LU{J.nvan totnghi~p Trang24
CHUONG 4
st; KHONG TON T~I NGHIEM DUONG
? "'"..,
CUA PHUONG TRINH TICH PHAN Val (J =N -1, N >2
Trangphgnnaychungtaxetsvkh6ngt6nt~inghit%mdu'dngcuaphu'dng
trlnhtichphanphituye'nsauday
(4.1) U(x) =b f g(y,u(y))dy "dxE IRNN N-l' ,
IRN Iy- xl
trangdo bN=2((N-l)lUN+ltl voi lUN+1la dit%ntichcuam~tc~uddnvi trong
IRN+I, N >2 va g: IRN xIR+~ IR la hamlien t\!Cchotru'octhoadi~ukit%n:
T6n t~icaehftngs6 a,fJ ~0,M >0 saocho
(4.2) g(x,u) ~MlxlP ua, "dxE IRN, "d
11 trang |
Chia sẻ: huyen82 | Lượt xem: 1386 | Lượt tải: 0
Tóm tắt tài liệu Sự không tồn tại nghiệm dương của một số phương trình tích phân phi tuyến liên kết với bài toán NEUmann trong nửa không gian trên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
u~0,
va mQtsf)di~ukit%nph\!saudo.
Phudngtrlnhtichphan(4.1)duQcthanhl~ptu bai loanNeumannphi tuye'nsau
dayvoiN=n-l>2:
TIm mQtham v Ia nghit%mcuabai loanNeumann
(4.3)
(4.4)
~v=O, xEIR: ={(xl,xn):xl EIRn-l,xn >O},
- vxn(Xl ,0) =g(XI, V(XI ,0)), Xl E IRn-l,
thoacaetinhcha't:
(8]) VEC2(IR:)nC(IR:), vxnEC(IR:),
lim
(
SUP I vex)I +R. sup ov (x)
J
=0,
k--HOO Ixl=R,xn>O Ixl=R,xn>Ofun
(82)
d day g: IRn-1x[0,+00)~ [0,+00)chotru'octhoacacdi~ukit%nsau:
(G])
(G2)
g lahamlient\!e,
3a~0,3M>0: g(xl,v)~Mva, "dv~O, "dxlEIRn-l.
va mQtsf)di~ukit%nph\!sed~tsau.
Lu(jnvantotnghi~p Trang25
Khi do,n€u g 1ahamlient\lCvanghi~mv bai loan(4.3),(4.4)co cac
tinhcha'"t(SI)' (S2)'thi v1anghi~mcuaphudngtrinhtichphansauday
I - 2 f g(l,vel,0)dl I n(4.5) vex ,xn) - 2 (n-2)/2' VeX ,xn) E IRp
(n-2)OJn Rn-I
(1
I I
I
2 )Y -x' +Xn
trangdo OJn1adi~ntichcuam~tc~uddnvi trongIRn.
Day 1ak€t qua trongph~nthi€t l~pphudngtrinhtich phan (chudng2,
dinh1y2.1),trangdo co stfthayd6i cacky hi~utrangcachvi€t bangcachthay
(a/,an)va (xl,xn)1~n1u'<!tbdix=(xl,xn)va Y=(/,Yn)'
Taclinggiasaranggiatribien V(XI,0)cuanghi~mv cuabailoan(4.3),
(4.4)thoatinhcha'"t:
(s3)Tich phan f g(/, v(/ ,0)d/
/Rn-I I yl - xl In-2
t<3nt~i, VXI E IRn-l.
Gia sa rangbai loan (4.3),(4.4)co nghi~mdudngv=V(XI,xn) thoacac
di~uki~n (SI)- (S3)' Dungdinh1'9hQit\l bi ch~nLebesgue,cho Xn~ 0+trang
phu'dngtrlnhtichphan(4.5),nhovao(S3)'tathuduQc:
v(xl,0)= 2 f g(l, vel ,0)_~l , vxl EIRn-l.
(n - 2)OJn /Rn-I Il - Xl In
(4.6)
Ta vi€t l~iphudngtrinhtichphan(4.6)bangcachthayl~icacky hi~u
n-1 =N, Xl=x, l =Y,V(XI ,0)=U(XI), i.e.,
(4.7) u(x)= 2 f g(y,u(y»)dy(N -l)OJ '
I I
N-I' '\IxE IRN.
N+lIR' y-x
Khi do,taphatbi~uk€t quachinhtrangph~nnaynhu sau:
Djnh ly 4.1.Ntu g thoacaegia thitt (GJ, (Gz)vdi N >2 va 0~a ~N~l' Khi
do,phl1angtrinhtickphdn(4.7)khongc6.nghi~mlien t~cdl1ang.
Lu(inwin totnghifp Trang26
Ch6 thich4.1,K€t quanaym~nhhdnk€t quatfong[2],[8].Th~tv~y,vOi
CY=N -1, d clingphu'dngtrlnhrichphan(4.7),caegiathi€t saudaydii sadt,mg
trongcaebaibaa[2],[8]matrongehu'dngnaykhonge~nd€n:
(G3)g(x,u)la hamkhonggiamd6ivdibi€n u, i.e.,
(g(x,u)-g(x,v))(u-v)~O VxEIRN, Vu~O,Vv~O.
(G4) Tichphan J g(1,0;~-I t6nt~ivadu'dng.1/1' ( 1+ x )
Tru'deh€t tae~nmQtsO'ba'td&ngthuesauday:
B6 d~4.1.VaimQiq~0,X E IRN, fadijt:
(4.8) A[q](x):=A[(1+lylrq](x)= J(1+lylr:_,dy.
lRN Iy - x I
Khi an
(4.9) A[q](x)=+00,ne'uq:::; 1,
(4.10)
A[q](x) hQifl;l va A[q](x)~ OJNN-I 111-I' ne'u q>1.(q-I)2 (1+x)q
Chungminhb6d~4.1.
a)Gia sa q :::;1.Chti Y d€n ba'td&ngthuetamgiae
(4.11) Iy - xl :::;Iyl+Ix! vdi mQi x,y E IRN ,
ta suyfa tueongthue(4.8) ding
A[q](x)= J (1+lyl)-:-~y
[RN Iy - x I
>
J
(1+Iylrq d =+Joo (1+rrq d J d:S- 1III N1Y II Nlr r'1/' ( Y + x ) - 0 ( r +x ) - lyl=r
(4.12)
trongd6 J dSr la richphanm~trenm~te~u,tam0, bankinhr trongIRN.
Iyl=r
Tich phann~yehinhla dit%nricheuam~ttrenm~te~uIyl=r, tuela:
(4.13) J
N-l
dSr =r OJN'
Iyl=r
LucJnvantotnghifp Trang27
Dodo,tasuytu (4.12),(4.13)ding
(4.14) +00 N-} dr J
A[q](x)~wN I( r:'xl)N 1(1+r)q =wN q'
+00 N-I d
Tich philo Jq =f rll N-I r philokykhi q~1va hQit1;1khi q>1.0 (r+ x) (1+r)q
Do do, richphilo
(4.15) A[q](x)philoky khi q~1.
a)Gia sa q >1.
i) Xet t~ix =0,taco
(4.16) - f (1+Iylrq dy - +foo(1+rrq rl-Ndr=w +foo~ .A[q](O)-
I I
N-I -wN N-I N (I+r)qm~ y 0 r, 0
/ / A +00 dr A' ,
Do do, hch Phan f hOI tu VI q >1.
0 (1+r)q . .
V~y,richphilo
(4.17) A[q](0) hQi t1;1khi q >1.
ii) Xet t~ix =F0, chQnR >31xJ>O.Ta vie'tl~i A[q](x)thanht6nghaitichphilo
A[q](x)= f (1+IYI)~q_~y+ f (1+IYI)~q_~y=J~I>CX)+J~2)(X).
IY-Xl$/?Iy - xl Jy-xl"/? Iy - xl
(4.18)
U)Banhgia J~I)(X)= f (1+lylrqdy
I
N 1 .
IY-Xl$/? Y - xl -
Taco:
(4.19) J (l)() = f (1+lylrqdy< (I II) -q f ~Ii X N-I - sup +Y N-I
IY-XI$R Iy - xl ly-xl:>R ly-xl:SRIy - xl
d R N-Id
= sup(1+!ylrq f :-1 =sup(1+!ylrqwNrN-/
IY-XI$R Izl:SRIzi ly-xl:SR 0 r
= sup(1+Iylrq wNR<+00.
ly-xl:SR
Lugnwlntotnghi~p Trang28
OJ) Danhgia J~2)(X)= f (1+lyl)-qdy
I
N I .
ly-4~1I Y - xl -
Ta co:
(4.20) (21 = f (1+lylrqdy< f (1+lylrqdy< f (1+lylrqdyJII (x) NI - NI - NI
ly-xl~RIy-xl - lyl~R-lxlIy-xl - IYI~R-Ixillyl-Ixil -
+00
(1 )
-'1 N-Id +00 N-I d
f
+r r r
f
r r
=OJN N 1 =OJN N I - .
II-Ixl Ir-Ixll - R-Ixllr-Ixll - (1+r)q
Chu y rang, do R>3Ixl>O,tacolr-lxll=r-lxl:=::R-2Ixl>lxl>O,voi mQi
r:=::R-Ixl.
+00 N-]
d
D d' ' h hA f
r r
hA' ~. 10 0, tIc p an N I 'I Q1tl,l VOl q> .
R-Ixl I r -Ixll - (1+r)
V~y,tichphan
(4.21) J~2)(x) hQi W khi q>1.
T6 h<;5pl(;li(4.17),(4.18),(4.19)va (4.21)tathudu<;5c
(4.22) \IxE JRN, A[q](x)hQitl,lkhi q>1.
Hdnnua,voi q>1,tavie"t
(4.23)
+00 N-l d +00 N-I dJ = f r r :=::f
r r
q o(r+lxl)N-I(1+r)q Ixl(r+lxl)N-I(1+r)q
+00 rN-Idr 1 +00 dr
:=::J( r+r )N-I(1+r)q=2N-I J(1+r)q
= 1 1 \Ix E JRN
(q-l)2N-l (1+lxl)q-l .
Dodob6d~4.1du<;5cchungminh.-
Chungminhdinhly 4.1.
Bangcachthayhamg(x,u)bdi gI(x,u)=bNg(x,u)vahangs6 M trong
(4.2)thaybdi bNM,taco th~giasarangbN=1makhonglamm!t tinht6ng
quat.
LucJnvantotnghifp Trang29
(4.24)
trongdo
(4.25)
Ta vie'tphuongtrlnhtichphan(4.7) voi bN=1theod~ng
u(x)=Tu(x)=A[g(y,u(y))](x),\/xE IRN,
A [w(y)](x)= J w(y) d~-I' XE IRN.
iii' I y - x I
Ta chungmintb~ngphanchung.Gia su u Ia nghi~mlient\lCvaduong
cua(4.24).Khi dot6nt~iXoE IRNsaochou(xo)>o.VI u lient\lcnent6nt~i
ro>0 saocho:
u(x»~u(xo)=L \/xEIRN, Ix-xol:::;;ro.2
Ta suytugiathie't(G2),(4.24)-(4.26)r~ng
(4.26)
(4.27) u(x)=A[g(y,u(y))](x)~MA[ua(y)](x)
2::MLa J dyN-l' \/x E IRN.
Iy-xol:s:roI y - x I
Sud\lngba'td~ngthucsau
(4.28)
I y - x I :::;;Iyl + Ixl :::;;(1 + Ixl)(1 + Iyl) =(1+Ixl)(1+Iyl- Xo+xo)
:::;;(1+Ixl)( 1+jxoI+Iy - XoI )
:::;;(1+lxl)(1+lxol+ro)'\/x,YEIRN, Iy-xo I:::;;ro'
tasuytu (4.27), (4.28)dng
(4.29) u(x) 2::MLa J ~ N-l
Iy-xol:s:ro I y - x I
Ta vie'tl~i
(4.30)
trongdo
> MLa 1
-(1+lxol+ro)N-lx(1+lxl)N-l J dyIy-xol:s:ro
= MLa 1 OJ
N
X NrO
(l+lxol+ro)N-l (1+lxl)N-l N ' \/xEIRN.
u(x) 2::u1(x) =m](1+Ixlrq), \/x E IRN,
Lugnwintotnghifp Trang30
(4.31)
a N
M L ())NrO
ql = N -1, m] = N(1+lxo!+ro)N-I'
Sa dl;lngffiQtl~nnii'ad&ngthuc(4.24),tasur tITghlthi~t(G2),(4.27)r[tng
(4.32) u(x) 2 MA[ua(y)](x) 2 M4[u~(y)](x) =Mm~A[(1+Iylraq,](x)
\::IxE IRN.
Baygidtaxetcactru'dnghQpkhacnhaucuagiatti a.
1
O::;a::;-.
N-1
Ta sur ratU(4.9),(4.32)voi q =aql =a(N -1)::;1, dng
Truong hQ'p1:
(4.33) u(x) =+00\::IxE IRN.
D6 ladi~uvo19.
Truonghdp2: ~ <a <~.. N-1 N-1
Sa dl;lng(4.10)voi q =aq]=a(N -1) >1,tasur ratIT(4.32)r[tng:
(4.34) u(x)2 Mm~A[(1+Iylraq,](x)=Mm~A[aql](x)
())
2 Mmla N N-I(1+lx!)I-aq" \::IxEIRN.
(aql -1)2
hay
(4.35) U(X)2u2(x)=m2(1+lxlrq2, \::IxEIRN,
trongd6
(4.36) q2=aq ] -1 m
- M())N ma
, 2 - I
2N-l .q2
Giasadng
(4.37) u(x)2 Uk-I(X) =mk-I(1+!X!rqk-l, \::IXEIRN.
N€u aqk-I>1,khid6 tadungba"td&ngthuc(4.10)voi q=aqk-I>1,tathudu'Qc
tITgia thi€t (G2), (4.24),(4.37),r[tng
(4.38) u(X)2 M4[ua(y)](x)2 M m:_]A[(1+Iylraqk-'](x)
Luc7nvantotnghi~p Trang31
=M m:-lA[a qk-I](x)
2 M ma ())k-l N
(aqk-I -1)2N-l (1+IXI)I-aqk-1
2mk(I+lxlrqk =Uk(X), '\IxEIRN,
trongd6 cacdtiy {qk},{mk}duQCxacd~nhbdicaccongthucquin~p sau:
(4.39)
a
M())N mk-I k =2,3,.,1 m = N I '
qk=aqH-' k 2 qk
Tli (4.31),(4.39)tathuduQc
(4.40)
{
N - k, ntu a =1,
qk= k I I-a k-I A'" 1 N
(N-l)a - - , neu -<a<-, a=t:l,
I-a N-l N-l
Ta suytli (G2),(4.10)va(4.24)ding
(4.41) U(x)2 Mm:A [(1+Iylraqk](x), '\IxE IRN.
Nhuv~ytachIcftnchQnffiQts6t1,1'nhien k saGcho:
(4.42) 0 <aqk ::;1.
Do (4.40),tachQnffiQts6t1,1'nhien k nhusau:
i) N€u a=1, tachQn k=N-1,khid6: aqk=a(N-k)=a(N-N+l)=a=1,
ii) N€u ~<a<~ va a=t:1,tachQnk thoako:=;;k<ko+l,N-l N-l
voi k() =21n[N -(N -1)a].1na
N
Tni<tnghtjp3: a =N -1 .
Ta vi€t l~i(4.20)
(4.43) u(x)2 M A[ua(y)](x) 2 Mm~A[(1+Iylraql](x)
=Mm~A[(1+lylrN](x), '\IxEIRN,
M~Hkhac,voiffiQixEIRN, IxI21,tac6.
(4.44) A[(1+lylrN](x)= f (1+IYI~~INdy
RN Iy- xl
Lugnvantotnghifp Trang32
> f (1+lylrN d >+f'" (1+rrN d IdS- IIII NIY- II Nlr rIi \ ( y + x ) - 0 ( r +x ) - lyl=r
+"'(1+rrNrN-I 1\I+rrNrN-I
=OJv f
II dr ~OJN
f
II dr. 0 (r + x )N-I I (r + x )N-I
Ixl rN-Idr
~OJN [(1+r)N(r+lxj)N-I.
Chuyr~ngvoimQir saocho 1~r ~Ix!taco
(4.45)
( )
N
r 1, 1 1
1+r ~2N va r +Ixl~ 21xJ.
V~y,tacota(4.45)dug
Ixl rN-Idr 1 1 Ixl dr
!(1+r)N ( r +Ixl)N-I ~ 2N ( 21xl)N-2 !r( r +Ixl)
(4.46)
1 1 1+Ixl N
=4N-I x IxlN-I x In( 2)' "Ix E IR , Ix!~1.
Ta (4.43),(4.44),(4.46)tasuyrading
(4.47)
0, Ixl~1,
u(x) ~V2(x) =~~
(
In 1+Ixl
)
PZ, Ixl~1,
IxIN-I 2
voi
(4.48) PZ =1, Cz=MOJNm~
4N-I
Giasur~ng
(4.49)
0, Ixl~1,
u(x) ~vk-l(x) =~ Ck-l
(
In1+ixi
J
Pk-l, Ixl ~1,
IxlN-l 2
trongdo Pk-l>Ck-llacaeh~ngs6dtiong.
Sud\lnggiathie't(G2)va(4.49),tasuyradug
(4.50) u(x)~M A[ua(y)](x)
Lwjn vantotnghi~p Trang33
~M A[v:-1(y)](x) =M J V:-J~~Idy
RN Iy - xl
>M J v:-I(y) d >M J v:-I(y) d
- I?' (lyl+lxl)N-1 Y - lyl~1(lyl+lxl)N-1 Y
+W V:-I (y) dSr
=M Jdr J (r +Ixl)N II Iyl=r
)
a Pk-II+r
(
In(- )
+w 2 dr
=M OJNC:-1J r(r +Ixl)N I1
Ta xettru'onghcJpIxl~I, taco
(4.51)
(
1+r
)
a Pk-l
(
1+r
)
a Pk-I
+00 In( -) +00 In( -)
J
2
J
2dr~ dr
I r(r+lxl)N-1 Ixl r(r+lxl)N-l
(
1+Ixl
J
a Pk-I +00 dr
~ In(-) J ( I I)
N-l
2 Ixl r r +x
[
II
J
a Pk-I +00 d
;, In(l: x). I~r(r +:)N-I
- 1
(
- 1+x aPk-I
(N -1)2N-Ilxt-1 In-fl) .
Tli (4.50), (4.51),ta suy ra r~ng
0, Ixl~1,
U(X)~Vk(X)=~ Ck
(
1+lxl
)
Pk
II- In- , x:2:1,
IxlN-l 2
(4.52)
trongdo Pk>Ckla caeh~ngs6du'dngxacdinhb~ngcaecongthuquin(;lpnhu'
sau:
(4.53) Pk =apk-I' C
MOJ Ca
k = N k I
(N -1)2N-I' k =3,4,...
Ta tinhfa cDngthuchiSncua Pk>Cknhovao(4.48),(4.53),nhu'sau
Lu4n vantotnghi~p Trang34
(4.54) k-2 l-N N-I ak-2Pk =a , Ck =dN (dN C2) , k=3,4,...
tronga6
(4.55) MOJN
dN =(N -1)2N-J .
Ta vie'tI~i(4.52)voi Ixi ~1,tac6
I-N 1
(
N-I 1+Ixi
J
a k-2
(4.56) u(x)~vk(x)=dN IX!N-I dN C21n(2) .
ChQnXl saGcho
(4.57) dZ-iC21n(I+lxll»I,2
Do (4.56),tasuyrarang u(xi)~ limVk(Xl)=+00.k->+oo
EHylaai~uva19.
Dinh194.2au'<;1cchungminhhoanta't.
Chti thich4.2.
i) Trong tru'ongh<;1pcua g(XI,U) chungta chu'aco ke'tlu~nv~ tru'ongh<;1p
a>(n-l)/(n-2), n~3. Tuy nhien,khi g(XI,U)=Ua, n~3, (n-l)/(n-2):::;a<
n/(n - 2), B. Hu trong[6]ail chungminhrAngbaitmin(4.1),(4.2),(1.7)khang
c6 nghi~mdu'ong.Trong tru'ongh<;1p"gidi hf:lna =n/(n- 2)", nghi~mdu'ong
khangt6nt~i(Xem [4-6]).
ii) Voi a =n/(n- 2), caclacgiatrong[4]ailmatata'tcacaenghi~mkhangam
khangt~mthu'ongUEc2(IR;)n C(IR;) cuabailoan
{
-!J.u =au(n+2)/(n-2) trong IR; ,
- uxn(xl,0)=bua(Xl,0) tren xn=0
trongcactru'ongh<;1psau:
(j) a>0 hay a:::;0,b>B =~a(2- n)/n,
(jj) a=b=0,
(jjj) a=O,b<O,
(4j) a <O,b=B.
._.