Các bất đẳng thức tích phân thuộc loại ostrowski và các áp dụng của nó

';1],;1rlrf)~(jI/"ff: lfell flldJ/ !mi (il,J!tortJki Trang24 c HUONGIll Stj HOI T{)eUA CONG THue ~ ,:? ~ CAU PHUONG TONG QUAT Ml;!CdichcuacJllJ'ongnay la nhhmtrtnhbay mOts6 cac ap dl;!ng vao vi<$cnghienCUllst,thOitl;!cua congth((cc~uphuongt5ngquatva danhgia cac sai s6 nay thongquacac b§t d5ngth((cduQcphattri~nd trongcacchuangtrudc. Cho tJ.nr: a = X6nr)< x~nr)< ... < X~;'~)1< X~;')= b la mOtdaycacphanho~ch cuado~n[a,b],vaxetdaycaccongth((ctichphans6: (3.1) Inr(f,f',...,f

pdf11 trang | Chia sẻ: huyen82 | Lượt xem: 1666 | Lượt tải: 0download
Tóm tắt tài liệu Các bất đẳng thức tích phân thuộc loại ostrowski và các áp dụng của nó, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
(II),tJ.III'wm) III = Iwjm)f(xjlll»)- I (-1)' /~o r~2 r! x[~{(X)'" -0- ~w~""J+~""-0- ~W;"")k.,"(xj"" J] m vui wjnr) (j =0,...,m) lacactn;mgc~uphuongthoa I wjnr)=b- a . )=0 Djnh 19 sau day ch((a mOt di~u ki~n dii cho cac tn;>ng b wjm)(j =O,.."m)sao cho 1m(f,f',...,f(II) ,tJ.m,WIll) x§pxi tichphan ff(x)dx vdi , a mOtsais6duQcbi~uthjtheoIlf(II)IL. l>inhIf 3.1: Clzof: [a,b]~ IR Lientf:lCtren[a,h],saDchof<n-l)La lientf:lCtUYft d(/i (ren [a,bl. Ne'u cac trQngc£1uplU{dngwjm)t/1(3adiiu ki~l1: .[llrfl rMJ~fJIlute lid, jil/(ln loaf f);j{lo,ttJi,. Trang25 (3.2) I X(m) - a <"\' w(m) < X (m) - a I - L... J - 1+1 , ./=0 Vi=O,...,m-l. Khi eMfa co danh gid (3.3) h [1I/(/,/',...,/(I1),611/'WII/)- ff(t)dt a II [(11) II ' [( J I1+1 ( J "+1 ] :::;' if) 'II a+:tw;m) - X~III) + x~::)- a - tw;m) (n + I)! i=O /=0 /=0 :::;IIJ(I1)L 'I1Vlilll)t' (11+1)! i=O 11 [(11) 11 :::;' if) [v(h(III))J1(b-a), (n+I)! trong do [(II) E L [ab] v(h(m)=max{h(m) }h(m) =x(m)-x(m) . '" -' , i=O, m-1 I , I 1+1 I' h D(ic biet, ne'u 11 /(11) 11 <CXJ thE Jim 1 ([,/',...,/(11),6,w ) =fJ(t)dt. '" "(11('0))--+0m . m m a dJ u theocae trong w(m).. J Chun,gminh: I Ta dinhnghTadaycaes6thlfcai(:?=a+Lw;m), )=0 i =0,...,m. Chti Y r~ng m a(m) =a +"\' w(m)= a +b - a =bm+1 L... J . )=0 Do giii thie't(3.2),taco: (m) [ ,(III) (mT]at+1 E X, ,Xi+1 Vi =0,...,m-1. D)nhnghlaat) =a vaHnh, a(m) (m) - (m)I - ao - Wo i i-I ai(:;)-a;m)=0+ Lw;m)-o- Lwt) =w;m),(i=o,,:.,m-l) VO )=0 III Ill-I a(m) - a (111)=0 + '\' w(l11)- a-'\' w(m)= w(m)III+I III L.., J L.., Jill' /=0 /=0 va dod6 m m "\' ( (m) - (1I1))r( (m) )="\' ,(111)/( (m))L.. a,+1 a, X, L.. }I, X, 1=0 1=0 Wlril rlrfJlrjjl"tr f;,.;'-AI,,;)/, 4x.!ifMiOftJi; Trang26 va m I w;m)f(xj"'») )=0 III (-I) r[I m {( (m) I)-I (m) ] r ( (m) t. (m) ] r f (r-I) ( ("'» )1] - - x. -a- W - x -a- W x. I ) S ) s.) r=2 r. )=0 s=o s=o =lm(f,f',...,f(II),6.m'~Vm)' Ap d~Jngba'"td~ngthuc(2.1)tathudu<)cdanhgia (3.3),8 T " h kl ' h" h h ]' d l< E (m) .b- a ,nieJng <)p 11P an O':lC a ell: ;"/11=Xi =a+1---'--, (1=0,...,111) 111 va djnhnghladaycaccongth((cc~uphuongHnhsf): 1",(1,; ,...,f(n) ,6.111'w/11) =fwt) J a+}(b-a))j=O } ~ 111 - I (-Ir [ f {( }(b-a) IW~/11» ) r _ ( }(b-a) - tw.~II1» ) r } fr-I) ( a+}(b--a) ) l r=2 r. j=O 111 s=O 111 s=O m Ij Khi do tathudu<)ch~quasau: He qua3.1: ClIo f: [a,b]~ IR lien t{lCtren [a,b],sao clIofen-I)la lien t~lC tuy~td/;'itren [a,b].Ne'ucac trQngc6.uphl1angw;/II)thoadiJu ki~n: i 1 I' (/II) i+1 . 0 1-<- I <- - -- 11j - , T- ,...,111 , m b - a j=O 111 Khi de)ta C()danhgia: h 1/11(f,f',...,f(II),6./II,w/ll)-ff(t)dt a Il f(II) 11 [( . J "+1 ( . J "+I ] ~. "II twjm)-i ( b-~ ) + (i+l) ( b-a )~twY")(11+I). ;=0 j=O 111 111 )=0 ~Ilf(lI)I\" ( ~ ) II+l, . (11+I)! 111 trong eM fell) E L,,[a,b].. f/JriZrl<fJld/lftr (kit flt4J1 (oqi (iM~o,t}t; Trang 27 h Dgc bi~t,ne'll 11/(11)11",<co,thi J,~~ImC/,f',...,/(II),Wm)= Jf(t)dt d~utheocae It trQng \I,~III). Chungminhh~qua(3.1)suytn!ctie'ptudinh19(3.1).- w :1],;1mfl'flI/If"'~.Jf('f,hf",n kx,; (if.)/;(J(t)/d Trang28 CHUaNG 4 " ? BA.T DANG THUC THUQC LO~I GRUSS BJt d~ngthucthuQclo~iGrUssla bfftd~ngthuctichphanchos\.f lien h~giC'(atkh phancuamOttichhai hamsf{va tichclIacactichphan clla tunghamsf{.Trudche"taco bfftd~ngthucsail: DinhIf 4.1: ClIo h,g ..[a,b]~ IR Ld /wi helmkhd tfch saD cha r/J s hex) s CP va ysg(x) s Tve!i111Qix E [a,b], r/J,</J,y, va r Lacaehangs6:Khi do, tac6 (4.1) ] IT(h,g)1~-«1) - ~Xr - r)4 trong dr5 (4.2) Ih Ih]h T(h,g) =- fh(x)g(x)dx-- fh(x)dx- fg(x)dxb-a b-a b-aa a a vahlings6'~trangbat dcingthac (4.1) Latd(n/1{1'trheanghfarangkh6ng4 thi thaythe'no bangmQts6'khacn/1()/1(}n. Vi~cchungminhbfftd~ngthucnayduQctlmthffytrong[7]. Trongnhi~utai li~u[4,5,6, 11]va cactai li~uthamkhaotrongdo, thl btltd~ngthuc(4.1)g9i la btltc1~ngthucGrUss.T6ngquathdn,btltd~ng thucGrUssc1uQcphatbi~unhusail: Dinh If 4.2: Chofvd g La/wi hamkhd(ich tren[a,b]vays g(x)s r wJinu/i xE[a,h].Khi dr5tacd: (4.3) IT(f,g~r; r (T(f,f))i, .3M, d(f/~r;flute fff'/"I!./'rin !rxr((!jdtt(J(~k( Tran&.J9 (rongde) T(f,f), T(f,g) dur;cxac dinh nhu (4.2). Ta cGngchu 9r~ngT(f,f) =~ [ ff2(X)dx -~ (ff(X)dx J 2 ] ~O. b-a b-aa a Dinh 194.2dfidU<;1cchungminhbdiMalic, Pecaric,va Ujevic [8]vabfft d~ngth((cnaychotamQtdanhgiat6thanb§td~ngthuccuaGruss(4.1). Th~tv~y,gia sa h, g thoacac gia thj.e"t,cuaDinh 194.1.Ap dl;1ng(4.3) voif= g =h,taco: T(h,h)5. <D-~{T(h,h»)'I2,2 hay (4.4) (T(h,h)t25.<D-~.2 Ap d1,lng(4.3) mQtl~nnua cho h, g taco: (4.5) IT(h,g)l5.r - r (T(h,h)YI2,2 va nhlfv~ytaco (4.1)nh(jvao(4.4)va (4.5). Dinh ]9saudayd1javaob§t d~ngthuc(4.3). Dinh Ii 4.3: Choh : a=Xo<Xl < ... <Xk-l<Xk= b la mi)tphepchiacuadogn [a,b], aj (i =0 , ... , k+l) la " k+2" diim saDcho ao=a, aj E[Xi-j,xd (i=1,...,k)vaak+l=b. Gid .'Iiiding f :fa,b] -7 IR lien t~ctuy~td6'i tren [a,b],saDcho &;10ham f(n) :(a,b) --f IR tl1(3am5.f(n)(x) 5.M vdi lriQi X 'E(a,b). Khi db, ta co bitt ddng tIU1C: '$41 clJJI// (Ilfre((eltAf,';n l(Ja; (iJ.)(;(Jf~'i (4.6) Trang30 Jf(t)dt +I (- ~;/ a /=I)' x[~{(/;-°.rf(j-')(X,.,)-(-I)J(~ +o,)f(j~I)(X,)}] _ (fCn-')~)- jCn-I),(a))~(~) 'I+I [ IC;+1( 28; ) r {1 +(-1)n+r} ](b a)(11+1). ;=0 2 r=O h; . M-n [ b- k-l ( h ) 2IHI [ 2n+1 ( 28. ) r ] < 1 a -! Cr ! 1+ -1 r - 2 (211+1)(11!)2t=o2 ~ 2n+1h; { ( )} ( I 1 k-I h n+1 1 r 2 "2 - (n+I)!t=.hc) [~c;.,(~~;J (1+(-l)"H)]]1 d ' h - ' s: XI+I +Xi . 0 k 1trang a i - Xi+/- Xi va Vi =ai+J- , 1= ,..., - .2 Chung minh : Sa dl;}ng(4.2)va (4.3) nhanvaGbdi (b-a)vachQnh(t)=Kn,dt}nhudinh nghTabdi(1.2)vagO)=j(II)(t}, t E[a,b],saGcho: I h h h (4.7) fKn,k(t)j(n)(t)dt-b~a fj(n)(t)dtfKn.k(t)dta a a [ ( J 2 ] .!. M h h 2 ~ ~m (b-a)fK,~.k(t)dt- fKn,k(t)dt , Bay gio tadanhgia h fjcn)(t)dt=jcn-I)(b)- j(I1-I)(a) a va G1 h =fKn,k(t)dt a k-I Xi,l 1 =2:: J,(t-ai+l)"dt 1=0x/ n. 1 k-I= '" J(x - a )n+l ( n+l } (n+1)!to'~ i+1 i+1 - xi-ai+l) 1 k-I = (11+l)IL {cX;+l-ai+I)"+1 +(-1)" (a;+1_X)"+I } . ",0 1 , .'1141r1rf'~11//(h:Ifr/'-/l.!"l" 4m' (J.)6(J((':Jii Trang 31 DungdjnhnghTacuahjva OJ,taco: saocho G1 hi S;:' hi s;: xi+l-ai+I=--u, va ai+l-xi=-+u,2 2 1 k-I {( h ) "+1 ( h' ) ,1+1 } = ,L !- <'5, +(-I)" .-: +8,(11+1)'i~o2 2 = 1 ,I: [ ~C'~+I(-(jir( hi )"+I-r +(-1)"~C~+1«(j,r(~) 11+1-r ](11+1).,~() r=() 2 r=() 2 = (-1)" ,I(hi ) I1+' [ ~c~+, ( 2(ji J r {1+(-l)"H} ] . (n+1).i=() 2 r=() hi Cling v~y G2 h =IK';.k(1)dt a =IX} (t -ai+I)2/1dt ,~oXi (n!)2 1 ~S( )2/1+1 ( )211+1}= (2 1)( 1) 2 ~ ~Xi+1 - ai+1 + ai+1 - Xi 11+ 11. ,~O - 1 k-I {( hi ) 211+1 ( hi . ) 211+1 } - - I --(j + -+(j (2n +1)(11,)2i~O 2' 2' 1 k-I ( / ) 211+1 [ 211+1 ( 2(j_ J r ] = ~ Cr ~ 1+ -1 r (2n+1)(n,)2t=u 2 ~ 2,HI hi { ( )}. Tv d~ngth(fc(1.1),taco th€ vie't: fK/I.k(1)/(11>(t)dt=(-1)" fl(t)dt +(-1)"I (- ~;j a a J~I J. [ k-I ] j (j-I) j (j-I) X t;{(Xi+1-a'+I) / (X'+I)-(Xi -ai+l) I (xJ} va tv ve'tnii cua(4.7),tathoduQc: h 1 h h =IK/I.k (t)/(I1) (t)dt - b - a I/(I1)(1)dtIKI1.k(t)dta a aG] =(-1)"fl(t)dt +(-1)"I (-~r a J~I J. x[~{('; -O.)'fU."(x",>-(-l)J(; +0,)'!U"(X,>}] -( -1)" ( /(I1~I) (b)- 1(11-'),(a)) I (!2)/H' X [~C';+I( 2(ji J r {I +(-I)"H } ](b-a)(I1+I). ,~() 2 r~O hi flJal d;h'fl.Illftr Ifrl!_/!/uiJ/ I(}(,;(!Job(}((ok,. Trang32 sail khi thayv~lOG1. Tli vS phai ClIa (4.7) ta thay v~lOG1 va O2 nhu v~y: h ( h J 2 G~ =(b- a)fK,~,k(t)dt - fKlI,k(t)dt b - a k-] ( h ) 211+1 [ 211+1 ( 25. ) ' ]=(2n+l)(n!)2t;~ ~C;II+I ~ {l+(-lY} [ [ ]J 2 1 k-I h 11+111+1 ' - ,I ( -.!... ) IC~=1( 2/S; J {I+ (-I)"H} 0 (n+l)o;=o 2 ,=0 hi Do d6 M - 111 ~ , IG11s 2 (G4)2, va dinh1y4.3du<;jcchungminh.8 He !1m'!4.1: Choof,h Wlak du:qexaedjnhnhu:trongdjnhly 4.3vahdnnila ta djnhnghia (4.9) )" == - Xi+l+Xi(, ai+1 2 wJi mQi i =0,o..,k-lsaGeho 1(5ils~min{hi:i=l,...,k}..2 Khi doheftdcingtluxesau (4.10) IJf(t)dt+I(-~r II J=I J. (4.8) x[~{(~W(:~8,J fu>',(x,.,)-C~+8,J fU"(xJ}] (f <II-') (b) - f <II-') ( )J k . -III+I ( h ) "+I-' j - a ,,"C' /S' ! {I +(-1) "+' (b-a)(n+l)! ~~ 'HI i 2 . M [ b k-12,HI [ (h ) 211+1-, ] -m -a . . < C' /S'.:...!.- 1+-1' - 2 (2n+l)(n!)2t;~ 211+1 i 2 {() } I . - ( 1 ,IIC~+1(5;,( !2 )"+I-'{1+(-1)"H}J 2 ] 2. (n+l)oi=or=O 2 {!1M,eMJ/!!I/,,!',. I(~/I(;J/ (oa; (!j.)/ifJrtJl; Trang 33 Chung minh dl(Qcsuy tr~(ctie'"ptu (4.6) (j trenb~ngcach thay(4.8) va lam mQtsf) it phep tinh don gian.. H~ml 4.2: Cho /)(1'tkyphiin hog.chh : a =Xo <Xl <...<Xk-l <Xk =bcuadog.n [a,bl, chQ/1 c5;=0 trong(4.8),taco ba'tdcingtluie: (4.11) Iff(t)dt +~;!~(/~r{(-I)' fC;-I)(X;+I)- jC;-I)(x;)} -{I+(-1)"{j(II-I) (b) - j(II-I)(a» ) I (h; ) "+1 Jl (17- a)(n+I)! ;=0 2 1 2 ] - <M-m 2(b-a) k-I ~211+1- {l+(-lr}k-I !i 11+1 2 - 2 [(2"+1)("!)'t=,(2) (n +l)l t=J2) ) . ChungminhduQctrifctie'"psuytu(4.10).. Chu thich4.1: Tnt/J/1glu!pn ie, tasurta (4.11)rang (4.12) Ifj(/)d' +t;!~(~r{r -1)1 ju-n {x,.,):" jU-" (x')1 1 ~ (M -m)~ [ I (!i) 211+1 ] 2. -fin! .J2n+1 ;=02 Tnt(lng lu!p n chcfn, ta suy tll (4.11) rang J /(t)dt+t;!~(~J k-1)1/(1" (x..,)- /(j~" (x,)j -2 ( j(II-1) (b) - j(II-I) (a» ) I (!i) /HI (b- a)(n+I)! ;=0 2 (4.13) He gml4.3: 1 2 ] - M - m 2(b - a) k-I h; 2,,+1 4 k-( h; ,,+1 2 ,; 2 [(2n+I)(n!)'t=oh-) - «n+I)!)'[t=oh-) J . Cho.In) dur;cxaedjnhnlnttrongDjnhiy 4.3vaxetphan hogchd~ueuaGOgHla,b],trongd6 ( b- a )Ek :x; =a+i k' i=O,...,k 'Mal rlrfJ~11/"f("Ilr/' f/'/in Ime (iJdbf}rtJk" Trang34 Khi do, taco b5td~ngthucsau: (4.14) hilI ( b ) J Jf(t)dl +L1 ~ a J=I J. 2k X~{(-IJJ fCH'(a+(i+IJib -aJ) - f(j~"(a+i(b~aJ)} - {I +(-1)" (r(II-I) (b) - /(11-1)(a) J k ( b- a ) /H1 Jl (b- a)(n+I)! 2k k ( b-a ) II+1 ~(M-m) -. n!-J2n+l 2k Chung mink D~tavao cong th(tc(4.11)CJtren vdi chli yding ( b- a ) x= -, hi = Xi+1- i k i =O,...,k. m ._.

Các file đính kèm theo tài liệu này:

  • pdf4_2.pdf
  • pdf0_2.pdf
  • pdf1_2.pdf
  • pdf2_2.pdf
  • pdf3_2.pdf
  • pdf5_2.pdf
  • pdf6_2.pdf
  • pdf7_2.pdf
  • pdf8_2.pdf