Sự không tồn tại nghiệm dương của một số phương trình tích phân phi tuyến liên kết với bài toán NEUmann trong nửa không gian trên

LU{J.nvan totnghi~p Trang24 CHUONG 4 st; KHONG TON T~I NGHIEM DUONG ? "'".., CUA PHUONG TRINH TICH PHAN Val (J =N -1, N >2 Trangphgnnaychungtaxetsvkh6ngt6nt~inghit%mdu'dngcuaphu'dng trlnhtichphanphituye'nsauday (4.1) U(x) =b f g(y,u(y))dy "dxE IRNN N-l' , IRN Iy- xl trangdo bN=2((N-l)lUN+ltl voi lUN+1la dit%ntichcuam~tc~uddnvi trong IRN+I, N >2 va g: IRN xIR+~ IR la hamlien t\!Cchotru'octhoadi~ukit%n: T6n t~icaehftngs6 a,fJ ~0,M >0 saocho (4.2) g(x,u) ~MlxlP ua, "dxE IRN, "d

pdf11 trang | Chia sẻ: huyen82 | Lượt xem: 1386 | Lượt tải: 0download
Tóm tắt tài liệu Sự không tồn tại nghiệm dương của một số phương trình tích phân phi tuyến liên kết với bài toán NEUmann trong nửa không gian trên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
u~0, va mQtsf)di~ukit%nph\!saudo. Phudngtrlnhtichphan(4.1)duQcthanhl~ptu bai loanNeumannphi tuye'nsau dayvoiN=n-l>2: TIm mQtham v Ia nghit%mcuabai loanNeumann (4.3) (4.4) ~v=O, xEIR: ={(xl,xn):xl EIRn-l,xn >O}, - vxn(Xl ,0) =g(XI, V(XI ,0)), Xl E IRn-l, thoacaetinhcha't: (8]) VEC2(IR:)nC(IR:), vxnEC(IR:), lim ( SUP I vex)I +R. sup ov (x) J =0, k--HOO Ixl=R,xn>O Ixl=R,xn>Ofun (82) d day g: IRn-1x[0,+00)~ [0,+00)chotru'octhoacacdi~ukit%nsau: (G]) (G2) g lahamlient\!e, 3a~0,3M>0: g(xl,v)~Mva, "dv~O, "dxlEIRn-l. va mQtsf)di~ukit%nph\!sed~tsau. Lu(jnvantotnghi~p Trang25 Khi do,n€u g 1ahamlient\lCvanghi~mv bai loan(4.3),(4.4)co cac tinhcha'"t(SI)' (S2)'thi v1anghi~mcuaphudngtrinhtichphansauday I - 2 f g(l,vel,0)dl I n(4.5) vex ,xn) - 2 (n-2)/2' VeX ,xn) E IRp (n-2)OJn Rn-I (1 I I I 2 )Y -x' +Xn trangdo OJn1adi~ntichcuam~tc~uddnvi trongIRn. Day 1ak€t qua trongph~nthi€t l~pphudngtrinhtich phan (chudng2, dinh1y2.1),trangdo co stfthayd6i cacky hi~utrangcachvi€t bangcachthay (a/,an)va (xl,xn)1~n1u'<!tbdix=(xl,xn)va Y=(/,Yn)' Taclinggiasaranggiatribien V(XI,0)cuanghi~mv cuabailoan(4.3), (4.4)thoatinhcha'"t: (s3)Tich phan f g(/, v(/ ,0)d/ /Rn-I I yl - xl In-2 t<3nt~i, VXI E IRn-l. Gia sa rangbai loan (4.3),(4.4)co nghi~mdudngv=V(XI,xn) thoacac di~uki~n (SI)- (S3)' Dungdinh1'9hQit\l bi ch~nLebesgue,cho Xn~ 0+trang phu'dngtrlnhtichphan(4.5),nhovao(S3)'tathuduQc: v(xl,0)= 2 f g(l, vel ,0)_~l , vxl EIRn-l. (n - 2)OJn /Rn-I Il - Xl In (4.6) Ta vi€t l~iphudngtrinhtichphan(4.6)bangcachthayl~icacky hi~u n-1 =N, Xl=x, l =Y,V(XI ,0)=U(XI), i.e., (4.7) u(x)= 2 f g(y,u(y»)dy(N -l)OJ ' I I N-I' '\IxE IRN. N+lIR' y-x Khi do,taphatbi~uk€t quachinhtrangph~nnaynhu sau: Djnh ly 4.1.Ntu g thoacaegia thitt (GJ, (Gz)vdi N >2 va 0~a ~N~l' Khi do,phl1angtrinhtickphdn(4.7)khongc6.nghi~mlien t~cdl1ang. Lu(inwin totnghifp Trang26 Ch6 thich4.1,K€t quanaym~nhhdnk€t quatfong[2],[8].Th~tv~y,vOi CY=N -1, d clingphu'dngtrlnhrichphan(4.7),caegiathi€t saudaydii sadt,mg trongcaebaibaa[2],[8]matrongehu'dngnaykhonge~nd€n: (G3)g(x,u)la hamkhonggiamd6ivdibi€n u, i.e., (g(x,u)-g(x,v))(u-v)~O VxEIRN, Vu~O,Vv~O. (G4) Tichphan J g(1,0;~-I t6nt~ivadu'dng.1/1' ( 1+ x ) Tru'deh€t tae~nmQtsO'ba'td&ngthuesauday: B6 d~4.1.VaimQiq~0,X E IRN, fadijt: (4.8) A[q](x):=A[(1+lylrq](x)= J(1+lylr:_,dy. lRN Iy - x I Khi an (4.9) A[q](x)=+00,ne'uq:::; 1, (4.10) A[q](x) hQifl;l va A[q](x)~ OJNN-I 111-I' ne'u q>1.(q-I)2 (1+x)q Chungminhb6d~4.1. a)Gia sa q :::;1.Chti Y d€n ba'td&ngthuetamgiae (4.11) Iy - xl :::;Iyl+Ix! vdi mQi x,y E IRN , ta suyfa tueongthue(4.8) ding A[q](x)= J (1+lyl)-:-~y [RN Iy - x I > J (1+Iylrq d =+Joo (1+rrq d J d:S- 1III N1Y II Nlr r'1/' ( Y + x ) - 0 ( r +x ) - lyl=r (4.12) trongd6 J dSr la richphanm~trenm~te~u,tam0, bankinhr trongIRN. Iyl=r Tich phann~yehinhla dit%nricheuam~ttrenm~te~uIyl=r, tuela: (4.13) J N-l dSr =r OJN' Iyl=r LucJnvantotnghifp Trang27 Dodo,tasuytu (4.12),(4.13)ding (4.14) +00 N-} dr J A[q](x)~wN I( r:'xl)N 1(1+r)q =wN q' +00 N-I d Tich philo Jq =f rll N-I r philokykhi q~1va hQit1;1khi q>1.0 (r+ x) (1+r)q Do do, richphilo (4.15) A[q](x)philoky khi q~1. a)Gia sa q >1. i) Xet t~ix =0,taco (4.16) - f (1+Iylrq dy - +foo(1+rrq rl-Ndr=w +foo~ .A[q](O)- I I N-I -wN N-I N (I+r)qm~ y 0 r, 0 / / A +00 dr A' , Do do, hch Phan f hOI tu VI q >1. 0 (1+r)q . . V~y,richphilo (4.17) A[q](0) hQi t1;1khi q >1. ii) Xet t~ix =F0, chQnR >31xJ>O.Ta vie'tl~i A[q](x)thanht6nghaitichphilo A[q](x)= f (1+IYI)~q_~y+ f (1+IYI)~q_~y=J~I>CX)+J~2)(X). IY-Xl$/?Iy - xl Jy-xl"/? Iy - xl (4.18) U)Banhgia J~I)(X)= f (1+lylrqdy I N 1 . IY-Xl$/? Y - xl - Taco: (4.19) J (l)() = f (1+lylrqdy< (I II) -q f ~Ii X N-I - sup +Y N-I IY-XI$R Iy - xl ly-xl:>R ly-xl:SRIy - xl d R N-Id = sup(1+!ylrq f :-1 =sup(1+!ylrqwNrN-/ IY-XI$R Izl:SRIzi ly-xl:SR 0 r = sup(1+Iylrq wNR<+00. ly-xl:SR Lugnwlntotnghi~p Trang28 OJ) Danhgia J~2)(X)= f (1+lyl)-qdy I N I . ly-4~1I Y - xl - Ta co: (4.20) (21 = f (1+lylrqdy< f (1+lylrqdy< f (1+lylrqdyJII (x) NI - NI - NI ly-xl~RIy-xl - lyl~R-lxlIy-xl - IYI~R-Ixillyl-Ixil - +00 (1 ) -'1 N-Id +00 N-I d f +r r r f r r =OJN N 1 =OJN N I - . II-Ixl Ir-Ixll - R-Ixllr-Ixll - (1+r)q Chu y rang, do R>3Ixl>O,tacolr-lxll=r-lxl:=::R-2Ixl>lxl>O,voi mQi r:=::R-Ixl. +00 N-] d D d' ' h hA f r r hA' ~. 10 0, tIc p an N I 'I Q1tl,l VOl q> . R-Ixl I r -Ixll - (1+r) V~y,tichphan (4.21) J~2)(x) hQi W khi q>1. T6 h<;5pl(;li(4.17),(4.18),(4.19)va (4.21)tathudu<;5c (4.22) \IxE JRN, A[q](x)hQitl,lkhi q>1. Hdnnua,voi q>1,tavie"t (4.23) +00 N-l d +00 N-I dJ = f r r :=::f r r q o(r+lxl)N-I(1+r)q Ixl(r+lxl)N-I(1+r)q +00 rN-Idr 1 +00 dr :=::J( r+r )N-I(1+r)q=2N-I J(1+r)q = 1 1 \Ix E JRN (q-l)2N-l (1+lxl)q-l . Dodob6d~4.1du<;5cchungminh.- Chungminhdinhly 4.1. Bangcachthayhamg(x,u)bdi gI(x,u)=bNg(x,u)vahangs6 M trong (4.2)thaybdi bNM,taco th~giasarangbN=1makhonglamm!t tinht6ng quat. LucJnvantotnghifp Trang29 (4.24) trongdo (4.25) Ta vie'tphuongtrlnhtichphan(4.7) voi bN=1theod~ng u(x)=Tu(x)=A[g(y,u(y))](x),\/xE IRN, A [w(y)](x)= J w(y) d~-I' XE IRN. iii' I y - x I Ta chungmintb~ngphanchung.Gia su u Ia nghi~mlient\lCvaduong cua(4.24).Khi dot6nt~iXoE IRNsaochou(xo)>o.VI u lient\lcnent6nt~i ro>0 saocho: u(x»~u(xo)=L \/xEIRN, Ix-xol:::;;ro.2 Ta suytugiathie't(G2),(4.24)-(4.26)r~ng (4.26) (4.27) u(x)=A[g(y,u(y))](x)~MA[ua(y)](x) 2::MLa J dyN-l' \/x E IRN. Iy-xol:s:roI y - x I Sud\lngba'td~ngthucsau (4.28) I y - x I :::;;Iyl + Ixl :::;;(1 + Ixl)(1 + Iyl) =(1+Ixl)(1+Iyl- Xo+xo) :::;;(1+Ixl)( 1+jxoI+Iy - XoI ) :::;;(1+lxl)(1+lxol+ro)'\/x,YEIRN, Iy-xo I:::;;ro' tasuytu (4.27), (4.28)dng (4.29) u(x) 2::MLa J ~ N-l Iy-xol:s:ro I y - x I Ta vie'tl~i (4.30) trongdo > MLa 1 -(1+lxol+ro)N-lx(1+lxl)N-l J dyIy-xol:s:ro = MLa 1 OJ N X NrO (l+lxol+ro)N-l (1+lxl)N-l N ' \/xEIRN. u(x) 2::u1(x) =m](1+Ixlrq), \/x E IRN, Lugnwintotnghifp Trang30 (4.31) a N M L ())NrO ql = N -1, m] = N(1+lxo!+ro)N-I' Sa dl;lngffiQtl~nnii'ad&ngthuc(4.24),tasur tITghlthi~t(G2),(4.27)r[tng (4.32) u(x) 2 MA[ua(y)](x) 2 M4[u~(y)](x) =Mm~A[(1+Iylraq,](x) \::IxE IRN. Baygidtaxetcactru'dnghQpkhacnhaucuagiatti a. 1 O::;a::;-. N-1 Ta sur ratU(4.9),(4.32)voi q =aql =a(N -1)::;1, dng Truong hQ'p1: (4.33) u(x) =+00\::IxE IRN. D6 ladi~uvo19. Truonghdp2: ~ <a <~.. N-1 N-1 Sa dl;lng(4.10)voi q =aq]=a(N -1) >1,tasur ratIT(4.32)r[tng: (4.34) u(x)2 Mm~A[(1+Iylraq,](x)=Mm~A[aql](x) ()) 2 Mmla N N-I(1+lx!)I-aq" \::IxEIRN. (aql -1)2 hay (4.35) U(X)2u2(x)=m2(1+lxlrq2, \::IxEIRN, trongd6 (4.36) q2=aq ] -1 m - M())N ma , 2 - I 2N-l .q2 Giasadng (4.37) u(x)2 Uk-I(X) =mk-I(1+!X!rqk-l, \::IXEIRN. N€u aqk-I>1,khid6 tadungba"td&ngthuc(4.10)voi q=aqk-I>1,tathudu'Qc tITgia thi€t (G2), (4.24),(4.37),r[tng (4.38) u(X)2 M4[ua(y)](x)2 M m:_]A[(1+Iylraqk-'](x) Luc7nvantotnghi~p Trang31 =M m:-lA[a qk-I](x) 2 M ma ())k-l N (aqk-I -1)2N-l (1+IXI)I-aqk-1 2mk(I+lxlrqk =Uk(X), '\IxEIRN, trongd6 cacdtiy {qk},{mk}duQCxacd~nhbdicaccongthucquin~p sau: (4.39) a M())N mk-I k =2,3,.,1 m = N I ' qk=aqH-' k 2 qk Tli (4.31),(4.39)tathuduQc (4.40) { N - k, ntu a =1, qk= k I I-a k-I A'" 1 N (N-l)a - - , neu -<a<-, a=t:l, I-a N-l N-l Ta suytli (G2),(4.10)va(4.24)ding (4.41) U(x)2 Mm:A [(1+Iylraqk](x), '\IxE IRN. Nhuv~ytachIcftnchQnffiQts6t1,1'nhien k saGcho: (4.42) 0 <aqk ::;1. Do (4.40),tachQnffiQts6t1,1'nhien k nhusau: i) N€u a=1, tachQn k=N-1,khid6: aqk=a(N-k)=a(N-N+l)=a=1, ii) N€u ~<a<~ va a=t:1,tachQnk thoako:=;;k<ko+l,N-l N-l voi k() =21n[N -(N -1)a].1na N Tni<tnghtjp3: a =N -1 . Ta vi€t l~i(4.20) (4.43) u(x)2 M A[ua(y)](x) 2 Mm~A[(1+Iylraql](x) =Mm~A[(1+lylrN](x), '\IxEIRN, M~Hkhac,voiffiQixEIRN, IxI21,tac6. (4.44) A[(1+lylrN](x)= f (1+IYI~~INdy RN Iy- xl Lugnvantotnghifp Trang32 > f (1+lylrN d >+f'" (1+rrN d IdS- IIII NIY- II Nlr rIi \ ( y + x ) - 0 ( r +x ) - lyl=r +"'(1+rrNrN-I 1\I+rrNrN-I =OJv f II dr ~OJN f II dr. 0 (r + x )N-I I (r + x )N-I Ixl rN-Idr ~OJN [(1+r)N(r+lxj)N-I. Chuyr~ngvoimQir saocho 1~r ~Ix!taco (4.45) ( ) N r 1, 1 1 1+r ~2N va r +Ixl~ 21xJ. V~y,tacota(4.45)dug Ixl rN-Idr 1 1 Ixl dr !(1+r)N ( r +Ixl)N-I ~ 2N ( 21xl)N-2 !r( r +Ixl) (4.46) 1 1 1+Ixl N =4N-I x IxlN-I x In( 2)' "Ix E IR , Ix!~1. Ta (4.43),(4.44),(4.46)tasuyrading (4.47) 0, Ixl~1, u(x) ~V2(x) =~~ ( In 1+Ixl ) PZ, Ixl~1, IxIN-I 2 voi (4.48) PZ =1, Cz=MOJNm~ 4N-I Giasur~ng (4.49) 0, Ixl~1, u(x) ~vk-l(x) =~ Ck-l ( In1+ixi J Pk-l, Ixl ~1, IxlN-l 2 trongdo Pk-l>Ck-llacaeh~ngs6dtiong. Sud\lnggiathie't(G2)va(4.49),tasuyradug (4.50) u(x)~M A[ua(y)](x) Lwjn vantotnghi~p Trang33 ~M A[v:-1(y)](x) =M J V:-J~~Idy RN Iy - xl >M J v:-I(y) d >M J v:-I(y) d - I?' (lyl+lxl)N-1 Y - lyl~1(lyl+lxl)N-1 Y +W V:-I (y) dSr =M Jdr J (r +Ixl)N II Iyl=r ) a Pk-II+r ( In(- ) +w 2 dr =M OJNC:-1J r(r +Ixl)N I1 Ta xettru'onghcJpIxl~I, taco (4.51) ( 1+r ) a Pk-l ( 1+r ) a Pk-I +00 In( -) +00 In( -) J 2 J 2dr~ dr I r(r+lxl)N-1 Ixl r(r+lxl)N-l ( 1+Ixl J a Pk-I +00 dr ~ In(-) J ( I I) N-l 2 Ixl r r +x [ II J a Pk-I +00 d ;, In(l: x). I~r(r +:)N-I - 1 ( - 1+x aPk-I (N -1)2N-Ilxt-1 In-fl) . Tli (4.50), (4.51),ta suy ra r~ng 0, Ixl~1, U(X)~Vk(X)=~ Ck ( 1+lxl ) Pk II- In- , x:2:1, IxlN-l 2 (4.52) trongdo Pk>Ckla caeh~ngs6du'dngxacdinhb~ngcaecongthuquin(;lpnhu' sau: (4.53) Pk =apk-I' C MOJ Ca k = N k I (N -1)2N-I' k =3,4,... Ta tinhfa cDngthuchiSncua Pk>Cknhovao(4.48),(4.53),nhu'sau Lu4n vantotnghi~p Trang34 (4.54) k-2 l-N N-I ak-2Pk =a , Ck =dN (dN C2) , k=3,4,... tronga6 (4.55) MOJN dN =(N -1)2N-J . Ta vie'tI~i(4.52)voi Ixi ~1,tac6 I-N 1 ( N-I 1+Ixi J a k-2 (4.56) u(x)~vk(x)=dN IX!N-I dN C21n(2) . ChQnXl saGcho (4.57) dZ-iC21n(I+lxll»I,2 Do (4.56),tasuyrarang u(xi)~ limVk(Xl)=+00.k->+oo EHylaai~uva19. Dinh194.2au'<;1cchungminhhoanta't. Chti thich4.2. i) Trong tru'ongh<;1pcua g(XI,U) chungta chu'aco ke'tlu~nv~ tru'ongh<;1p a>(n-l)/(n-2), n~3. Tuy nhien,khi g(XI,U)=Ua, n~3, (n-l)/(n-2):::;a< n/(n - 2), B. Hu trong[6]ail chungminhrAngbaitmin(4.1),(4.2),(1.7)khang c6 nghi~mdu'ong.Trong tru'ongh<;1p"gidi hf:lna =n/(n- 2)", nghi~mdu'ong khangt6nt~i(Xem [4-6]). ii) Voi a =n/(n- 2), caclacgiatrong[4]ailmatata'tcacaenghi~mkhangam khangt~mthu'ongUEc2(IR;)n C(IR;) cuabailoan { -!J.u =au(n+2)/(n-2) trong IR; , - uxn(xl,0)=bua(Xl,0) tren xn=0 trongcactru'ongh<;1psau: (j) a>0 hay a:::;0,b>B =~a(2- n)/n, (jj) a=b=0, (jjj) a=O,b<O, (4j) a <O,b=B. ._.

Các file đính kèm theo tài liệu này:

  • pdf5_2.pdf
  • pdf0_2.pdf
  • pdf1_2.pdf
  • pdf2_2.pdf
  • pdf3.pdf
  • pdf4.pdf
  • pdf6.pdf
  • pdf7.pdf
  • pdf8.pdf
  • pdf9.pdf
Tài liệu liên quan