Chu'dng3
"
(J'ng dt.lng
Nam 1979,M.J. Smith [7]d§ ra mQtmohlnhm6ichobEdtoancanbAngm1;tng
giaothongdva tren nguyenly can bAngWardrop (J. Wardrop [13])va chung
minhdu<;Jcdi§u ki~nt6nt1;ticanbAngcuam1;tngiapthongtu0ngdli<Jngv6idi§u
ki~nc6nghi~mcuabai toanbilt dilngthucbit~nphan.
Sand6,nhi§utacgiakhacdati~pt\lCphattri~nmohlnhvacack~tquav§ t6n
t1;tinghi~mcuabai toancanbAnggiaothong,chilngh1;tnG.Y. Chenva N.D. Yen
[11,12],P. Daniel,A. MaugerivaW. Oettli [2],M. De Luca [22],M. FlorianvaN
16 trang |
Chia sẻ: huyen82 | Lượt xem: 1522 | Lượt tải: 0
Tóm tắt tài liệu Bất đẳng thức biến phân và ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
.
Hadjisawas[18],S. Schaible[20],X.Q. Yangva C.J. Goh [8],B. Ricceri [21],Q.H.
Anssari[28,19],P.Q. Khanh va L.M. Luu [3,4, 5],F. Giannessi[26,27],...Tu0ng
l1ngv6i moi d1;tngcua bai toanbilt dilngthuc bi~nphan,ta c6 cacmohlnh can
b~ngm1;tngiaothongtu0ngling,chilngh1;tn: canbAngm1;tngiaothongdam\lC
tieu [8],din bAngm1;tngiaothongph\!thuQcthbi gian [2],can bAngm1;tngiao
thongda tri [3,4, 5], ...
Trongm\lCnaychungtoi trlnh baynguyen15'canbAngWardrop,cacmohlnh
, ,?
toanhQccuabai toancanbangm1;tnggiaothongvacacdieuki~ndemohlnh
m1;tngd1;ttcanbAng.
Nguyenly canbAngWardrop[13](1952)du<;Jcphatbi~unhusan: "MQtm1;tng
giaothongdu<;JcgQila d1;ttcan bAngWardropn~umQingubid§u Iva chQnhanh
trlnh c6chi phi thilp h0n".
De apd\lngnguyenly naymohlnhtoanhQccuabai toancanbAngm1;tngiao
thongdu<;Jcduara nhu san
3.1 Bai toan m~nggiao thong
?
Giasvc6mQtm1;tnggiaothong,trongd6ngubitaphaiv~nchuyenhangh6atv
diemA, gQila di~mb~td§.u(origin),d~ndi~mB, gQila di~mcu6i(destination),
theomQtnhuc§.uhanghoanaod6.C~pdi~mA- B du<;JcgQila c~pd§.u-cu6i.
MoimQtdubngdi tv A d~nB gQila mOthanhtrlnhn6ic~pA-B. Ta ki hi~uW
1at~ph<;Jptilt cacacc~pd§.ucu6itrongm<;LngvaP lat~ph<;Jptiltcacachanh
trlnhtrongm(;Lng.Gia sv W vaP cohUllh(;Lnph&ntv. Vdi moic(Lpd&ucu6i
wE W, ta ki hi~uPw la t~ph<;Jptilt cacachanhtrlnhn6ic~pd§.ucu6iw E W.
" ??, /? /
Ki hi~udwla nhuCalicanv~nchuyentv diemdatiAwdendiemcuoiBw.Ta ki
hi~ud la vect0nhuctiutrongd6cacthanhph§.ncuad la cacdwtu0nglingva
Trang40
s6thanhph§,ncuad b~ngs6ph§,nta cuaW. Trenmoihanhtrinhr E P, giiisa
comOtluQnghanhhoa(flow)chuy@nqua,ki hi~ula Fr. Ta gQiFr la dongtren
hanhtrinhr. VectClF macacthanhph§,nla cacdongFr trenhanhtrinh,gQila
vectCldonghayphuCinganluuthong.86thanhph§,ncuaF b~ngs6ph§,nta cua
P. Giii satrenmoihanhtrinhr E P corangbuOcv~tiii nang
Ar <Fr <{tr, (3.1)
vav6imaici;ipd§,ucu6iw E W cacdongtrongPw luauthoanhu c§,u,nghia180
L Fr =dw.
rEPw
(3.2)
Xet ma tri;ins6 Kronecker =«I>w,r)xacdtnhnhu sail
{
I, r E Pw;
w,r= 0, r E Pw. (3.3)
Khi doh~thllc (3.2)duQcvi@tl[;1inhusau
F=d. (3.4)
NeumOtvectadongF thoamancach~thllc (3.1)va (3.4)thl F duQcgQila
vectc5dongch~pnh~nduQc(feasibleflowvector).Di;it
K:= {FIAr F=d}. (3.5)
T~pK duQcgQila t~pch~pnh~nduQccuabaitoanm[;1nggiaothong.
Nh~nxet 3.1.1.K la tt)pl6i, dongvabi ch(invan€u A{tthi K =I- cpo
Ch71ngmink.Gia sa FI, F2 E K thl, vuimQit E [0,1],
A < tFI +(1- t)F2<{to
va
tFI + (1- t)F2=tcpFI+ (1- t)cpF2=d.
V~yK la t~p16i.Tfnh dong,btchi;invakhacrangcuaK suyfa tu:tinhlien
tl,lCelm va (3.1). 0
Trang41
B:= {s E Pw/Hs >As}.
VI H thoaman (3.7) nen Cq > Os,\/q E A, '\IsE B. Do d6 t6n t<;1i"YwE R saocho
inf Cq>"y >supOs.
qEA sEE
L§,ytuy ymOtvectadongF E K. Khi d6vdimQir E Pw, n@uCr <"Yw thi r tj. A,
nghiala Hr =f-lr.guy ra Fr - Hr o.Tllangt\i,n@u
Or>"Ywthi (Cr - "Yw)(Fr- Hr) >o.guyra
L Cr(Fr - Hr) >"YwL (Fr - Hr) ="Yw(dw- dw) =o.
rEPw rEPw
V~y
(C,F - H)= L L Cr(Fr - Hr) >o.
wEWrEPw
Cia S11ngll<;1cl<;1iH khangla vectadongcanb~ng.Khi d6t6nt<;1iWE W, q,s E
Pw saochoCqAs.D$,t
<5:=min{f-lq- Hq,Hs - As},
va
Fq =Hq + <5,Fs =Hs - <5,Fr = Hr, \/r =1=q,s.
Khi d6F E K va (C, FH)= <5(Cq- Os)<o.V~y(3.7)khangthoa. D
3.2 M~ng giao thong ph\1thuQCthai gian
3.2.1 M6 hlnh kh6ng co rang buQc
Cia s11T c R va£,P(T),p> 11akhanggiancachamf : T --+ R dodll<;1Ctren
T va IlfilP khii tfch Lesbesguetren T. Xet mahinh m<;1nggiaothongd tren vdi
giathi@tt<;1imoi thai di~mt E T, dongtrenhanhtrinh r E P la Fr(t) ph1.lthuQc
bi~nthai gian t, nhu cilu cuac~pdilu cu6iWE W la dw(t)va Ar(t),f-lr(t)la cac
r~ngbuQctiii nangtren hanhtrinh rEP. Cia S11r~ngFr(.), Ar(.),f-lr(.)E fl(T),
vdip > 1vathoaman,hAukh~pnai(ghit~tla h.k.n)trenT,
Ar(t)<Fr(t)f-lr(t),\/r E P,
Trang43
va
cpF(t)=d(t).
vdiCP,F(.), d(.) dli<;1CdtnhnghiaCJm1.lC(3.1).
Khi d6t~pchfipnh~ndli<;1Ccuabai toancanb~ngm<,tnggiaothongdli<;1Cvi~t
l~inhli sau
K:= {F(.) E .cP(T)/[cpF(t)=d(t),
Ar(t)<Fr(t)<f-lr(t),VrE P], h.k.nT}. (3.9)
Nh~nxet 3.2.1.K Latt),pMi, d6ng,bi chiJ,nva compacty€u. N€u gilLsitthem
A(t).
Kf hi~u.c = .cP(T)va.c*= .cq(T)(~+ ~= 1)1akhonggiand6ingautapa
p q
cua.c.VdimoiG E .c*vaF E .c,ta dtnhnghia
((G,F))=!(G(t),F(t))dt, (3.10)
Khi dochiphi trenm<,tnggiaothong1aanhx<,tC(.) tll K vao.c*vavectcldong
canb~ngtren m<,tngdli<;1Cdtnhnghianhli sau
Dinh nghia 3.2.1. (Xem[2j) M(Jt vectddongH(.) E K d'l1QcgfJi Lacan b1ingn€u
H th6aman, h.k.n tren T,
[VWE W,Vp,S E Pw,Cq(H)(t) <Cs(H)(t)]
::::;.[Hq(t)= f-lq(t)hayHt(s)= As(t)].
(3.11)
M6i lienh~giuanghi~mciiabaitoancanb~ngvabaitoanbfitd~ngthacbi~n
?
phan the hif;jn(j dtnh 1ygall.
Dinh ly 3.2.1. VectddongH E K canb1ingn€u va chi n€u
((C(H),F - H))> O,VF(.)E K. (3.12)
Changminh.Gias11H(.) canb~ng.Khi d6H thoa(3.11).VdimoiWE W, d~t
A ={qE Pw/Hq(t)<f-lq(t)h.k.nT};
B ={sE Pw/Hs(t)>f-ls(t)h.k.nT}.
Trang44
Tli (3.11)vadtnhnghlacuaA, B suyfa,vdimoiqE A, s E B vah.k.ntrenT,
Cq(H)(t)>Cs(H)(t).
Suyra t6n t<;Li"Yw(t)E £(T) saocho,h.k.ntren T,
inf Cq(H)(t)>"Yw(t) >supCs(H)(t).
qEA sEB
Vdi F E K va r E Pw tliy y, n~uCr(F)(t) < "Yw(t)h.k.ntrenT thl Hr(t) =
J.lr(t)h.k.ntrenT. Suyra Fr(t) - Hr(t) < 0 h.k.ntrenT. Dod6(Cr(F)(t)-
1w(t),Fr(t) - Hr(t)» 0 h.k.ntrenT. N@uCr(F)(t) > "Yw(t)h.k.n tren T thlI
I Hr(t) = Ar(t) h.k.ntren T. Suy ra Fr(t) - Hr(t)/ > 0 h.~.ntrenT. Vi v~y
I (Cr(F)(t) -"Yw(t),Fr(t) - Hr(t)» 0h.k.ntrenT. Cu6icling,neuCr(F)(t)="Yw(t)
: h.k.ntrenT thl (Cr(F)(t) - "Yw(t),Fr(t) - Hr(t))= 0h.k.n.trenT. Suyfa,h.k.n
trenT,
'E (Cr(F)(t), Fr(t) - Hr(t)» "Yw(t)'E (Fr(t) - Hr(t)) =O.
rEPw rEPw
Dod6,h.k.ntrenT,
'E (Cr(F)(t), Fr(t) - Hr(t) » o.
rEPw
Nhli v~y
l (C(F)(t), F - H)dt >0,
nghlala
((C(F), F - H) » 0,VF E K.
V~yH thoaman(3.12).
GiaS11ngli<;5Cl<;LiH thoaman(3.12)vaH E K kh6ngthoa(3.11).Khi d6t6n
t<;LiW E W,q,s E Pwvat~pE c T, c6dQdodlidngsaochoh.k.ntrenE
Cq(H)(t)As(t).
VdimoitEE, di;it
6(t)=min{J-lq(t)- Hq(t),Hs(t)- As(t)}.
Trang45
SHYfa, h.k.ntren T,
0
va
Hs(t)- As(t);Hq(t)+<5(t)< f-lq(t).
DM
Fq(t) = Hq(t)+<5(t),Vt E T;
Fs(t)=Hs(t)- <5(t),Vt E T;
Fr(t) = Hr(t), Vt E T, r =I-q,r =I-s
va
F(t) =H(t),VtE T\E.
Khi d6ta c6F E K va
((C(H), F - H)) =IT(C(H)(t),F(t) - H(t))dt
= r (C(H)(t),F(t) - H(t))dt
JT\E
~ ~
v-
0
+IE(C(H)(t),F(t) - H(t))dt
= IE <5(t)[Cq(H)(t)- Cs(H)(t)]dt<O.
Di§u naymall thuanvdi vi~cH thoaman(3.12). D
Nh~n xet 3.2.2. DiJu kien (3.11) fa tlCdngdudngvCfidiJu kien sau : Vw E
W,3'YwE £ sao rhoVr E Pw, h.k.n trenT,
Cr(H)(t) <'Yw(t) * Hr(t)=f-lr(t),
Cr(H)(t) >'Yw(t) * Hr(t) =Ar(t). (3.13)
3.2.2 M6 hlnh co them ding buQc
Giasatrongmohlnhm~ngiaothongdtren,cacvecteJdongF thoamanthem
rangbuQcFED, VF E K vaD c £ la t~p16ithoa
K n intD=I- cjJ. (3.14)
Khi d6,dinhnghlav§ dongcanb~ngcuabai toanm~nggiaothongdu<)cphat
bi~unhu san.
Trang46
D!nh nghia 3.2.2. (Xem[2j) VectadongH E K nD a71rjcg9i to,canbangn€u
H th6aman
((C (H), F - H) )>0,\/F E K n D. (3.15)
Quanh~gil1adongcanb~ngcuabai toanm:;tng iaothongtrongtntdnghQp
c6themrangbuQcva bai toanb§,td~ngthucbi~nphanth~hi~nd dinh ly sail
D!nh ly 3.2.2. (Xem [2j) Vectddong H E K nD can bangn€u va chi .n€u tan
tf;li8(.) E £* saDcho
((8, F - H))<0,\/F E D,
((C(H) +8,F - H) » 0,\/F E K.
(3.16:
(3.17:
Changminh.Gia S11cacdi~uki~n(3.16)va(3.17)thoaman.Khi d6
((C (H), F - H) )>((C(H) +8,F - H) )>0,\/F E K nD.
guyra H thoaman(3.15).
GiaS11ngllQcl:;tiH thoaman(3.15).Ta dl;tt
A = {(F,~)E D x R/~ <O},
B ={(F,~)E K x R/((C(H),F - H))<~}.
Ta th§,yA i= cP vaB i= cP. TachungminhAn B =cP. Th~tv~y,n~u(F,~)E A
thl~0,\/F E K nD.Suyra(F,~)~B.Vi A =DnR-
vaD la t~p16ilienA la t~p16i.D6ivdit~pB, giasU:(Fl, ~d,(F2,~2)E B va
u E [0,1]tuyy.Ta c6
((C(H),Fl - H) )<~l,
( (C (H), F2 - H) )< ~2
va
((C(H),uF1+(1- u)F2- H)) = fr(C(H),uF1+(1- u)F2- H)dt
=ufr(C(H),F1- H)dt
+(1- u)fr( C(H),F2- H)dt
=u((C(H),Fl - H))
+(1- u)((C(H),F2- H))
<U~l+ (1 - U)~2'
Trang47
Suy ra B la t~p16i.Tit intD -I-cPsuyra intA -I-cPoTa thiiy caegia thi~tcua
dinh IS'tacht~p16ithoamanvai hai t~pA, B. Do d6t6n ti;ti(8,k) E £* x R sao
cho(8,k) -I-0 va t6n ti;ti0;E R saocho
((8, F) )+k1<0;,\f(F,1) E A,
((8,F,))+k1 >0;,\f(F,1)E B.
(3.18)
~ (3.19)
Tit (3.18)suy fa k > O.N~uk = 0 thl ta chQnFo E K n intD, khi d6
((8, Fo))= 0;.VI 8 -I- 0 nent6n ti;tiFED saocho ((8,F))> 0; (di@u nay mati
thuanvai vi~cH thoa man (3.18)).Do d6 khongmiit tfnh t6ngquat ta c6 th~
gia s11k =1.Khi d6 vai mQi1 >0dunhovavaimQiFED, ta c6
((8,F))< 0;. (3.20)
N@uchQn1 = ((C(H), F - H)) thayvao(3.19),thl vaimQiF E K ta c6
((8,F) )+((C(H),F - H) » 0;. (3.21)
NeuchQnF = H thayvao(3.20),(3.21)thl vdimQiFED, ta c6
((8, H))= 0;,((8, F) )< 0;,
vavaimQiF E K
((C(H)+8,F-H))> O. 0
3.2.3 Di~u ki~n t6n t~i nghi~m
Dinh nghla 3.2.3. (Xem[2j) Gids'llX lakhanggianvectotapath'l,tC,K c X la
Uj,pl6ivaC :K ---+X* finhxq,dontrio
(i) Anh xq,C du(jc99i la rinhxq,t'l,tadondi~u(pseudomonotone)ntu C thoaman
vcJim9ix,y E K, (C(x),y - x» 0 ---+(C(y),x - y)< 0;
(ii) Anh xq,C du(jc99i la rinhxq,lien t'{LChemintu C thoamanvcJim9iY E K,
finhxq,x ~ (C(x),y - x) la rinhxq,n'llalient'{LctrenK;
(iii) Anh xq,C du(jc99i la rinhxq,lien t'{LChemid9Ctheodoq,nntu C thoamanvcJi
m9ix,y E K, finhxq,~~ (C(~),Y -~) lan'llalient'{LCtrentheodoq,n[x,y].
Trang48
D@ tlm di~uki~nt6nt<;ticanbAngcuabai toanm<;tnggiaothong,chungta xet
, ~? ~
haidinh ly vebat dangthlic bienphanBali.
Dinh ly 3.2.3. (Xem !2j) Cirl S71X la khanggian vectdtapava K c X la U)p
lai,khacq; vaC :K -+X* la anhxr,£thoaman
(i) Tantr,£iU)pA c K thoamanA latq.pcompact,khacq; vatantr,£itq.p.Bc K
thoamanB la tq.pMi, compactsaocho\/x E K\A, 3y E B, (C(x), y - x)< 0;
(ii) C la anhXr,£lien t7j,Chemi.
Khi d6 tan tr,£ix E A saochovdi m9iY E K
(C(x),y - x» o.
Dinh ly 3.2.4. (Xem!2j) Cirl s71X la khanggianvectdtapa,K c X latq.plai,
khacq; vaCK -+X* la anhXr,£thoaman
(i) Tan tr,£itq.pA c K thoamanA la tq.pcompact,khacq; vaB c K thoamanB
la tq.plai, compactsao choVx E K\A,::Iy E B, (C(x), y - x)< 0;
(ii) C la anhXr,£t'{taddndi~'Uva lien t7j,Chemid9ctheodor,£n.
Khi d6 tan tr,£ix E A saochovdi m9iY E K
(C(x),y - x» o.
Ap dl,mgDinhly (3.2.3)vaDinhly (3.2.4)chomohlnhm<;tnggiaothongvdi
X = .cvaK la t~pch§,pnh~ndU<;1c,xacdinhbdicongthlic (3.9).Do nh~nxet
(3.2.1)lienK la t~p16i,dongvabi chi;tn.Suyra K la t~pcompacty@utrong.c.
Dododi~uki~n(i) cuacacDinhly (3.2.3)vaDinhly (3.2.4)du<;1cthoamanvdi
A = K vaB = q;.Bai toancanbiingseconghi~mn@unothoamandi~uki~n
Bali.
Dinh ly 3.2.5. Cirl s71K c .c la tq.pchapnhQ,nd'l1(JCcuabailoanmr,£nggiao
thongvaC : K -+ .c* la anhXr,£chiphi. Khi d6 bai loan can banggiao thongc6
nghi~mn€'Ucacdi€'Uki~nsauthoaman
(i) C la anh Xr,£lien t7j,Chemid6i vdi tapamr,£nhtren K va tan tr,£itq.pA c K
latq.pcompact,khacq; va tan tr,£itq.pB c K la tq.plai, compactsaochoVH E
K\A,::IF E B, ((C(H),F - H))< 0;
Trang49
(ii) C la anhX(llien t'l,lChemid6ivdi tapaytu trenK;
(iii) C la anhX(lt'ljaddndi~utrenK va lien t'l,lChemindQctheodo(ln.
3.3 M~ng giao thong da fiVC tieu phV thuQc thai gian
> ?
ThljC te, nguoitham gia giaothongthuongIlja chQnhanhtrlnh v~nchuyen
, ?? ,,? "
hangh6adljatrennhieutieuchuan,changh(;LnchiphItoi thieuvathaigiantoi
thi§u,...Do d6vi~cxetbaitoancanb~ngm(;Lngv6ichiphIdaml).Ctieula c:1n
thi@t.
Cia Sltcacki hi~uva dOitu</ngcuamohlnhgiOngnhutrlnhbaycuaml).C
(3.1)va(3.2).Cia Sltbaygiatrenmoihanhtrlnhr E P, chiphI la motanhX(;L
Cr : K ---+£* phl).thuOcthai gian.Ta d~nhnghia
C(H)(F - H) =(((C1(H),F - H)), ...,((Cr(H),F - H)), ...).
D~nhnghiavectadongcanb~ngtrenm(;Lngiaothongdu</cvi@tl(;Linhu sau.
D!nh nghia 3.3.1. M(Jt vectddongH E K du(jcgQilacanbilngntuH thoaman,
h.k.ntrenT, \/wE W, \/q,s E Pw,
[Cq(H)(t)- CS(H)(t)E -R~\{O}]=?[Hq(t)= f-lq(t)hayHs(t)- As(t)].(3.22)
Quanh~cuavectadongcanbiingtrongbaitoanm<;Lnggiaothongvanghi~m
cuabaitoanbittdiingthu:cbi@nphanvectadu</cth§hi~ntrongd~nhly sau.
, ,? ,
D!nh ly 3.3.1.Dieuki~ndin devectddongH E K din bangla vdimQiF E K
C(H)(F - H) ~ - R~\{O}. (3.23)
Ch71ngmink.Cia SltH thoaman(3.23)vaH khongthoa(3.22).Khi d6t6nt(;Li
WE W, q,s E Pwvat~pE c £ c6dOdoduangsaocho,h.k.ntrenE,
Cq(H)(t)- CS(H)(t)E -R~\{O},
Hq(t)<f-lq(t),
Hs(t) >As(t).
Trang50
V6i moi tEE, d~t
o(t) = min{jl;q(t)- Hq(t),Hs(t) - As(t)}.
Khi do,h.k.n.trenE
o(t)>0
va
o(t)+Hq(t)< jl;q(t),
Hs(t)- o(t)>s(t).
D~t
Fq(t)= Hq(t)+o(t),VtE E,
Fs(t)= Hs(t) - o(t),Vt E E,
Fr(t) = Hr(t),Vt E E, Vr i=q,Vr i=s
va
F(t) = H(t), Vt E T\E.
Khi do, v6i moi i = 1,...,m
((Ci(H), F - H)) = JT(Ci(H)(t), F(t) - H(t))dt
= JE( Ci(H)(t),F(t) - H(t))dt
= JEo(t)(Cl(H)(t) - Ct(H)(t))dt.
Vi Cq(H)(t) - CS(H)(t) E -R~\{O}, h.k.n tren E lien C(H)(F - H) E
-R~\ {a},matithuanv6i (3.23). D
3.4 M~ng giao thong da tr! ph\! thuQCthai gian
Xetmohint m(;Lnggiaothongv6icackf hi$uvadinh nghiadll<;1Ctrlnh baynhll
trongcacm\lC(3.1)va (3.2).VectadongF(.) E £,dll<;1CgQiIa vectadongch§.p
nh~ndllQCn@uF thoaman,h.k.n.trenT,
F(t) E £',0<Fr(t) < J-lr(t). (3.24)
Cia 811t~pch§.pnh~ndll<;1CK Ia motanhXI;1xacdinh bai
K(H) ={FE R~\{O}/FE B(d(H),E(H)),0<F <jl;, h.k.nT}. (3.25)
Trang 51
vdiB(d(H),E(H))1aquac§,utamd(H) bankinhE(H).
GiasitchiphiC 1aanhxl;tdatri tli K(H) vao£*, vdi
C(F)(t) = (C1(F)(t),...,Cr(F)(t),...,Cm(F)(t)) (3.26)
vavdiC(H) E £*, F E £
((C(H),F))= !)C(H)(t), F(t))dt. (3.27)
D~t
e(H)(.)E £,e(H)(t)E V(t) C mill [0,ILs(t)],"It E T.s=l,...,m
Dinh nghia3.4.1. (Xem[3,4, 5]) VectadongH E K(H) d'l1{JcgQilil vectadong
dinbangyeuneuH thoaman,h.k.n.trenT, VwE W,Vq,S E Pw,3c(H)(t)E
(C(H)(t) saDcho
[cq(H)(t)(Hq(t) E [lLq(t)-e(H)(t), ILq(t)]hay Hs(t) E [0,e(H) (t)])
Dinh ly 3.4.1. (Xem[3, 4, 5])Neuvectadong H E H(K) lil vectadong din
bangyeuth'iH lil nghiifmcuabili toangid batdangthitcbienphan(QVI) vdi
f(x, y) =2M.e*(H), trongd6
M =h(lE(H)(t) +m.e(H)(t))dt. (3.28)
Chitngmink.Gia sit H 1adongcanb~ngy@u.Khi do vdi moi w E W, d~t
A ={qE Pw/Hq(t)<ILq(t)- e(H)(t), h.k.n onT};
B ={sE Pw/Hs(t)>e(H)(t),h.k.nonT}.
Khi dotontl;ti1'(t)thoaman,h.k.ntrenT,
infcq(H)(t)>1'(t)>supcs(H)(t),
qEA sEB
vdi c(H)(t) E C(H)(t).
L§,ytuy yF E K(H), w E W, r E Pw,n@uer(F)(t) < 1'(t),h.k.ntrenT thl
r ~A. guyra Hr(t) E [lLr(t)- e(H)(tt), J-lr(t)],h.k.ntrenT. Do do,h.k.ntrenT,
(er(H)(t)-1'(t),Fr(t)- Hr(t)- e(H)(t)» 0.
Trang 52
Vi;iy,h.k.ntrenI,
(cr(H)(t),Fr(t) - Hr(t))>"((t)(Fr(t)- Hr(t))+e(H)(t)(cr(H)(t)- "((t)).
N@uCr(H)(t) >"((t)h.k.ntrenI thl r t/:-B. Suyra Hr(t) E [0,e(H)(t)]h.k.n
trenI. Tit dota co,h.k.ntrenI,
(c(H)(t),Fr(t) - Hr(t)» "((t)(Fr(t) - Hr(t)) - e(H)(t)(cr(H)(t) - "((t).
N@ucr(H)(t) ="((t)h.k.n tren I thl
(Cr(H)(t),Fr(t) - Hr(t))="((t)(Fr(t) - Hr(t)).
Do do,v6iillQiw E W, r E Pwvah.k.ntrenI,
(c(H)(t),F(t)- H(t)) = ~wEW~rEPw(cr(H)(t),Fr(t)- Hr(t))
> ~WEW"((t)~rEPw(Fr(t) - Hr(t)
+ e(H)(t) ~WEW~Cr(H)(t)<'Y(t)(Cr(H)(t)- "((t))
- ~cr(H)(t»'Y(t)(cr(H)(t)-'Y(t))
> ~WEW"((t)~rEPJFr(t) - Hr(t))
- 2e(H)(t) ~WEW~cr(H)(t)~'Y(t)Icr(H)(t) - "((t)I
> ~wEW"((t)(d(H)(t)- E(H)(t)- (d(H)(t)+E(H)(t)))
- 2e(H)(t)~WEW~cr(H)(t)~'Y(t)Icr(H)(t) - "((t) I
= -2e(H)(t) ~WEW"((t)
- 2e(H)(t) ~WEW~Cr(H)(t)~'Y(t)ICr(H)(t)- "((t)/
> -2M(lE(H)(t)+m.e(H)(t)).
Vi;iy((c(H), F - H) )+2M.e*(H)>O. D
Dinh nghla3.4.2.(Xem[3,4,5})MOtvectadongH E K(H) du(Jc99ilavecta
dongdin bangn€u H thoaman,h.k.ntrenI, vdim9iWE W, q,s E Pw,c(H)(t) E
C(H)(t)
[cq(H)(t)< cs(H)(t)] =}[Hq(t)E {lq(t)- e(H)(t), {lq(t)hay Hs(t) E [0,e(H)(t)]].
Dinh ly 3.4.2. (Xem[3, 4, 5})MOtvectadong H E K(H) la vectadongcan
bangn€u H langhi~mcuabailoangirlbatddngth71cbienphan(QVI) tuang71ng.
Trang53
Chitngmink.Cia 811H kh6ng1avectC1dongcanbf1ng.Khi do t6nt<;1iW E W,
q,s E Pw,c(H) E C(H) va t~pE c T codOdo dliC1ng8aochoh.k.ntrenE,
cq(H)(t)e(H)(t).
Di;tt
J(t) :=min{J-lq(t)- Hq(t)- e(H)(t),Hs(t)- e(H)(t)}.
Ta coJ(t) >O.
Xet vectC1dongF xacdinhnhusail
F(t) =H(t),Vt rJ:E
vavOimQitEE,
Fq(t)=Hq(t)+J(t),
Fs(t)=Hs(t)- J(t),
Fr(t) = Hr(t),Vr -#q,r -#s.
Suyra F E K(H) va
(c(H)(t),F(t) - H(t))= J(t)(cq(H)(t)- J(t)(cs(H)(t))<0,"ItE T.
Dodo
((c(H)(t),F - H))= £b(t)(cq(H)(t)- b(t)(c,(H)(t))dt<O.
Di§u naymall thuanvdi vi~cH 1anghi~mcuabai toangiab§,td~ngthacbi@n
phan(QVI). D
Dinh Iy 3.4.3.Ciasucacdieuki~nsauthoaman
(i) C(H)la anhX(Llient7,lCtrenhemimrJrf)ng(g.u.h.c)trongK(H) vacogiatri
compact,khaccjJ;
(ii) (C(H), f) la anhXr;Lt1,tadondi~u(pseudomonotone)trongK(H) vavdim9i
x E K(H), f(., x) la anhXr;LC(x)-l6i trongK(H);
(iii) Vx E K(H), Y E K(H) va m9iludi (xa)hf)it7,lytu denx, t6ntr;Liludicon
(x/3)cua(xa)vat6ntr;LiU E -C(x) +f(y, x) saGchof(y, x/3)hf)it'l,tytutdiu;
(iv) Vuim9ix E K(H), K-l(X) la mdytu tmngK(H), K(.) dongytu vaVx E
K(H), VyE K(x), "1"( E [0,1],"(y+(1- "()xE K(x)
Trang54
(v) T6n t(li t(ipD c K(H) 10,t(ipcompactytu, khaccjJva t(ipXo c K(H) 10,t(ip
16i,compactytu saDchoVx E K(H)\D, 3z E Xo nK(x),
(T(z), z - x)+f(z,x) C -intC(x).
Khi d6 bailoangirl batdangth7J:cbitn phan (QVI) c6nghi~m.
D!nh ly 3.4.4. Girl sV:cacdi€u ki~n(iii) va (iv) trongDjnh ly (3.4.3)th6aman
va cacdi€'uki~n(i), (ii) va (v) cuaD'tnhly (3.4.3)d'l1{fcthayt'l1ong'u:ngbiJi
(i') C{.) 10,anhx(llien t1,tCtrenhemimiJ r6ngtrenK{H);
(ii') (C,f) 10,anhX(ltv dondi~u(pseudomonotone)trenK{H) vaVx E A,f(.,x)
10,anhX(lC(x)-16i trenA;
(v') T6n t(li t(ipD c K 10,t(ipcompactytu, khaccjJva t6n t(li t(ipXo c K 10,t(ip
16i,compactytu saDchoVx E A\D, 3x E Xo n K(x),
(\C(z),z - x)+f(z,x))n(-intC(x))# cjJ.
Khi d6bai loangirl batdangth7J:cbitn phan (QVI) c6nghi~m.
Nh~n xet 3.4.1. Ntu thaycacgirl thitt (ii') trongDjnh ly (3.4.4)biJigirl thitt,
{ii'~(C, f) 10,anhX(l tv don di~uytu trenK va C(.) 10,anhX(lnv:alien t1,tCtren
(u.s.c)d6i vdi tOp6ytu trenX thi djnhly (3.4.4)vandung.
Nh~nxet 3.4.2.Ntu thaygirlthitt (i') trongDjnhly (3.4.4)b(Jigirlthitt,
(i'~C{.)10,anhx(llien t1,tCd'l1dihemimiJr6ng(g.l.h.c)trenK thiDjnhly (3.4.4)
vandung.
Trang 55
._.