15
CHUaNG 3.
sTjKHONGTONT!I NGHIEM DUONGCUAPHUONG
TRINH TicH PHANPHI TuvEN VOl N =2
Xetsl!khongt6nt<;tinghit%md11dngcuaph11dngtrlnhtichphanphi tuye'n
sau(t11dngling voi N =2)
(3.1) u(x,y)=~ H g(~,ll,u(~,ll))d~dll
21tIR'~(X-~Y+(y-llY
\t(X,Y)E IR2,
voi g: IR 2x [0,+00)~ [0,+00)thoacac di~ukit%n:
(G1) glahamtuye'ntinh,
(G2) T6nt0, ex~0, y~0saocho
g(x,y,v)~M(~x2+y2Yva \tx,yEIR, \tv~o.
Chungtoixetbaitoan(1.1),(1.2)Cl,1th€ voiN =20011sau
(3.2) ~v=0, (x,y,z)EIR~={(X,y,Z)EIR3, z> o},
15 trang |
Chia sẻ: huyen82 | Lượt xem: 1374 | Lượt tải: 0
Tóm tắt tài liệu Sự không tồn tại nghiệm dương của một số phương trình tích phân phi tuyến liên hệ với bài toán NEUmann, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
(3.3) -vz(x,y,O)=g(x,y,v(x,y,O)), (x,Y)EIR2,
trongdogthoacacdi~ukit%n(G1),(G2).
CactiOOcha't(51),(52)d11c;1ccl,1th€ l<;tinh11sau
(s:) vE C2(IR~)nC(IR~}Vz E C(IR~}
1
0)Jim sup Iv(x,y,z~=0,
R-HO
(s;) 8v 8v 8v
(ii)Hm sup
I
x-(x,y,z)+y-(x,y'Z)+z-(x,y,Z~=O.
R-HOOx'+y'+z'=R',z>Oax 8y ()z 1
16
Khi d6tac6dinhly sau
Dinh ly 3.1 : Gid sa nghifm v caa bili loan (3.2), (3.3) wli
g:IR2X[0,+00)--+[0,+00)la hamlient1!Cthodcactinhchat(s~),(S;).Khid6v la
nghifm caaphu(/flgtrlnh richphanphi tuye'nsau
(3.4) v(x,y,z)=~ If g(~,l1,v(~,l1,O))d~dl1,V(x,y,z)EIR~.
21tJR2~(x - ~Y+(y -l1Y +Z2
Ta clinggiasadinggiatribienu(x,y)=v(x,y,o)cuanghit;mv cuabai
roan(3.2),(3.3)thai di€u kit;n
(s;) Tichphan If g(~,l\V(~,11,0))2d~dl1t6nt~iV(x,y)E IR2.
IR2~(x-~) +(y-11)
Khi d6,ta dungdinhly hQitl;lbi cMn, choz --+0+trongphuongtr'inhtichphan
(3.4),nhovao(S;), tathudu<;fc
(3.5) v(x,y,O)=~If g(~,l1,V(~,l1,O))d~dl1,V(x,Y)EIR2.
21tIR2~(X-~Y+(y-l1Y
Khid6,phuongtr'inhtichphan(3.5)du<;fcvi€t l~irheaanhamu(x,y)=v(x,y,O)
nhusau
(3.6) u(x,y) =A[g(~,TJ,u(~,TJ))Kx,y)
=If g(~,l1,U(~,l1))d~dl1,V(x,Y)EIR2,
IR2~(x-~Y +(y-l1Y
trongd6A lamQtroantatuy€ntinhxacdinhbdicongthuc
(3.7) A[G(~,~)Kx,y)~~If J G(~,~) ~d~,\i(x,Y)EIR'.21tIR2 (x - ~Y+(y-l1Y
Nhu v~yphuongtr'inhtichphan(3.6)du<;fcthi€t l~ptttbai roanNeumann
phituy€n (3.2),(3.3).
D~chungminhdug phuongtr'inhtichphan(3.6)khongconghit;mduong
lientl;lc,trudch€t tadn mQtb6d€ sauday
17
B6d~3.1.VaimQi(x,y)eIR2tac6:
(i)
Ntu 0<ex-y ~1, A[(.J~2+Y}2J(I +.J~2+Y}2tJX' y)= +00.
Ntu ex- y >1, A[(.J~2+Y}2J(I +.J~2+Y}2t JX' y) h()it¥ va
(ii)
A[(.J~2+fl2J(I+.J~2+fl2tJx,y)
> 1
- 2"'+1(ex-1-1)(1 +~x2+ y2r-,-l
(iii) Ntu ex- y=2, A
[(.J~2 +fl2 J(I +.J~2 +Y}2t](x, y):> ln(l ~~x'+y' )2<1 X2+y2
ChUngminhb6 d~3.1
(i) 0<ex- y~1: Sud\mgb~td~ngthuc
(3.8) 1 > 1
~(x-~Y +(y-Y}Y - .Jx2+y2+~~2+Y}2
\f~, Y},x, Y E JR.
ta du<;1c
(3.9)A[(.J~2+Y}2J(I+.J~2+Y}2tJx,y)
1 21t +00 rY+ldr
=- fd<pf J21t 0 o(I+r)«(r+ X2+y2)
18
+00 ry+ldr
= f(l+rt(r+fx2+y2)
+00 ry+ldr
> f =+00
- I(I+rt(r+~x2+y2) ,
,rY r I. , +foo dr
VI . ( )~ - khI r -++00va - =+00.(I+rt r+~x2+y2 r"-Y Ir"-Y
(ii) a-y>l: Ta ki€m tra I~i A[(~~2+'I12J(1+~~2+'I12t](X,y)hQi tl,ln6u
a-y>1.
a)Xet t~i(x,y)=(0,0) :Ta co
(3.10)
A[(~~2+'112J(1+~~2+'112tJo,O)
- +00rY +OO(I+rY - 1
- f( )"dr< f( )"dr- <+00.0 I+r 0 I+r a-y-I
V~y,richphan
(3.11) A[(~~2+'112J(I +~~2+'112tJo,O) hQitl,lkhia-y >1.
b)Xet t~i(x,y):;t:(0,0):
ChQnR>3~X2+y2 >0. Ta viet I~i A[(~~2+'I12J(I+~~2+'I12tJX,y)thanh
t6nghairichphan:
(3.12)
A[(~~2+'112J(1+~~2+'112tJx,y)
19
- J (l)( ) J (2)( )= R x,y + R x,y.
U)Danhgia
Taco
(3.13)
x If d~dl1
~(x-~f+(Y-'1f';R~(X-~Y +(y-l1Y
x If d~dl1
~~2+'12';R~~2 +112
2n R
fd<pfdr
0 0
(jj) Danhgia
20
ChtiY dug
(3.14)t~,Yl):~(X-~Y+(Y-YlY ~R}c t~,Yl):~~2+Yl2~R-~X2 +y2J
(3.15)~(x-~Y +(y-YlY ~1~~2+Yl2_~X2+y21,
yoimQi (~,Yl),(x,Y)EIR2.
Taco
= +J rY. rdr .
R-~x2+y'(1+rt Ir-~x2 +y21
Do R >3~X2+y2 >0, taco
Ir-~x2+y21=r-~x2+y2 ~R-2~X2+y2 >Jx2+l >0,
yoimQi r~R-~x2+/.
Dod6,tichphan +1 (r' t 'I rdr I Mih,Ivdi "-y>1.R-~x2+y'1+r r- ~x2+y2
V~yrichphan
(3.17)J~)(x,y)hQit\,lyoi a-y>1.
T6nghQp1~i(3.11),(3.12),(3.13)ya(3.17)tathuduQc
(3.18)V(X,Y)E IR2, A[(~~2+Yl2n1+~~2+Yl2t'Jx,y) hQit\,lyoi a-y >1.
Honnua,yoi a - y>1,taco
(3.19)
IX +00 rY rdr
AUk +~'1(1+k +~'}}x,y)~ 1(1 +r)"\r+.Jx'+y')
21
:2: +J rY. rdr .
~x'+y'(I+rt(r+~x2+i)
Tli ba'td~ngthucsail
(3.20)
r 1
r+~x2+y2 :2:2' Vr:2:-Jx2+i,
tathuduQctli (3.19)dng
"
]
1 +00 rYdr
(3.21) A
[(~~2+YJ2J(I+~~2+YJ2J(x'Y)~2 f (l+r)"~x2+y2
1 +00
~- J (
r
)
Ci
2 1-Ci
1+~x2+y2 1+r r dr
+00
1 J r1-Cidr>-- 20+1 ~
1+yx-+T
1
= 2Ci+1(ex- 1-1)(1 + ~X2+ y2r-1-1 .
(iii) a - y=2, taco
(3.22)A[(~~2+YJ2Hl+~~2+YJ2tJx,y)
+00 rY rdr
= I(I+rt2' r+p +i
+OO
(
r
)
Y+2 dr
~!l+r 'r(r+~x2+y2r
22
Ta sadl:mgba'tding thuc
r 1
-~-, \ir~l,
1+r 2
(3.23)
tasuyra
(3.24)A[(~~2+112Hl+~~2+112t'}x,y)
(
1
)
Y+2+00 dr
(
1
)
Y+2 1 +00
(
1 1
J~"2 rr(r+~x2+y2)="2 ~X2+y2r ~- r+~x2+y2dr
- 1 In
(
r
)]
+00 _In(I+~x2+y2).
- 2a~X2+y2 r+~x2+y2 1 2a~x2+i
Dfnh ly 3.2 : Gid sa dingg thodcacgid thuye't(Gl), (G2)viYidi~uki?n
0<a -y::;2. Khi dophl1(!flgtrlnhrichphdnphi tuye'n(3.1)khongconghi?m
dl1(!flglien t{lc.
Chungminhdfnhly 3.2:
B~ngphuongphilpphanchung,ta gia sar~ngphuongtrinhtichphanphi tuye'n
(3.1)conghi~mlien tl,lCduongu =u(x,y). Gia sarhg t6nt~i(xo,Yo)E IR2sao
chou(xo,Yo)>O.Dou lientl,lC,khido,t6nt~iro>0saocho:
(3.25)u(x,y»!u(xo,yo)=mo,2
\i(x, Y)E Bra(xo,Yo)= {(x,y): (x - xO)2+(y - YO)2<r5}.
Tasuyratu(G2),(3.6),(3.25)vatinhdondi~ucualoantaA, r~ng
(3.26) u(x,y) =A[g(~,11,u(~,11))Kx,y)
~A[ M(~~2+112)Yua(~,11)}X,y)
~ M(maY' If (~~2+112J 2 d~d11,
2n ~(X- ~Y+(y-11)
\i(X,Y)E IR2.
23
sadl,mgbfftdingthucsau
(3.27)~(x-~Y+(Y-11Y~~X2+y2+~~2+112
~(1+~X2+y2Xl+~~2+112)
~(1+~X2+y2Xl+~x~+y~+~(~-xoY +(11- JoY )
~(1 +~x2+y2~1+~x6 +Y6 +r~),
\i (x,y) E IR 2, \i (~,Y])E B'0(xo,Yo)' ta thudu'Qc
(328) M(mo)" If (~~2+Y]2J d~dY]
. 2n Bo(XO'Yo)~(x-~Y+(y-Y]Y
M(moY'
Z 2n If(~~2+Y]2)Yd~dY]
(1+~x2 + y2Xl+~x~+ y~+r02)Bo(XO,Yo)
M(mo)"
~ (I +~x'+d12:~x'+y' + ,)'jdq>'k'd'0 0 ro 0 0
M(mo Y' rt2 1
=(y+2)(I+~x~+y~+r02r1+~x2+i .
Ta suyratlt(3.26),(3.28)dug
(3.29)u(x,y)z( ~m] r= u](x,y), \ix, Y E IR,1+ X2+y2
vdi M(m )"rY+2
m]=(y+2)(1+J x~:y~+r~)'
Ta xetcactru'onghQpkhacnhaucuaa - y.
Truong hQ'p1 : 0<a -y ~1.
Ta thudu'Qctlt(G2),(3.6),(3.29)vatinhddndi<$ucuatoantaA r~ng
(3.30) u(x,y) =A[g(~,Y],u(~,Y]))Kx,y)
Z A[ M(~~2+Y]2)Yua(~,Y])Jx, y)
24
~A[ M(~~2+112)yU~(~,l1)}X,y)
=Mm~A[(~~2+112HI +~~2+112t }X' y) =+00.
Dob6d63.1,(i).Dayladi6uvoIy.
Truong hqp2 : I <ex- y<2.
Ap d\lllgb6d63.1,(ii) tathudu'<;1ctu (Gz),(3.6)vaunhdondi~ucuatmintuA,
ding
(3.31) u(x,y) =A[g(~,11,u(~,l1))Kx,y)
~A[ M(~~2+112)yua(~,l1)JX' y)
~A[ M(~~2+112}U~(~'l1)}X,y)
=Mm~A[(~~2+112HI+~~2 +112t}x,y)
a 1Milll.
)
a-,-I
;:::2(x+1(ex-1-1) (1+~x2 +y2
=m2(1+~x2+y2 rq2 =U2(X,y),
trongdo
M a
Y -Iilll . q =ex- ., 2
(3.32)ill2 =2(x+1(ex-1-1)
B~ngquyn<;lptagiasur~ng
(3.33)u(X,Y)~Uk-l(x,y)=mk-JI+~x2+y2jqk-l, 'Ii(x,Y)EIR2.
Ne'uexqk-lY>I, khi do,sud\lllgb6d63.1,(ii) tathudu'<;1ctu(Gz),(3.6),(3.33)
r~ng
(3.34) u(x,y) =A[g(~,11,u(~,l1))Kx,y)
~A[M(~~2+112}ua(~'l1)}X,y)
25
~A[ M(~~2+1121U~-I(~,l1)JX' y)
=Mm~-IA[(~~2+1121(1+~~2+112tqk_1JX' y)
> Mmk-l . 1
- 2"'Qk-1+1(exQk-l- "'1-1)
( ~2 2)
("'Qk-1-"f-l)
1+ x +y
=Uk(x,y)=mk(I+~x2+y2 rqk,
trongdo cac day sf) {qk}'{mk}du'<;Icxac dinhb~ngGongthuGquyn<;tp
(3.35) qk=aqk-I- Y-1, k =2,3,...; ql =1,
Mmk-l k =2,3,...,
(3.36)mk= 2"'Qk-1+1qk
Tli (3.35), (3.36)ta thudu'<;Ic
1 (2 )
k-l k-l 1 M '"- - ex ex ex - mk-l
(3.37) qk = - "'I , mk = +1' k = 2,3,...
ex- 1 ex- 1 2"'%-1 qk
Do 1<a - Y <2, ta co th~ch<;msf)tv nhien 1<0phl,lthuQcvao a, y saocho
(3.38)In (a-2Y ::;; ko <Ina2-a-2ay.
2-a+y 2-a+y
Voi sf)tvnhien1<0du'cjc hQn,taco:
(3.39)0<aqk - y::;;1.0
sa dl,lngb6d~3.1,(i), tathudu'<;Ictli (G2),(3.6),(3.30)r~ng
(3.40)u(x,y)=A[g(~,11,u(~,l1))Kx,y)
~A[M(~~2+112U"(~'11)JX,y)
~A[ M(~~2+1121U~o(~,l1)JX'y)
=Mm~oA[(~~2+1121(1+~~2+112tqkOJx, y)=+00.
Di~udomallthu~nvadinhIy 3.2du'cjchungminhchotru'ongh<;lp2.
Tniong hqp3: a-y =2.
26
Vdi ex-y =2, apdl:mgb6d~3.1,(iii)tathudu'<;fctu(G2),(3.6)vatinhdondi~u
cualoantaA dng
(3.41) u(x,y)= A[g(~,YJ,u(~,YJ))Kx,y)
2A[ M(~~2+YJ2Ju"(~'YJ)Jx,y)
2 A[ M(~~2+YJ2J u~(~,YJ)Jx, y)
=Mm~A[(~~2+YJ2HI +~~2+YJ2tJx, y)
2 Mm~In(1+~x2+y2).
2".~X2+y2
Ta suytu(3.41)r~ng
!
C2 Inp2
[
1+~X2+y2
J(3.42)U(X,y)2V2(X,y)= ~x2+y2 2'
0,
X2+y2 2 I,
X2+y2::;1,
trongd6
( )
a
1 a m]
(3.43)P2=1; C2=-Mm]=M- .
2a 2
Giasadug
(3.44)
!
Ck-] InPk-l
(
I+~x2+y2
J
2 2
U(X,Y)2Vk-JX,y)= ~x2+y2 2' x +y 21,
0, x2+y2::;I,
trongd6Pk-],Ck-lla cach~ngs6du'ong.
Sadl,mg iathie't(G2)va(3.6),(3.44)tac6
(3.45) u(x,y) =A[g(~,YJ,u(~,YJ))](x,y)
2 A[ M(~~2+YJ2J u,,(~,YJ)Jx, y)
2A[ M(~~2+YJ2J v~j~,YJ)Jx, y)
27
= M f/vI~2+112Y v~)~,11)d~d11
21tIR'~(x-~Y +(Y-11Y
~ M If (vI~2+11:yv~)~,~)d~d11
21t~'+'1'~I~(x-~) +(Y-11)
a InaPk_I
[l+~~:+'1'J
>MCk-l If ~ )d~d~- 21t ~2+r12~1( 2+112~~2+112+~X2 +y2
+00 InaPk-l (
l+r
)
~McL, f ~ 2 dr1 r r+~x2+y2) .
Ta xet tru'ongh<;ipX2+y2~1 taco
InaPk-J
(
I+r
)
InaPk-J
(
I+r
)+00 2 +00 2
(3.46) f ( )dr~ f ~ )dr1 r r+~x2+l ~x2+y2r r+~x2+l
l ap
[
1+~x2+l
J
+
f
oo dr>n k-l .
- 2 ~x2+y2r(r+~X2+y2)
=InaPk-l
(
I +~x2 +l
J
. 1 . +J
[
!- 1
]
dr
2 ~X2+l ~x2+y2 r r+~x2+y2
]
+00
1+~x2+y2 1 .In r 2
~ln""'-{ 2 }~X2+y2 r+~x2+yp.i
=lnaPk_l
(
I+~X2+y2
)
. In2 .
2 ~X2+y2
Voi X2+l ~1tadung(3.45),(3.46)
InaPk-l
(
1+r
)+00 2
(3.47)u(x,y)~MC~-lf ~ ~ )dr1 rr+ x2+l
28
~ MC~_IIn 2 .Inapk-l
(
1+~x2+y2
J
.
~X2+l 2
Tu (3.45),(3.47)tathuduQc
!
C
(
1+~X2+ 2
J
k InPk y x2 +y2 >1
(3.48) u(X,Y)~Vk(X,y)= ~x2+y2 2' -,
0, x2 +y2 ~1,
trongdoPk,Ck la cach~ngs6duclngxacdinhbdicongthucquyn;;tp
(3.49) Pk =apk-l; Ck =MC~_,In2, k =3,4,...
Tu (3.43),(3.49)taco
(3.50)Pk =ak-2,
k-2
C. ~(MID2):"[(MID2)o"C;;f' ~(MID 2):~Hrn,M"~:::)('D2"-J .
Nhovao(3.50),tavie'tI;;ti(3.48)voi X2+/ ~1nhusau
(3.51)u(X,Y)~Vk(X,y)
-I
[
2a-1
[ J]
ak-2
- (MIn2)~! Ma(a-I)(I 2)
~
1 1+~x2+y2
- ~ ml n a-I n .X 2 +y2 2 2
ChQn(x,y)saocho
2a-l 1
(
1 -J 2 2
J
~mIMa(a-l)(In2)a-lIn + X2+y >1
hay
(3.52)Jx2+y2>-1+2CX) -'"~ --,-
}
=po.
1mIMa(a-I)(1n2)a-1
Khi dotaco
(3.53)u(x,y)~ Iim Vk(X,y)=+ct),~x2+y2>Po.k~+oo
29
Di~unayvo1y.Dinh1y3.2duQcchungminhchotntC1nghQp3.
T6 hQpcactruC1nghQp1-3 tasuyfa d.ngdinh1y3.2duQcchungminh.
._.