';1],;1rlrf)~(jI/"ff: lfell flldJ/ !mi (il,J!tortJki Trang24
c HUONGIll
Stj HOI T{)eUA CONG THue
~ ,:? ~
CAU PHUONG TONG QUAT
Ml;!CdichcuacJllJ'ongnay la nhhmtrtnhbay mOts6 cac ap dl;!ng
vao vi<$cnghienCUllst,thOitl;!cua congth((cc~uphuongt5ngquatva
danhgia cac sai s6 nay thongquacac b§t d5ngth((cduQcphattri~nd
trongcacchuangtrudc.
Cho tJ.nr: a = X6nr)< x~nr)< ... < X~;'~)1< X~;')= b la mOtdaycacphanho~ch
cuado~n[a,b],vaxetdaycaccongth((ctichphans6:
(3.1) Inr(f,f',...,f
11 trang |
Chia sẻ: huyen82 | Lượt xem: 1666 | Lượt tải: 0
Tóm tắt tài liệu Các bất đẳng thức tích phân thuộc loại ostrowski và các áp dụng của nó, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
(II),tJ.III'wm)
III
= Iwjm)f(xjlll»)- I (-1)'
/~o r~2 r!
x[~{(X)'" -0- ~w~""J+~""-0- ~W;"")k.,"(xj"" J]
m
vui wjnr) (j =0,...,m) lacactn;mgc~uphuongthoa I wjnr)=b- a .
)=0
Djnh 19 sau day ch((a mOt di~u ki~n dii cho cac tn;>ng
b
wjm)(j =O,.."m)sao cho 1m(f,f',...,f(II) ,tJ.m,WIll) x§pxi tichphan ff(x)dx vdi
, a
mOtsais6duQcbi~uthjtheoIlf(II)IL.
l>inhIf 3.1:
Clzof: [a,b]~ IR Lientf:lCtren[a,h],saDchof<n-l)La lientf:lCtUYft
d(/i (ren [a,bl. Ne'u cac trQngc£1uplU{dngwjm)t/1(3adiiu ki~l1:
.[llrfl rMJ~fJIlute lid, jil/(ln loaf f);j{lo,ttJi,. Trang25
(3.2)
I
X(m) - a <"\' w(m) < X (m) - a
I - L... J - 1+1 ,
./=0
Vi=O,...,m-l.
Khi eMfa co danh gid
(3.3)
h
[1I/(/,/',...,/(I1),611/'WII/)- ff(t)dt
a
II
[(11)
II
'
[( J
I1+1
( J
"+1
]
:::;' if) 'II a+:tw;m) - X~III) + x~::)- a - tw;m)
(n + I)! i=O /=0 /=0
:::;IIJ(I1)L 'I1Vlilll)t'
(11+1)! i=O
11
[(11)
11
:::;' if) [v(h(III))J1(b-a),
(n+I)!
trong do [(II) E L [ab] v(h(m)=max{h(m) }h(m) =x(m)-x(m)
. '" -' , i=O, m-1 I , I 1+1 I'
h
D(ic biet, ne'u
11
/(11)
11
<CXJ thE Jim 1 ([,/',...,/(11),6,w ) =fJ(t)dt. '" "(11('0))--+0m . m m
a
dJ u theocae trong w(m).. J
Chun,gminh:
I
Ta dinhnghTadaycaes6thlfcai(:?=a+Lw;m),
)=0
i =0,...,m.
Chti Y r~ng
m
a(m) =a +"\' w(m)= a +b - a =bm+1 L... J .
)=0
Do giii thie't(3.2),taco:
(m) [ ,(III) (mT]at+1 E X, ,Xi+1 Vi =0,...,m-1.
D)nhnghlaat) =a vaHnh,
a(m) (m) - (m)I - ao - Wo
i i-I
ai(:;)-a;m)=0+ Lw;m)-o- Lwt) =w;m),(i=o,,:.,m-l)
VO )=0
III Ill-I
a(m) - a (111)=0 + '\' w(l11)- a-'\' w(m)= w(m)III+I III L.., J L.., Jill'
/=0 /=0
va dod6
m m
"\' ( (m) - (1I1))r( (m) )="\' ,(111)/( (m))L.. a,+1 a, X, L.. }I, X,
1=0 1=0
Wlril rlrfJlrjjl"tr f;,.;'-AI,,;)/, 4x.!ifMiOftJi; Trang26
va
m
I w;m)f(xj"'»)
)=0
III (-I) r[I
m
{(
(m) I)-I (m)
]
r
(
(m) t. (m)
]
r
f (r-I) ( ("'»
)1]
- - x. -a- W - x -a- W x.
I ) S ) s.)
r=2 r. )=0 s=o s=o
=lm(f,f',...,f(II),6.m'~Vm)'
Ap d~Jngba'"td~ngthuc(2.1)tathudu<)cdanhgia (3.3),8
T " h kl
'
h" h h ]' d
l< E (m) .b- a ,nieJng <)p 11P an O':lC a ell: ;"/11=Xi =a+1---'--, (1=0,...,111)
111
va djnhnghladaycaccongth((cc~uphuongHnhsf):
1",(1,; ,...,f(n) ,6.111'w/11)
=fwt) J a+}(b-a))j=O } ~ 111
- I (-Ir
[
f
{(
}(b-a) IW~/11»
)
r _
(
}(b-a) - tw.~II1»
)
r
}
fr-I)
(
a+}(b--a)
)
l
r=2 r. j=O 111 s=O 111 s=O m Ij
Khi do tathudu<)ch~quasau:
He qua3.1:
ClIo f: [a,b]~ IR lien t{lCtren [a,b],sao clIofen-I)la lien t~lC
tuy~td/;'itren [a,b].Ne'ucac trQngc6.uphl1angw;/II)thoadiJu ki~n:
i 1 I' (/II) i+1 . 0 1-<- I <- - -- 11j - , T- ,...,111 ,
m b - a j=O 111
Khi de)ta C()danhgia:
h
1/11(f,f',...,f(II),6./II,w/ll)-ff(t)dt
a
Il f(II) 11
[(
.
J
"+1
(
.
J
"+I
]
~. "II twjm)-i (
b-~
)
+ (i+l) (
b-a
)~twY")(11+I). ;=0 j=O 111 111 )=0
~Ilf(lI)I\"
(
~
)
II+l, .
(11+I)! 111
trong eM fell) E L,,[a,b]..
f/JriZrl<fJld/lftr (kit flt4J1 (oqi (iM~o,t}t; Trang 27
h
Dgc bi~t,ne'll 11/(11)11",<co,thi J,~~ImC/,f',...,/(II),Wm)= Jf(t)dt d~utheocae
It
trQng \I,~III).
Chungminhh~qua(3.1)suytn!ctie'ptudinh19(3.1).-
w
:1],;1mfl'flI/If"'~.Jf('f,hf",n kx,; (if.)/;(J(t)/d Trang28
CHUaNG 4
" ?
BA.T DANG THUC THUQC LO~I GRUSS
BJt d~ngthucthuQclo~iGrUssla bfftd~ngthuctichphanchos\.f
lien h~giC'(atkh phancuamOttichhai hamsf{va tichclIacactichphan
clla tunghamsf{.Trudche"taco bfftd~ngthucsail:
DinhIf 4.1:
ClIo h,g ..[a,b]~ IR Ld /wi helmkhd tfch saD cha r/J s hex) s CP
va ysg(x) s Tve!i111Qix E [a,b], r/J,</J,y, va r Lacaehangs6:Khi do,
tac6
(4.1)
]
IT(h,g)1~-«1) - ~Xr - r)4
trong dr5
(4.2)
Ih Ih]h
T(h,g) =- fh(x)g(x)dx-- fh(x)dx- fg(x)dxb-a b-a b-aa a a
vahlings6'~trangbat dcingthac (4.1) Latd(n/1{1'trheanghfarangkh6ng4
thi thaythe'no bangmQts6'khacn/1()/1(}n.
Vi~cchungminhbfftd~ngthucnayduQctlmthffytrong[7].
Trongnhi~utai li~u[4,5,6, 11]va cactai li~uthamkhaotrongdo, thl
btltd~ngthuc(4.1)g9i la btltc1~ngthucGrUss.T6ngquathdn,btltd~ng
thucGrUssc1uQcphatbi~unhusail:
Dinh If 4.2:
Chofvd g La/wi hamkhd(ich tren[a,b]vays g(x)s r wJinu/i
xE[a,h].Khi dr5tacd:
(4.3) IT(f,g~r; r (T(f,f))i,
.3M, d(f/~r;flute fff'/"I!./'rin !rxr((!jdtt(J(~k( Tran&.J9
(rongde) T(f,f), T(f,g) dur;cxac dinh nhu (4.2).
Ta cGngchu 9r~ngT(f,f) =~
[
ff2(X)dx -~ (ff(X)dx J
2
]
~O.
b-a b-aa a
Dinh 194.2dfidU<;1cchungminhbdiMalic, Pecaric,va Ujevic [8]vabfft
d~ngth((cnaychotamQtdanhgiat6thanb§td~ngthuccuaGruss(4.1).
Th~tv~y,gia sa h, g thoacac gia thj.e"t,cuaDinh 194.1.Ap dl;1ng(4.3)
voif= g =h,taco:
T(h,h)5. <D-~{T(h,h»)'I2,2
hay
(4.4) (T(h,h)t25.<D-~.2
Ap d1,lng(4.3) mQtl~nnua cho h, g taco:
(4.5) IT(h,g)l5.r - r (T(h,h)YI2,2
va nhlfv~ytaco (4.1)nh(jvao(4.4)va (4.5).
Dinh ]9saudayd1javaob§t d~ngthuc(4.3).
Dinh Ii 4.3:
Choh : a=Xo<Xl < ... <Xk-l<Xk= b la mi)tphepchiacuadogn
[a,b], aj (i =0 , ... , k+l) la " k+2" diim saDcho ao=a, aj E[Xi-j,xd
(i=1,...,k)vaak+l=b.
Gid .'Iiiding f :fa,b] -7 IR lien t~ctuy~td6'i tren [a,b],saDcho
&;10ham f(n) :(a,b) --f IR tl1(3am5.f(n)(x) 5.M vdi lriQi X 'E(a,b). Khi db, ta
co bitt ddng tIU1C:
'$41 clJJI// (Ilfre((eltAf,';n l(Ja; (iJ.)(;(Jf~'i
(4.6)
Trang30
Jf(t)dt +I (- ~;/
a /=I)'
x[~{(/;-°.rf(j-')(X,.,)-(-I)J(~ +o,)f(j~I)(X,)}]
_
(fCn-')~)- jCn-I),(a))~(~)
'I+I
[
IC;+1(
28;
)
r {1 +(-1)n+r}
](b a)(11+1). ;=0 2 r=O h; .
M-n
[
b- k-l
(
h
)
2IHI
[
2n+1
(
28.
)
r
]
< 1 a -! Cr ! 1+ -1 r
- 2 (211+1)(11!)2t=o2 ~ 2n+1h; { ( )}
(
I
1 k-I h n+1 1 r 2 "2
- (n+I)!t=.hc) [~c;.,(~~;J (1+(-l)"H)]]1
d ' h - ' s: XI+I +Xi . 0 k 1trang a i - Xi+/- Xi va Vi =ai+J- , 1= ,..., - .2
Chung minh :
Sa dl;}ng(4.2)va (4.3) nhanvaGbdi (b-a)vachQnh(t)=Kn,dt}nhudinh
nghTabdi(1.2)vagO)=j(II)(t}, t E[a,b],saGcho:
I
h h h
(4.7) fKn,k(t)j(n)(t)dt-b~a fj(n)(t)dtfKn.k(t)dta a a
[ ( J
2
]
.!.
M h h 2
~ ~m (b-a)fK,~.k(t)dt- fKn,k(t)dt ,
Bay gio tadanhgia
h
fjcn)(t)dt=jcn-I)(b)- j(I1-I)(a)
a
va
G1
h
=fKn,k(t)dt
a
k-I Xi,l 1
=2:: J,(t-ai+l)"dt
1=0x/ n.
1 k-I= '" J(x - a )n+l ( n+l }
(n+1)!to'~ i+1 i+1 - xi-ai+l)
1 k-I
= (11+l)IL {cX;+l-ai+I)"+1 +(-1)" (a;+1_X)"+I
}
. ",0 1 ,
.'1141r1rf'~11//(h:Ifr/'-/l.!"l" 4m' (J.)6(J((':Jii Trang 31
DungdjnhnghTacuahjva OJ,taco:
saocho G1
hi S;:' hi s;:
xi+l-ai+I=--u, va ai+l-xi=-+u,2 2
1 k-I
{(
h
)
"+1
(
h'
)
,1+1
}
= ,L !- <'5, +(-I)" .-: +8,(11+1)'i~o2 2
= 1 ,I:
[
~C'~+I(-(jir(
hi
)"+I-r +(-1)"~C~+1«(j,r(~)
11+1-r
](11+1).,~() r=() 2 r=() 2
= (-1)" ,I(hi )
I1+'
[
~c~+,
(
2(ji
J
r {1+(-l)"H}
]
.
(n+1).i=() 2 r=() hi
Cling v~y G2
h
=IK';.k(1)dt
a
=IX} (t -ai+I)2/1dt
,~oXi (n!)2
1 ~S( )2/1+1 ( )211+1}=
(2 1)( 1)
2 ~ ~Xi+1 - ai+1 + ai+1 - Xi
11+ 11. ,~O
- 1 k-I
{(
hi
)
211+1
(
hi
.
)
211+1
}
-
- I --(j + -+(j
(2n +1)(11,)2i~O 2' 2'
1 k-I
(
/
)
211+1
[
211+1
(
2(j_
J
r
]
= ~ Cr ~ 1+ -1 r
(2n+1)(n,)2t=u 2 ~ 2,HI hi { ( )}.
Tv d~ngth(fc(1.1),taco th€ vie't:
fK/I.k(1)/(11>(t)dt=(-1)" fl(t)dt +(-1)"I (- ~;j
a a J~I J.
[
k-I
]
j (j-I) j (j-I)
X t;{(Xi+1-a'+I) / (X'+I)-(Xi -ai+l) I (xJ}
va tv ve'tnii cua(4.7),tathoduQc:
h 1 h h
=IK/I.k (t)/(I1) (t)dt - b - a I/(I1)(1)dtIKI1.k(t)dta a aG]
=(-1)"fl(t)dt +(-1)"I (-~r
a J~I J.
x[~{('; -O.)'fU."(x",>-(-l)J(; +0,)'!U"(X,>}]
-( -1)"
( /(I1~I) (b)- 1(11-'),(a))
I (!2)/H' X [~C';+I(
2(ji
J
r {I +(-I)"H }
](b-a)(I1+I). ,~() 2 r~O hi
flJal d;h'fl.Illftr Ifrl!_/!/uiJ/ I(}(,;(!Job(}((ok,. Trang32
sail khi thayv~lOG1.
Tli vS phai ClIa (4.7) ta thay v~lOG1 va O2 nhu v~y:
h
(
h
J
2
G~ =(b- a)fK,~,k(t)dt - fKlI,k(t)dt
b - a k-]
(
h
)
211+1
[
211+1
(
25.
)
'
]=(2n+l)(n!)2t;~ ~C;II+I ~ {l+(-lY}
[ [ ]J
2
1 k-I h 11+111+1 '
- ,I (
-.!...
) IC~=1(
2/S;
J
{I+ (-I)"H} 0
(n+l)o;=o 2 ,=0 hi
Do d6 M - 111 ~
, IG11s 2 (G4)2,
va dinh1y4.3du<;jcchungminh.8
He !1m'!4.1:
Choof,h Wlak du:qexaedjnhnhu:trongdjnhly 4.3vahdnnila ta
djnhnghia
(4.9)
)" == - Xi+l+Xi(, ai+1 2
wJi mQi i =0,o..,k-lsaGeho
1(5ils~min{hi:i=l,...,k}..2
Khi doheftdcingtluxesau
(4.10) IJf(t)dt+I(-~r
II J=I J.
(4.8)
x[~{(~W(:~8,J fu>',(x,.,)-C~+8,J fU"(xJ}]
(f
<II-')
(b) - f <II-') (
)J
k
.
-III+I
(
h
)
"+I-'
j
- a ,,"C' /S' ! {I +(-1)
"+'
(b-a)(n+l)! ~~ 'HI i 2 .
M
[
b k-12,HI
[ (h )
211+1-,
]
-m -a . .
< C' /S'.:...!.- 1+-1'
- 2 (2n+l)(n!)2t;~ 211+1 i 2 {() }
I
. -
(
1 ,IIC~+1(5;,(
!2
)"+I-'{1+(-1)"H}J
2
]
2.
(n+l)oi=or=O 2
{!1M,eMJ/!!I/,,!',. I(~/I(;J/ (oa; (!j.)/ifJrtJl; Trang 33
Chung minh dl(Qcsuy tr~(ctie'"ptu (4.6) (j trenb~ngcach thay(4.8)
va lam mQtsf) it phep tinh don gian..
H~ml 4.2:
Cho /)(1'tkyphiin hog.chh : a =Xo <Xl <...<Xk-l <Xk =bcuadog.n
[a,bl, chQ/1 c5;=0 trong(4.8),taco ba'tdcingtluie:
(4.11) Iff(t)dt +~;!~(/~r{(-I)' fC;-I)(X;+I)- jC;-I)(x;)}
-{I+(-1)"{j(II-I) (b) - j(II-I)(a»
)
I (h; )
"+1
Jl (17- a)(n+I)! ;=0 2
1
2
]
-
<M-m 2(b-a) k-I ~211+1- {l+(-lr}k-I !i 11+1 2
- 2 [(2"+1)("!)'t=,(2) (n +l)l t=J2) ) .
ChungminhduQctrifctie'"psuytu(4.10)..
Chu thich4.1: Tnt/J/1glu!pn ie, tasurta (4.11)rang
(4.12) Ifj(/)d' +t;!~(~r{r -1)1 ju-n {x,.,):" jU-" (x')1
1
~ (M -m)~
[
I (!i)
211+1
]
2.
-fin! .J2n+1 ;=02
Tnt(lng lu!p n chcfn, ta suy tll (4.11) rang
J /(t)dt+t;!~(~J k-1)1/(1" (x..,)- /(j~" (x,)j
-2
(
j(II-1) (b) - j(II-I) (a»
)
I (!i)
/HI
(b- a)(n+I)! ;=0 2
(4.13)
He gml4.3:
1
2
]
-
M - m 2(b - a) k-I h; 2,,+1 4 k-( h; ,,+1 2
,; 2 [(2n+I)(n!)'t=oh-) - «n+I)!)'[t=oh-) J .
Cho.In) dur;cxaedjnhnlnttrongDjnhiy 4.3vaxetphan
hogchd~ueuaGOgHla,b],trongd6
(
b- a
)Ek :x; =a+i k' i=O,...,k
'Mal rlrfJ~11/"f("Ilr/' f/'/in Ime (iJdbf}rtJk" Trang34
Khi do, taco b5td~ngthucsau:
(4.14) hilI
(
b
)
J
Jf(t)dl +L1 ~
a J=I J. 2k
X~{(-IJJ fCH'(a+(i+IJib -aJ) - f(j~"(a+i(b~aJ)}
- {I +(-1)" (r(II-I) (b) - /(11-1)(a)
J
k
(
b- a
)
/H1
Jl (b- a)(n+I)! 2k
k
(
b-a
)
II+1
~(M-m) -.
n!-J2n+l 2k
Chung mink D~tavao cong th(tc(4.11)CJtren vdi chli yding
(
b- a
)
x= -,
hi = Xi+1- i k
i =O,...,k.
m
._.