Chtidng1
TOAN TU'DONDItU
1.1 Toan tit ddndi~u
Me:>troantitT trongkhongg'ianHilbertla me:>tanhx~datriT:H->2H.£)6
thicuanola t~p{(x,y)1y E T(x)}ki hi~ula G(T).Chungtakhongphanbi~t
giuaroantttT vad6thicuano.VI v~ychungtaco thenoir~ngme:>tloan ttt
la t~pconT cuaHxH .
Mi€n xacdinhcuaroantitT lahlnhchie'ucuad6thilento~de:>d~ulien,
du<;1cki hi~uladomT ho~cD(T).V~y
domT ={x E H/3y EH : (x,y) EG(T)}
={x E HI Tx"* 0} =D(T).
Tudngtv hlnh chie'ucuadq thi len to~de:>thlihai,du
14 trang |
Chia sẻ: huyen82 | Lượt xem: 2133 | Lượt tải: 0
Tóm tắt tài liệu Thuật toán tìm không điểm cho tổng hai toán tử đơn điệu cực đại, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
<;1cgQila mi€n anh
cuaT vakihi~ula ImT.V~y:
1mT={y EH 13 x E H: (x,y) E G(T)}.
NghichdaocuaroantitT la roantitcod6thila {(y,x)/(x,y)E G(T)}.
Dinh nghTa1.1
a. MQlloan III T dUrfcgQiLaddndi~uneu:
20 V(x,y),(x',y') EG(T).
b. MQlloan lit T dUrfcgQiLaddndi~uchc;itntu :
>0 V(x,y),(x',i) EG(T) va(x,y)7(x',y').
c. MQIloanta T dUrfCgQiLaddndi~umc;mhWYimoduloyneu :
2 y /x' - x P V(x,y) , (x',y') E G(T).
Trang7
Vidu:
ChoE la mQtkhonggianEuclide, E1va Z la hait~pconkhongtr6ng
cuaE. X6tham16if :E ~ E1.Giasirr~ngZ c damfeE la ta'tcacacdi~mz
maai(z)*~(doh~qua2.2chu'dng1cua[l]), Z * 0. X6ttoantii'T :E ~ 2E
xacdjnhbdi
T(Z)={:(Z)
neUZEZ,
neuzEE \ Z.
Hi~nnhiendamT =Z. Chungtachirar~ngT la ddndi~u.
Chungminh:
Th~tv~y, giasux vax'lahaidi~mtUyy trongZ vay ,y' lahaiph~ntu
tuyy trong T(x) va T(x'). B~ngdinhnghIadu'divi phan(Subdifferential)
(chu'dng1ph~n2cua [1])chungtaco :
rex')~ rex)+,
rex) ~ f(x') + .
CQnghaibfftdiingthuctrentadu'Qc
f(x')+rex)~rex)+f(x')++.
Dodo
~o,
nghTala T ddndi~u.
ChuYIII daychungla kh6ngphanhi?l girlaloantll vad6thicuachung.
Dinh nghia1.2
MQI loan Iii ddndi?u ia qtc dgi neunokh6ngnlimlrongmQlloan111ddn
di?ukhackh6nglrungwJi no.
Trang2
NguyenThe'Uy Chu'o'ng1 TminTii'Do'nDi~u
Saudayzacactinh chattijpanh cualoan titddndi?uc1/cd(li ..
DtnhIj 1.1..
Ne'uT : E -+ 2Ela tmln tti ddn di<%ucljc d<;tithl cha XOEdam T, t~p
T(xo) la 16iva dong,
Chungminh:
. TachungminhT(xo)ladong.
Go') ') ° I ' k? d" k T(
0
) (k 12 ) T
~ h hK d d'" ?1a Sl( Y =1m y , d ay y E X =, , III C at dn IyU cuak~oo
T chI fa
~0 vdi (x,y) E G(T).
Quagidi h<;tnkhi k -+ r:fJ taduQc:
° °
~O,
Vdi ( x,y ) E G(T) tuyy,Vi T la ddndi<%uqic d<;li, ta thuduQcyOE T(xo)co
nghIala T(xo)la dong
. TachungminhT(xo)la 16i:
, Gia sll'y' , y"E T(xO)va 0 < a < 1. Vdi mQix Edam T va y E T(x)
chungtaco
, o 0 ~ ,
" ° 0 ~ .
E)~t ya=ay' + y" , tadliQc
a o
~O,
Trang3
VI T laddndi~uqtcd~ikeotheoya E T(xo).NenT(xo)la t~p16i.
TrongtHronghQprieng, n€u XOE int ( domT), taco dinhIy sail
Djnh lj 1.2
N€u XOE int ( domT) va T :E ~ 2Ela toclntii' ddndi~ucvcd~i,thlT(xo)
la t~p16icompact.
Chungminh : (Xemchu'dng4 ph~nI cua[l])
1.2 Tminto-khongdaD:
Dinhnghia1.3
MQl loanlit Q: E ~ 2£dl1rjcgQiLakh6ngdiinntu domQ ~ fjJva
/q' - q" /::; /z.'- z" j,
Vdi (z', q' ), ( z" , q" ) E G(Q.).
Dinhnghia1.4
MQlloanlit T:E ~ 2£dl1rjcgQiLamiJrQngcila loanla T: E ~ 2£
ntu G(T) c G( T) . Khi d6 loanla T dl1rjCgQi Lalhuh~p cila loanlaT.
Djnhlj 1.3
Cho mQttoantii'khongclanQ :E ~ E thl t6n t~imQttoantii'khong
clan Q marQngmadom Q= E
Chungminh: (Chu'dng4 cua[1])
Trang4
DufJi dayzalienh~giila loan li'tddndi~uvaloanli'tkhongdiin
Xet bi€n d6i tuy€n tint <D: Ex E ---+E x E dintnghlabai
(
(z+t) (Z-t)
)(u,q}=<D(z,t)= -Ii' -J2 .
Do
(u+q)
z- h
- '\!2
va
. (u - q)
t= -Ii
chung taco <D=<D-1.
T~pQ(u) ={q E E : (u ,q) E G(Q) =<D(G (T))},xac dint toantitQ : E
---+2Emad6thi la <D(G (T)).Tacolienh~giG'aT va<D(T)nhu'sau
Djnhly1.4
(i) MQt toantti'T : E ---+2Ela ddndi~un€u va chin€u Q =<D(T)la
kh6ngdan.
(ii) MQttoantitT :E ---+2Elatoantitddndi~uC\tcd~in€u vachin€u
Q =<D(T)la kh6ngdanvadamQ =E.
H~qua1.1
M6i toantitddndi~uco mQ~toantti'marQngIa ddndi~uqtc d~i.
1.3 Tinhddndi~ucl,icd~icuat6nghaitmlntd'ddndi~ucl,icd~i
Tru'dckhi chungmint dint 19cdban(dinh191.8), chungtanh~cI(~dmQt
sf)dint 19dadltQCchungmint trong[1].
Trang5
DtnhIf 1.5
MQttoclnti'tT : E ~ 2Ela ddndit?un€u va chi n€u phu'dngtrlnhT(z)
+z =h co nghit?mchom6ih E Eo
DtnhIf 1.6
GiitsU'T:E ~ 2Ela loantii'ddndit?uqtc d~i,ZOE ri (domT) va S
c E la mQtt~pcompact.
Giit si'tVOlm6iZ E S n domT t6nt~imQtvectdtE T(z)VOl<t , z
- ZO> 2::0, Khi do phltdngtrlnhT(z) co nghit?mtrongconv S n domT.
Dinh If 1.7
Giit si'tT :E ~ 2Ela loantU'ddndit?uct;t'cd~i.N€u domT la dong
hayT ]addndit?um~nhyoimoduJoy thlphu'dngtrlnhT(z)=0conghit?m. j
Djnh Iy CC1bitn.
Dinh If 1.8
N'" T 1 E 2E, T2 E 2E I' , ? d d'" d '"eu : ~ va : ~ a loan tli dn lyU ct;t'c~lman
(domT1) n ri (domT2)* ~thl loan tU'T =T1+T2clinghI loantU'ddndit?uqtc
d~i.
Chlingminh:
Tntoch€t t~mgiit sitr~ngint (domT2)* 0 vadomT2la dong.GiitsU'ZO
N -
E ri (dom T1) n int (domT2). B~ngcachthay T1va T2bdi Tl va Tzyoi
-
TI(Z)=T1(z+ZO)-t,
-
I;(z)=T2 (z+ZO).
Trang6
Chungtaco th~h~ncht slfnghiencuuvaotru'onghQpZO=0 va 0 E T\O).
Tli dinh190.5), d~T la dondi~uclfcd~ithldi€u ki~nau la, vdi tEE,
phu'ongtrlnh
Tl(Z)+T\z) +z - t=0
co nghi~m.Ntu cgn, thayT\z) b~ngT2(z)- t,chungtaco th~gidi h~ntrong
tru'ongh9P t =O.
V~yd6chungminhT la tocintli'dondi~uclfcd~ichungtaphaichira
mOtnghi~mcuaphltdngtrlnh .
T1(z)+T2(z)+z =O. (1)
0) co nghi~mntu va chi ntu t6nt~icac vectoz* , t* , t1E T1(z*) , t2E T\z)
ma
I I * *
t +-z =-t
2 '
(2)
2 1 * *t +-z =-t .
2
GiaSltT la toantltdinhnghTaboi
- i . 1
T (z) =T' (z)+- (z),
2
i Ti
vz E E vaQI la nghichdaocua T (i=1,2).
VI Ti la toantitdondi~uclfcd~i,apdvngdinh191.5(di€u ki~nchi
ntu)tathayphltongtrlnh
- i
T (z)+z-t=O
laconghi~mvdim6it E T.
Trang7
- i
Do aiSuki~naua ainh1y5 , tatha'yT 1atmintU'adnai~uva Qi(i =1,2)
cGngla tmintii'ddndi~uqic d~i.
Hdnnlia,doHnhddndi~um~nhcua ri k60theophu'dngtrinh
- i
T (z) -t=O
coduynha'tnghi~mt E T. Vi v~yQila anhx~datri madomQi=E (i=1,2).
X6t loan tli Q dinhnghIabai congthuc. .
Q(t) =Q2(t)- Ql(-t) , tEE.
B~ngh~qua1.1trong[1],loantii'ddndi~uqic d~iQl va Q21alien tvctrenE.
Voi Q 1addnai~uapd~ngh~qua"1.1trong[1]1ffnnlia chungtakSt 1u~nr~ng
Q la ddndi~uqic a~i.DungQi chungtaco th€ viSt (2)du'oid~ngtu'dngdu'dng
1a
. z*=Ql (~t*), z* =Q2(t*).
hay
Q(t*)=Q2(t*)- Ql( -t*) =O.
VI v~y,d6tlmnghi~mcuaphu'dngtrinh(1)thl tachi cffnchi ra nghi~mcua
phu'dngtrinh .
Q(t)=0, (3)
. Chungminht6ntginghi~mcua(3)
Chungtadungdinh1y1.6,nhu'ngtru'octieDchungta chi ra r~ngt6nt~i
mQtt~pcompactS baoquanhtoE E va >0 vdi m6i tE S va va
z=Q(t).Gia sl(ta1a'yS 1am~tcffu
C(O,a)={t:.Itl=a, tE E}
Trang8
Voi a> 0vatoladie'mxua'tph,Hthl > 0 la'ytn
;;::0 , t E C(O,a) . (4)
tnQl(O)=0, tntinhcha'tddndi~ucuaQI keo theo
;;::0 ,
cho tE E. Hdnnua(4)chIraba'tdgngthuc
;;::0 tE C (O,a) . (5)
. Changminhdungkhia au[an.
Chungminh(5), chungta la'ydiSm t'E E va dungtinhcha'tddndi~ucua Q2
chungtavi6t
;;::0 ,
hay
;;::+ .
Tn Q2(t), Q\t') Edam T2va damT21adongtheogia thi6t,chungtaco
;;::-All t'l +. (6)
Voi h~ngsoAl >0vat, t' tuyytrongE.
K6 ti6pchungtachIrar~ngcothSch9nt' ph\)thuQctdSv6phaicua(6)
ladlfdngtrenC(O,cx)voia duIOn.
Tn 0 E int (dam f2) =int(damT2),t~pint (dam f2) chuaquac~u
S(O,s)={ZE:Izi<s},
Trang9
vdi E >0 dli be. Ap d\lngb6 de 1.6,T2la tmintU'ddndi~uqtc d'.liva t~p
- 2
sea,c;)c int(domT ) la compact.Chungta ke'tlu~nr~ngt6nt'.limQth~ngs6
A2>Omalt'1 ::;A2va IQ2(t')I::;c.GiaSll' Itl>O,va
t' ET2 (~
ItI ),
Q2 (t)=~
ItI .
Tli (6)suyraba'td~ngthuc
\Q2(t) , t)?: -AI A 2 +c;ltl' (7)
dung cho tEE. Bay gio giLlsU'r~ng
a?: AlA2
c; ,
chungtased'.ltdlt<}C(5)tli (4).
. Chungminhd§ydu,labodigiLlthie'tT21adongvaint(domT2)"# 0.D~t
T2=T2+Pa a
d dayPala toantitdlt<}Cdinhnghia
0
ne'ulzl<a
ne'ulzl=a
ne-ulzl>a
a
Pa(z)=~Aa:a>O
Trang70
NguyenThe'Uy Chu'o'ng1 TminTii'Do'nDi~u
tmlntil'Pexla roantU'ddndi~uqic d<;li,mi€n Pexla dong va ZO= 0 E int (dom
T2)n int (domPex).Do 6 tren, ta co T: la ddn di~uqic d<;li. Chungta co
domT: c domPexva
ZO=0 E int (domT:) n ri (domT1)
chungtaket lu~nroantit
r] +r2=r1+r2+P =T+Pa a a
la ddndi~uqic d O.NhlingtrongtruonghQpnay,b6i b6 d€ (3.2), T
cfingla ddndi~uqic d<;li.
. Cu6i clIngchungtagiitiquyetgia thietint (domT2)* 0.Gia sU'r~ng
ZO=0 E ri (domTl) n ri (domT2).
Gia sU'L1va L2la haikhonggianconcuaE thuduQccfinggiongnhu cuadom
T1va domT2
T1 +r2 =T1+T2+P =T+Pa a a
B6d~:
MQtroantl'iT :E~2EmadomTc M, voiM =zo+L(6dayZoEL va
L lakhonggianconcuaE) la ddndi~uqic d<;lin€u vachi n€u t6nt<;limQtroan
tl'iddndi~uc\icd<;li
-
T:M~2M
va
domT=domT
-
T (z)=T(z)+L~,voizEdomT
6dayLdimE =dimL+dimL~.
NguyenThe'Uy Chtidng1 TminTd DdnDi~u
Vdi b6 d€ tren, loan tti'ddndi~uqtc d(;liTi co thebieu di~nthanh
d(;lng
Ti(z)=Ti(z) + (Li)"\ Z E damT1
aday
- i
T :L. ~2 L,I
la loantti'ddndi~uqtc d(;li(i =1,2...).Do
N(Li , z)=(Lil, z E Li . (i=1,2,...)
£)u'<;$cchungminhtrong(chu'dng1[1]) .taco
- j
Tj =T +N(Lj), i =1,2,... (7')
Chungtad~t
L=C nL2
va
'. I
T~ =T +NI (L)
d dayky hi~uN1(L)conghiala loantitN(L) xettrenIqIonggianEclideL1c
E, VIv~y
N1(L)(z)=N(L)(z) n L1
Vdi Z E E.Hdn nna
- I
T :C ~ 2L[
la ddndi~uQtcd(;li, va
Nj (L):C ~2Ll
ciingla ddndi~uQtcd(;liva ZO=0 thuQcv€ ph~nchungdam7'1va mi€n trong
cuadamN1(L)=L .
Chungtachungminhdu'<;$c
TOI: LI ---72 LJ
la loantitddndi~uC\tcd(;li, ma
Trang72
Nguy~nThe'Uy Chu'Ong1 TminTii'DOnDi~u
domT~cL
Ap dl,lllgb6as 1.4[1]vdi
~ I
T~=To +N}(L),
dday
~ I
To:L~2L
la ddndi~uqtc d(;li.
DungdinhnghIacua Talva biSudi€n cuaTa}, chungtathodtiQc
N1(L)+N1(L)=N1(L),
,~ ~ I
T l(z)=To (z)+N}(L)(z),zEdomT2 nL, (8)
d day
~ I
To :L~2L
la loantli'ddndi~uqtc d(;li,tudngtl!cho rzchungtaco :
,~ ~ z
T 2(z)=To(z)+Nz(L)(z),zEdomTz nL,
dday
~ ZI
To :L~2L
la loantitddndi~uqic d(;liva
N2(L)(z)=N(L) (z) n L.
Ke'thQp(7')(8) (9)va chuyWi
(LI)1-+(L2l =L1- va
L 1-+L 1-n L1 + L 1-n L2 =L 1-
chung ta tho duQc
r =r1+rz =~l+~z+N(L)
Trang73
(10)
d day:
la loantitadndi~uclfcd~i(i =1,2).
~I :L ~ 21
Tli
- 1 - 2
Zn Eint (domTo) n int(domTo),
vatUnhungdi€u dachungminhd tren.Tacotoclntti'
~ ~l ~2
70 =To +To
tuL taiL la ddndi~uqtcd~i
V~ydung(10)va b6d€ tre~chungtak€t lu~nT la toclntti'ddndi~uqtc
d~i.
Trang74
._.