lop&J(U,V), va
ngu9cl?i voim6iham8(Z)E&J(U,V)d~ut6nt?imQth~bi dQngcoham
truy~nla8(z).Ta cok~tqualan~ua lah~bi dQng, till t6nt?i cactoantV
M :X -+W, N :U -+W , Q : W* -+X , R : W*-+V saocho
I - A *A -C*C =M*M , - A *B -C*D =M*N, I-B*B --"-D*D=N*N, (4.1)
I - A A*-B B* =QQ*, - AC* - BD*=QR*, I-CC* -DD* =RR*. (4.2)
GiaSlt waCz)=N +
16 trang |
Chia sẻ: huyen82 | Lượt xem: 1525 | Lượt tải: 0
Tóm tắt tài liệu Các hệ động lực tuyến tính bị động và đơn nguyên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
z M(I - z AflB, KaCz)=(I - z AflB,
\jf*a(z)=R +z C(I - z AflQ, HaCz)=C (I - zAfl,
tacocacd1lngthucsau
1- 8(z)*8(z')=waCz)*waCz')+(1- zz')KaCz)*KaCz'),
1- 8(z)8(z')*=\jf*a (z) \jf*a(z') * +(1- zz')HaCz)Iix(z')*,
(4.3)
(4.4)
trongdoz, z' thuQcdlatrimdonvi (jJJ.Trongtrlfdngh9Pa la h~donnguyen,
cactoantVM, N, Q, R bfu1g0nentaco
1- 8(z)*8(z')= (1- zz')Ka(z)*Ka(z'),
1- 8(z)8(z')*=(1- zz')Ha(z)HaCz')*.
(4.5)
(4.6)
52
H~bi dQngex=( x, U, V, A, B, C, D ) dlf<;5CgQila t6ilfU (tlfongling
d6i-t6ilfU(1»)n~uvdimQih~bi dQngex'=(X', U, V, A', B', C',D') cocling
hamtruy~nvdih~ex, taco
fA kBuk
l1
::;
II
fA,k B'ud ; \in EN, \iUkEU;
k=O k=O
( Tlfongling, Ilk~AkBUkI121Ik~oA'kB'Ukll; \in EN, \iUkEU).
H~bi dQngexdlf<;5CgQila *- t6ilfU (tlfongling, *-d6i t6i lfU) n~uvdi mQi
h~bi dQnga' vdi8a,(z)=8a(z),taco
fA *k c*vk
ll
::;
II
fA'*kC'*vd ' \in EN, \iVkEV;
k=O k=O
(4.7)
(tlfongling, II fA *k C *vk
l1
2
11
fA'*kC'*vkll, \in EN, \iVkEV) .
k=O k=O
Hi€n OOientacon~uex=(X, U,V,A,B,C,D)la t6ilfU ( tlfongling,d6i-
t6ilJU)thih~d6ing~ua*=( X, U,V,A*, C*,B*,D* ) la *- t6ilfU (tlfongling,
*- d6i t6i lfU).
Nglfdi tachlingminhdlf<;5Crbg ( [1] , [2])mQth~bi dQngt6i lfUva t6i
thi€u (h~bi dQngd6i-t6i lfUvat6i thi€u) till dlf<;5CxacdiM duyoofitbbiham
truy~nsai khacmQtphepbi~nd6i donnguyen;va vdi m6iham8(z) E
$(U,V), d~ut6nt?imQth~bidQngt6ilfUvat6ithi€ucohamtruy~nla8(z).
G.? ? 8()
(
8(Z)
JU
V F d' ()I
' h' :. oo:'?la s11 z = : ~ Ef>,trong 0 <pz a amnontot atcua
<pCz)
(1) Trangbeli[IJ. Arovdungthu(jtngil" *-t6ilIu"thayvi "d6it6ilIu"
53
hamI - 8(z)*8(z).Hi~nnhientacoham8(z) covi cp(z)*cp(z)::;
1- 8(z)*8(z).Giasu a =( X, U, V EBF,A, B, C, D) lah~dongian,don
nguyencohamtruy~nla 8(z).D~t
0 _0_0 _0 -
A =A, B=B, C=PyC, D=PyD, (4.8)
trongdoPyla phepchi~uvuonggoct2fV EBF tenV. Khi dotaco([1])h~
0 0 0 0 0
a =( X, U, V, A, B, C, D) lah~bidQngt6i11U,cohamtruy~nla
80(z)=8(z) ;va
a
0 0 0 0 0 0
N=PFD, M=PFC, \jfo(z)=N+zM(I-zAflB =cp(z). (4.9)
a
4.1.Di~ukifD t&itfuva d&i-t&itfucuahf hj dQDg.
Giasu a =(X, U, V, A, B, C,D) lah~bidQng.Do(4.3),taco
waCz)*waCz)::;I - 8(z)*8(z).
Tli diM ng.l}Iacuahamcp(z),tasuyra
waCz)*wa(z)::; cp(z)*cp(z).
Trongphfu1sailtasechUngminhrfulgn~uh~a la t6i 11Uthi waCz)*Wa(z)se
d(;ltc~ tren,nghlala taco waCz)*WaCz)=cp(z)*cp(z);van~uh~a la d6i- t6i
11Uthi waCz)*WaCz)sed(;ltc~ dudi,nghlala Wa(z)=O.
Djnh Iy 4.1.
H~bidQnga =(X,U,V,A,B,C,D)lad6i-t6i11Un~uvachIn~uwaCz)=O.
54
ChUngminh.
Gia sua 1ah~d6i-t6iuu.GQia' 1ah~ddnnguyencocUnghamtruy~n1a
8(z).Vi a' cling1ah~bi dQngnentacovdimQiZE@ valiEU,
11(I-zA)-lBu 112~ 11(I-zA')-lB'u 112
<Ka(z)*Klz)u, u ) ~ <~, (z)*lea, (z)u, u )=?
III (4.3)va(4.5),tasuyfa
<(I - 8(z)*8(z)- \Viz)*\Va(z))u,u ) ~<(I - 8(z)*8(z))u,u ) ;
di~unaydfuld~n<\Viz)*\Viz)u,u )=0,vadodo\Va(z)=O.
NguQcl?i, n~u\Va(z)=0,tU(4.3)taco
1- 8(z)*8(z')=(1- zz')Kiz)*Kiz') ; z, Z'E @.
Gis.sua' =( X', U, V, A', B', C',D' ) 1ah~bi dQngcocUnghamtruy~n1a
8(z).taco
n n
II L (l-zkA') - 1B' Uk 112=II L Ka, (Zk):Ik 112
k~ k~
n n
=L L <Ka, (Zj)* lea,(Zj)Uj , Uj )
i=lj=l
n n -
=L L (1-zj Zj) - 1 <( I - 8(zj)*8(zj)- \Va'(Z)*\Va'(Zj))~, Uj)
i=l j=l
n n n n
= L L <Ka(z)*Kizj)~ , Uj)- L L (1- Zjz) - l<\Va'(Zj)*\Va,(Zj)Uj,Uj)
i=lj=l i=lj=l
n n n
= II L (I - zkA)-lBuk 112-L L (1-ZjZj)-l <\Va'(Zj)*\Va'(Z)~, Uj) (4.10)
k=l i=lj=l
vdimQi{Zk}~=lc @va {Uk}~=lcU.
55
nGia s11\Va'(z) : U ~ W'. D~t h (~)= L (~- Zk)-lUb UkEU. Ta CO
k=l
n
h(~) E L2(U), P - ,'Va,h= L (~-Zk)-l'Va'(Zk)Uk Va
L2(W ) k=l
n
II PL"2(W')'Valh 112L2(W')=II ~1 (~- Zk)-l'Va,(Zk)Uk 112L2(WI)
n n -1 -1
=L L «(~- zJ 'Va,(Zi)Ui, (~- Zj) 'Va,(Zj)Uj >L2(W')
i=lj=l
n n --1
= L L «(1- ZjzJ 'Va,(ZJUi' \Va'(Zj)Uj>W'
i=lj=l
n n - 1
=L L «(1-ZjZJ - 'Va'(z j) *\Va'(Zi)Uj,Uj>U.
i=lj=l
Nhl1v~ytU (4.10)taSuyfa
n n
II L(I-zkA)-lBuk 112~II L(I-zkA,)-lB'uk 112;\fn=1,2,.., \fZkEqj),
k=l k=l
\fUk E U.
Do doa lah~d6i-t6il1Uvadinhly dU<;5cchUngminh.
Djnh Iy 4.2.
Gia s11a =(X,U,V, A, B, C,DYlah~bidQngco<p(z)lahamnont6t
nhfttUngvdihamtruy~n8(z).N~uh~a la t6il1Uthi \VaCz)*\Va(z)=<p(z)*<p(z).
Khi dotfmt~imQthamtrongb(z)saocho\Va(z)=b(z)<p(z).
ChUngminh.
0 0
Gia s11a lah~bidQngt6il1Udu<;5cmotadtren.D6ivdih~a, taco
56
I - e(z)*e(z')= q:>(z)*q:>(z')+ (1- zz')K 0 (z)*K 0 (z'); z, Z'E rz/).
a a
0
Vi exvaa lacach~t6ilfUcoclinghamtruy~nlae(z),nentacovdimQi
Z E rz/)va U E U :
1
II
0 0 112
II(I - ZA)-l Bull-=I(I - ZA)-l Bu
2
=> IIKa(z)uI12=IIKo(z)u
a
=>
(KcJ z) * Ka (z)u,u)~(K~(z)*K~(z)u,u)
( 1- 1 Z 12)«( I - e(z)*e(z)- \VaCz)*\VaCZ))u,u ) =
( 1- 1 Z 12 )«(I - e(z)*e(z)- q:>(z)*q:>(z))u,u )
=>
=> «(q:>(z)*q:>(z)- \Va(z)*\Va(z))U,U ) =0
Suyfa
q:>(z)*q:>(z)= \VaCz)*\Va(z).
Vi q:>(z)lahamngoainentheom~nhd~4.1( [31]),t6nta)mQthamtrong
b(z):F ~ W saocho\lfa(z)=b(z)q:>(z).DiM ly du<;5cchUngminh.
Gia sv 8*(z) =(e(z) q:>*(z)):U EDF' ~ V, trongdo q:>* (z) la*-hamnon
0
t6tnhfttcuahamI - e(z)e(z)*vaa * lah~bi dQngt6ilfUdu<;5cdiM nghianhu
~ nhumrthav8(z) bdi8*(z)=
(
8(z)
)
: V ~ U ffiF'.B(mgcachap dung
~ ~ / <1'*(z) ~. ~
chUngminhcuadinhly 4.1va diM ly 4.2choh~a*=(X,V,U,A*,C*,B*,D*)
57
d6ingducuah~a =( X, U, V, A, B, C, D ), vabfulgcachS11d1JIlgh~mo
0
hiOObi dQngvat6iuu a * va d~g thuc(4.4); tadll<;1Ccack~tquad6ingdu
cuadiM Iy 4.1vadiMIy 4.2.
Binb Iy4.3.
H~bidQnga Ia*- d6it6iuun~uvachin~u'If*a(Z)=0 .
Binb Iy4.4.
GiaS11a Iah~bi dQngco*(z)Ia *-hamnont61nMt tl1dngUngvdi
hamtruy~n8(z) cua h~.D@h~ a Ia *-t6i uu, di~uki~nc§n Ia
'If*a(z) 'If*a(z) *=*(z)*(z)*.
H~qua4.1.
MQth~ddnnguyenIah~bidQngd6i-t6iuuva*- d6it6iuu.
ChUngminh.
Hi@nOOienmQth~ddnnguyena Ia h~bi dQng.Hdn mlan~ua Ia ddn
nguyenthicactoootUM, N, Q vaR bfulg0;dodo 'lfa(Z)=0va 'If*a(z)=O.
TheodiM Iy 4.1vadiM Iy 4.3,tacoh~ala d6i-t6iuuva*- d6i-t6iuu.
H~qua4.2.
N~uh~bi dQngdi~ukhi@ndll<;1C(1.11.quansatdllQC)a =(X, U, V, A,
B, C, D) lit d6i-t6i lIu (1.11.*-d6i t6i lIu) till toanW T = (~ ~): X E9U ~
58
(A*
X EBV (t.u. T*= B*
C:
J
: X EBV~ X EBU) 1adkg cu.
D .
ChUngminh.
Th~tv~y,vi h~ex1ad6i-t6iuunentaco\VaCz)=O.Tli daydfuld~n
00
WaCO)=N=OvadodozM( I - zA) -IB = L Zk+IMAkB=O.SuyfaMAkB =0,
k=O
Vk E N. Do h~ex1adi~ukhi~nduQcnenM =O.V~y
I - A*A - C*C =0 1- B*B - D*D=0 A*B +C*D=0, , ,
va T 1adkg c1;f.
Phfu1cuah~qualien qUaild~ntinh qUailsatduQCva *- d6i t6i uu cling
dUngvi tacohebi dQngex1aqUailsatduQCva *- d6i t6i uun~uvachin~uh~
(X*1adi~ukhi~nduQcva d6i t6i uu.
Tli h~qua 4.1vah~qua...4.2,tathuduQcdi~uki~nd~mQth~bi dQng
1adonnguyen.
H~qua 4.3.
Gia suh~bi dQngex1at6i thi~u.Khi doh~ex1adonnguyenn~uva chi
n~uh~ex13.d6i-t6iuuva*-d6it6iuu.
4.2.H~hi dQngva hamnont8tnhfttti'ngvrohamtruy~ncuah~.
Cho cp(z)1ahamnont6tnhMcuahamI - 8(z)*8(z),taco
0 ~ cp(z)*cp(z)~I - 8(z)*8(z).
59
Trongphfu1nayta sexett£OOch~tcuah~bi d<)nga trongtnionghQpbi~u
thuccp(z)*cp(z)cuahamnont6tOO~tlingvdihamtruy~n8(z)cuah~dq.tduQc
c~ tren,nghla1acp(z)*cp(z)=I - 8(z)*8(z);vaxettrongtnionghQpbi~uthuc
dodq.tc~ dudi,nghla1acp(z)=0.
TuongUJ,taclingxetchotrlJonghQp* - hamnont6tnh~tcp.(z)lingvdiham
truy~n8(z)cuah~a.
4.2.1Trudch~ttaphatbi~uk~tquachotnionghQpcp(z)*cp(z)=I - 8(z)*8(z)
vacp.(z)cp.(z)*=I - 8(z)8(z)*.
Djnh Iy 4.5.
Cho a 1ah~bi d<)ngt6ilfU( t.u.*-t6ilfU)cohamtruy~n1a8(z).Khi do
h~a hoantoankhongdi~ukhi~nduQc( t.u.hoantoankhongqUailsatduQc)
n~uvacmn~ucp(z)*cp(z)=1- 8(z)*8(z)( t.u.cp.(z)cp,,(z)*=1- 8(z)8(z)*).
(Bdi diM nghla,h~a duQcgQi1ahoantoankhongdi~ukhi~nduQcn~u
X~={O},vaduQCgQi1ahoantoankhongqUailsatduQcn~uX~={0}).
Chungminh.
Gia sVh~a hoantoankho~gdi~ukhi~nduQc.Vdi mQiZE:llJva liEU, ta
,co
(Ka(z)*Ka(z)u,u)= II Ka(Z)U112 = II(I-zA)-lBu 112=0.
Tll (4.3),taco
( ( 1- 8(z)*8(z) - \jJaCz)*\jJaCz))u, u >=O.
Suy ra \jJaCz)*\jJa(z)=I - 8(z)*8(z).Vi h~a 1at6ilfU,dodiM 1y4.2taco
60
wcxCz)*wa(Z) =cp(z)*cp(z)vadodocp(z)*cp(z)=I - 9(z)*9(z).
NgllQCl'.li,gia sv cp(z)*cp(z)=I - 9(z)*9(z).Ap dlJl1gh~thuc(4.3)cho
h~bid9nga, taco
1- 9(z)*9(z)= WcxCz)*Wa(z)+( 1- I zl2)KaCz)*Ka(z) (4.11)
dUngvdimQiZEq}).Vi h~a 1at6iuunen
cp(z)*cp(z)= WcxCz)*Wa(z)
III (4.11)va(4.12), tasuyfa
(4.12)
lieI - zA r IBu 112==0
vdi mQiZEf!lJva liEU. Di~unaydfu:1d6n x~={a}vadodoa hoan.toan
khongdi~ukhi~ndllQC.
D~chUngminhphfmlienqUaild6nrinhhoantoankhongqUailsatdllQC,
taapdlJl1gphfmchungminhnaychoh~d6ing~ua* cuah~a. Dinh 1ydllQC
chUngminh.
Tli diM 1ynay,tath~yn6uhamI-9(z)*9(z) nhantVhmidllQC( t.ll.
1-8(z)9(z)*)nhantVhoadllQC)nghia1aphlldngtrinh1- 9(z)*8(z)=y(z)*y(z)
(t.ll. I - 9(z)9(z)*=y(z)y(z)*) co nghi~m,thi khongth~t6nt'.J.im9th~bi
dQnga t6i uu ( *- t6i uu) co khonggiandi~ukhi~ndllQC( t.ll, khonggian
qUailsatdll<;5C)khac {O},
4"" T 11'" ta 't t i' h hI' b
'
d" " b' tr " , h'...rangp a..l1nay, xe~ITl..dng QP y ! <;mgVd1 ...amruyenco am
nont6tnhMbfulg0
61
M~nhd~4.1.
Gis.sv0(z):U ~ V 1ahamtruy~ncuah~bid(>nga vacp(z)=01aham
nont6tnh~tcuahamI - 0(z)*0(z) ( t.11.cp*(z)=0 1a*- hamnont6tnh~tcua
ham1- 0(z)0(z)* ). Khi doh~a 1at6i11Uvad6i-t6i11U( t.11.*-t6i11Uva
*-d6i-t6i 11U).
ChUngminh.
Do \VaCz)*\VaCz):::;I - 0(z)*0(z)vagis.thi~tcp(z)=0,taSurra\Va(z)=o.
D6i vdi h~a, tUh~thuc(4.3)ta d11<;5c
I - 0(z)*0(z')=(1- z z')Ka(z)*KaCz'); \j z,z'E9/). (4.13)
Gis.sva' 1~h~bi d(>ngcohamtruy~n1a0(z),taclingco \Va'(z)*\Va'(z) :::;
cp(z)*cp(z).Di~unaydfuld~n\Va'(z)=0 va
1- 0(z)*0(z') =( 1- zz' )Ka, (z)*Ka, (z') ; \j Z,Z'E9/). (4.14)
Tli (4.13) va (4.14),tacovdimQin =1,2/..'{Zk}~=lC 9lJva {Uk}~=lc U,
n n
II L ( I - zkA rIB Uk 112= II L KaCZk )Uk 112
k~ k~
n n
=L L
i=lj=l
n n
= L L
i=lj=l
n
= II L ( I - zkA'rIB 'Uk112.
k=l
T
'
d.3 h
" k':' 1 " 1'1-.",:,. ' d
':"':"
11 a..'1gtitlC nay,ta et U<?lla a BytO1u-ruva O1-tO1UU.
Phfu11ienqUaild~ntnfongh<;5pcp*(z)= 0 d11<;5CchUngminhbfulgcachdUng
d6ing~u.
62
H~qoil 4.4.
Gia Slr cp(z)=0 lahamnont6tnh~tcuaham1- 8(z)*8(z) ( t.u.cp*(z)=0
la*-hamnont6tnh~tcuahamI - 8(z)8(z)*).Khi doh~bi d<)ng,di~ukhiSn
du<;5c(t.u.qUailsatdu<;5c) du<;5cxacdinhduynhMb6ihamtruy~n8(z).
ChUngminh.
Tli m~nh4.1,h~exla t6i uu. Ta d~dangth~ym<)th~bi d<)ng,t6i uu,
di~ukhiSndu<;5c,lat6ithiSu,nenh~exdu<;5cxacdinhduynh~tb6ihamtruy~n
8(z).
Phfmcon l<:licuah~quadu<;5CchUngminh Wongtl;f.
Mfnh d~4.2.
Gia Slrexlah~bi d<)ngcocp(z)=0lahamnont6tnh~t( t.u.cp*(z)=Ola
*-hamnont6tnh~t) Ungvdihamtruy~n8 (z).N~uh~exdi~ukhiSndu<;5c(t.u.
quail sat dll<Jc ) !hi tmm h1 T = (~ ~): X $ U ~ X $ V ( t.1I.
(
A * C *
]
T*= :X EBV ~ X EBU ) ladiingcu.
B* D* .
ChUngminh.
Theom~nhd~4.1,h~exla d6i-t6iuu.Do h~qua4.2,tak~tlu~ toantV
T la diingclJ .
B6i d6i ng~u,taco k~tquachotn.fdngh<;5pc *(z)=O.
63
Tli m~OOd~4.2,taco m<)tdi~uki~ndu d~m<)th~bi d<)nga hi m<)th~
donnguyen.
Hf qua4.5.
N~uh~bi d<)ngt6i thi~ua co caehamnont6tOO~tva *-hamnont6t
ooMlingvdihamtruy~ne(z)d~ubfulg0,thia lah~donnguyen.
4.3. M8i lienhf giuacaehf hi dQngt8i tin ( *-t8i tin) .
Tfong lu~ annay,ta gQim<)th~tuy~nt1OOa =( X,U,V,A,B,C,D ) la
m<)tndi f<)ngbelltraicuah~tuy~nriOOa' =( X',U,V,A',B',C',D') n~ut6ntq.i
m<)tkhonggianconG" saDeho
x =G" EBX',
A*G cG B*G ={O} A'=A
I
B'=B C'=C
I
D'=D" ¥, " , X" , x., .
Tuongtlf,m<)th~tuy~nt1OOa =( X,U;V,A,B,C,D ) la m<)tndi f<)ngbell
phaicuah~tuy~nriOOa' =( X',U,V,A',B',C',D' ) n~ut6ntq.im<)tkhonggian
con G saDeho
X =X' EBG ,
AG c G CG ={O} A'* =A*
I
B'*=B*
I
C'*=C* D'*=D*, , x" x" , .
Ta d~dangki~mITaduQcn~uh~a lam<)tndif<)ngbelltraiho~cbellphaicua
h~ a', thihamtruy~ncuacach~a vaa' bfulgOOautrongm<)tIanc~ naodo
cuaO.Ngoaifa,n~ua lam<)tndir<)ngbelltraicuaa' thih~d6ingftua* la
m<)tndir<)ngbellphaicuaa'* .
64
Djnh If 4.6.
Di~uki~ndm va du d~haih~bi dQngt6i liu ( tv. haih~bi dQng*-t6i
liu) aI, ~ co clinghamtruy~n,8cq(z) =8a;2(z), la t6ntc;timQth~bi dQngt6i
thi~u,t6iliu(tv. h~bidQngt6ithi~u,*-t6iliu) a' 8aochoab ~ landirQng
belltnii(tv. ndirQngbellphai)cuah~a'.
ChUngminh.
Gia 811cach~t6iliu ab a2coclinghamtruy~nla6(z).D~t
X, - xc x, - xc x, , h" ,- ( x, DV A' B' C' D' ) d '
I - 0.1' 2 - (X2' et cac yak - k", k, k, b k trong 0
A'k= Akl X'k' B'k=Bb C'k=Ck IX'k ' D'k=Dk,
tacoh~aklamQtndirQngbelltraicuah~a'kva AkBk =A'k Brbk=1,2.
Gia 811 T: x\~ X'2
A'r B'l u1--7A'~B'2u, \fnEN, \fuED,
n n ." Ark B' "A,kB'L 1 1Uk 1--7 L 2 2 Uk .
k=O k=O
Dogiathietcaeh~ab ~ lat6iliuvacoclinghamtruy~n,tad~dangki~m
chUngdv<JcT dv<JcxacdiM valatoantVd6nnguyen.Tli diM nghTacuaT, ta
,
co
TA' (A,nB' u)- A,n+lB' U- A' T(A,n B' U)III - 22- 2 11,
nen
TA'I=A'2T. (4.15)
(4.16)H6nmlataclingco TB\=B'2'
65
Vi cach~aj, a2coclinghamtruyenlien
8(z)=Dj+zCj(I- zAjfjBj= D2+zCiI- zA2fjB2
tUdaydfu1d~n8(O)=Dj=D2, (4.17)
00 00
khi do IznC1AfB1 = IznC2A~B2, do do CjAfBj= C2A~B2.Tv dinh
n=O n=O
nghiacuacach~a\ vaa'2tasuyraC\A'fB\= C'2A'2B'2"V~y
C'j=C'2T. (4.18)
ToantVT 1adonnguyenvathoacach~thuc(4.15)- (4.18), lien a\ vaa'2
Wongdvongdonnguyen.Honmla,vi A~Bk =A'~B'kvaX' k=X~k' lien h~
a'k1at6ithi~uvat6iuu.
Ngu<jcl?i, giltsut6nt?im<)th~bi d<)ngt6ithi~uvat6iuua' saocho
aj va a2 1andi r<)nghentrai cuah~a', khi do 8al(Z) =8a,(z) =8a2(Z).
Ngoaifa, dotacovdi k =1,2:
Xk =G*kEBX',
A \ C G*k , B\G*k ={a}, A' =Aklx' , B' =Bk,
lientasuyraA ~Bk =AmB'.Vi h~a' 1at6iuu,liencach~al va a2clingt6i
uu.
BfulgeachapdlplgchUngminhnayehoeach~d6ing§.ual* va~*, ta
co k~tquacho trlfongh<jplien quand~n*-t6i 1111.
D~ndaytaduarakhaini~mveWongduongdonnguyenb<)ph~ va *-
Wongduongdonnguyenb<)ph~. Caekhaini~mnaysedu<jcsudlplgd~n
66
(t.u.*-WongduongdonnguyenbQph~).
ChUngminh.
Giltsv aI, a2la cach~bi dQngt6i1lUcoclinghamtruyen.D~tX'I=
X~I' X'2= X~2'khidotoantV T: X'I~ X'2trongphclnchUngminhcua
diM ly 4.6thoadieuki~ndScach~al va~ laWongduongdonnguyenbQ
ph~.
Ngu<jcl(;li,giltsVhaih~al vaa2 laWongduongdonnguyenbQph~.
Khi dotfmt(;licackh6nggianconX'I C Xl , X'2C X2vatoantVdonnguyen
T: X'I ~ X'2thoa(4.19)va(4.20).Vdi k=1,2,d~t
A'k=AklXk' B'k=Bk, C'k=Cklxk' D'k=Dk. (4.21)
Tli (4.19)va(4.21)tacoaklamQtndifQnghentraicilaa'knenakvaa'kco
clinghamtruyen.RonmJa,do(4.20)tasurfa a'l vaa'2laWongduongdon
nguyen,nenchUngcoclinghamtruyen,v~dodocach~al va~ clingco
clinghamtruyen.
Tr1ldngh<jpcach~bi dQng*-t6i 1lUdu<jcchUngminhWongUJ.
l 68
._.