Sự không tồn tại nghiệm dương của một số phương trình tích phân phi tuyến liên hệ với bài toán NEUmann

15 CHUaNG 3. sTjKHONGTONT!I NGHIEM DUONGCUAPHUONG TRINH TicH PHANPHI TuvEN VOl N =2 Xetsl!khongt6nt<;tinghit%md11dngcuaph11dngtrlnhtichphanphi tuye'n sau(t11dngling voi N =2) (3.1) u(x,y)=~ H g(~,ll,u(~,ll))d~dll 21tIR'~(X-~Y+(y-llY \t(X,Y)E IR2, voi g: IR 2x [0,+00)~ [0,+00)thoacac di~ukit%n: (G1) glahamtuye'ntinh, (G2) T6nt0, ex~0, y~0saocho g(x,y,v)~M(~x2+y2Yva \tx,yEIR, \tv~o. Chungtoixetbaitoan(1.1),(1.2)Cl,1th€ voiN =20011sau (3.2) ~v=0, (x,y,z)EIR~={(X,y,Z)EIR3, z> o},

pdf15 trang | Chia sẻ: huyen82 | Lượt xem: 1374 | Lượt tải: 0download
Tóm tắt tài liệu Sự không tồn tại nghiệm dương của một số phương trình tích phân phi tuyến liên hệ với bài toán NEUmann, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
(3.3) -vz(x,y,O)=g(x,y,v(x,y,O)), (x,Y)EIR2, trongdogthoacacdi~ukit%n(G1),(G2). CactiOOcha't(51),(52)d11c;1ccl,1th€ l<;tinh11sau (s:) vE C2(IR~)nC(IR~}Vz E C(IR~} 1 0)Jim sup Iv(x,y,z~=0, R-HO (s;) 8v 8v 8v (ii)Hm sup I x-(x,y,z)+y-(x,y'Z)+z-(x,y,Z~=O. R-HOOx'+y'+z'=R',z>Oax 8y ()z 1 16 Khi d6tac6dinhly sau Dinh ly 3.1 : Gid sa nghifm v caa bili loan (3.2), (3.3) wli g:IR2X[0,+00)--+[0,+00)la hamlient1!Cthodcactinhchat(s~),(S;).Khid6v la nghifm caaphu(/flgtrlnh richphanphi tuye'nsau (3.4) v(x,y,z)=~ If g(~,l1,v(~,l1,O))d~dl1,V(x,y,z)EIR~. 21tJR2~(x - ~Y+(y -l1Y +Z2 Ta clinggiasadinggiatribienu(x,y)=v(x,y,o)cuanghit;mv cuabai roan(3.2),(3.3)thai di€u kit;n (s;) Tichphan If g(~,l\V(~,11,0))2d~dl1t6nt~iV(x,y)E IR2. IR2~(x-~) +(y-11) Khi d6,ta dungdinhly hQitl;lbi cMn, choz --+0+trongphuongtr'inhtichphan (3.4),nhovao(S;), tathudu<;fc (3.5) v(x,y,O)=~If g(~,l1,V(~,l1,O))d~dl1,V(x,Y)EIR2. 21tIR2~(X-~Y+(y-l1Y Khid6,phuongtr'inhtichphan(3.5)du<;fcvi€t l~irheaanhamu(x,y)=v(x,y,O) nhusau (3.6) u(x,y) =A[g(~,TJ,u(~,TJ))Kx,y) =If g(~,l1,U(~,l1))d~dl1,V(x,Y)EIR2, IR2~(x-~Y +(y-l1Y trongd6A lamQtroantatuy€ntinhxacdinhbdicongthuc (3.7) A[G(~,~)Kx,y)~~If J G(~,~) ~d~,\i(x,Y)EIR'.21tIR2 (x - ~Y+(y-l1Y Nhu v~yphuongtr'inhtichphan(3.6)du<;fcthi€t l~ptttbai roanNeumann phituy€n (3.2),(3.3). D~chungminhdug phuongtr'inhtichphan(3.6)khongconghit;mduong lientl;lc,trudch€t tadn mQtb6d€ sauday 17 B6d~3.1.VaimQi(x,y)eIR2tac6: (i) Ntu 0<ex-y ~1, A[(.J~2+Y}2J(I +.J~2+Y}2tJX' y)= +00. Ntu ex- y >1, A[(.J~2+Y}2J(I +.J~2+Y}2t JX' y) h()it¥ va (ii) A[(.J~2+fl2J(I+.J~2+fl2tJx,y) > 1 - 2"'+1(ex-1-1)(1 +~x2+ y2r-,-l (iii) Ntu ex- y=2, A [(.J~2 +fl2 J(I +.J~2 +Y}2t](x, y):> ln(l ~~x'+y' )2<1 X2+y2 ChUngminhb6 d~3.1 (i) 0<ex- y~1: Sud\mgb~td~ngthuc (3.8) 1 > 1 ~(x-~Y +(y-Y}Y - .Jx2+y2+~~2+Y}2 \f~, Y},x, Y E JR. ta du<;1c (3.9)A[(.J~2+Y}2J(I+.J~2+Y}2tJx,y) 1 21t +00 rY+ldr =- fd<pf J21t 0 o(I+r)«(r+ X2+y2) 18 +00 ry+ldr = f(l+rt(r+fx2+y2) +00 ry+ldr > f =+00 - I(I+rt(r+~x2+y2) , ,rY r I. , +foo dr VI . ( )~ - khI r -++00va - =+00.(I+rt r+~x2+y2 r"-Y Ir"-Y (ii) a-y>l: Ta ki€m tra I~i A[(~~2+'I12J(1+~~2+'I12t](X,y)hQi tl,ln6u a-y>1. a)Xet t~i(x,y)=(0,0) :Ta co (3.10) A[(~~2+'112J(1+~~2+'112tJo,O) - +00rY +OO(I+rY - 1 - f( )"dr< f( )"dr- <+00.0 I+r 0 I+r a-y-I V~y,richphan (3.11) A[(~~2+'112J(I +~~2+'112tJo,O) hQitl,lkhia-y >1. b)Xet t~i(x,y):;t:(0,0): ChQnR>3~X2+y2 >0. Ta viet I~i A[(~~2+'I12J(I+~~2+'I12tJX,y)thanh t6nghairichphan: (3.12) A[(~~2+'112J(1+~~2+'112tJx,y) 19 - J (l)( ) J (2)( )= R x,y + R x,y. U)Danhgia Taco (3.13) x If d~dl1 ~(x-~f+(Y-'1f';R~(X-~Y +(y-l1Y x If d~dl1 ~~2+'12';R~~2 +112 2n R fd<pfdr 0 0 (jj) Danhgia 20 ChtiY dug (3.14)t~,Yl):~(X-~Y+(Y-YlY ~R}c t~,Yl):~~2+Yl2~R-~X2 +y2J (3.15)~(x-~Y +(y-YlY ~1~~2+Yl2_~X2+y21, yoimQi (~,Yl),(x,Y)EIR2. Taco = +J rY. rdr . R-~x2+y'(1+rt Ir-~x2 +y21 Do R >3~X2+y2 >0, taco Ir-~x2+y21=r-~x2+y2 ~R-2~X2+y2 >Jx2+l >0, yoimQi r~R-~x2+/. Dod6,tichphan +1 (r' t 'I rdr I Mih,Ivdi "-y>1.R-~x2+y'1+r r- ~x2+y2 V~yrichphan (3.17)J~)(x,y)hQit\,lyoi a-y>1. T6nghQp1~i(3.11),(3.12),(3.13)ya(3.17)tathuduQc (3.18)V(X,Y)E IR2, A[(~~2+Yl2n1+~~2+Yl2t'Jx,y) hQit\,lyoi a-y >1. Honnua,yoi a - y>1,taco (3.19) IX +00 rY rdr AUk +~'1(1+k +~'}}x,y)~ 1(1 +r)"\r+.Jx'+y') 21 :2: +J rY. rdr . ~x'+y'(I+rt(r+~x2+i) Tli ba'td~ngthucsail (3.20) r 1 r+~x2+y2 :2:2' Vr:2:-Jx2+i, tathuduQctli (3.19)dng " ] 1 +00 rYdr (3.21) A [(~~2+YJ2J(I+~~2+YJ2J(x'Y)~2 f (l+r)"~x2+y2 1 +00 ~- J ( r ) Ci 2 1-Ci 1+~x2+y2 1+r r dr +00 1 J r1-Cidr>-- 20+1 ~ 1+yx-+T 1 = 2Ci+1(ex- 1-1)(1 + ~X2+ y2r-1-1 . (iii) a - y=2, taco (3.22)A[(~~2+YJ2Hl+~~2+YJ2tJx,y) +00 rY rdr = I(I+rt2' r+p +i +OO ( r ) Y+2 dr ~!l+r 'r(r+~x2+y2r 22 Ta sadl:mgba'tding thuc r 1 -~-, \ir~l, 1+r 2 (3.23) tasuyra (3.24)A[(~~2+112Hl+~~2+112t'}x,y) ( 1 ) Y+2+00 dr ( 1 ) Y+2 1 +00 ( 1 1 J~"2 rr(r+~x2+y2)="2 ~X2+y2r ~- r+~x2+y2dr - 1 In ( r )] +00 _In(I+~x2+y2). - 2a~X2+y2 r+~x2+y2 1 2a~x2+i Dfnh ly 3.2 : Gid sa dingg thodcacgid thuye't(Gl), (G2)viYidi~uki?n 0<a -y::;2. Khi dophl1(!flgtrlnhrichphdnphi tuye'n(3.1)khongconghi?m dl1(!flglien t{lc. Chungminhdfnhly 3.2: B~ngphuongphilpphanchung,ta gia sar~ngphuongtrinhtichphanphi tuye'n (3.1)conghi~mlien tl,lCduongu =u(x,y). Gia sarhg t6nt~i(xo,Yo)E IR2sao chou(xo,Yo)>O.Dou lientl,lC,khido,t6nt~iro>0saocho: (3.25)u(x,y»!u(xo,yo)=mo,2 \i(x, Y)E Bra(xo,Yo)= {(x,y): (x - xO)2+(y - YO)2<r5}. Tasuyratu(G2),(3.6),(3.25)vatinhdondi~ucualoantaA, r~ng (3.26) u(x,y) =A[g(~,11,u(~,11))Kx,y) ~A[ M(~~2+112)Yua(~,11)}X,y) ~ M(maY' If (~~2+112J 2 d~d11, 2n ~(X- ~Y+(y-11) \i(X,Y)E IR2. 23 sadl,mgbfftdingthucsau (3.27)~(x-~Y+(Y-11Y~~X2+y2+~~2+112 ~(1+~X2+y2Xl+~~2+112) ~(1+~X2+y2Xl+~x~+y~+~(~-xoY +(11- JoY ) ~(1 +~x2+y2~1+~x6 +Y6 +r~), \i (x,y) E IR 2, \i (~,Y])E B'0(xo,Yo)' ta thudu'Qc (328) M(mo)" If (~~2+Y]2J d~dY] . 2n Bo(XO'Yo)~(x-~Y+(y-Y]Y M(moY' Z 2n If(~~2+Y]2)Yd~dY] (1+~x2 + y2Xl+~x~+ y~+r02)Bo(XO,Yo) M(mo)" ~ (I +~x'+d12:~x'+y' + ,)'jdq>'k'd'0 0 ro 0 0 M(mo Y' rt2 1 =(y+2)(I+~x~+y~+r02r1+~x2+i . Ta suyratlt(3.26),(3.28)dug (3.29)u(x,y)z( ~m] r= u](x,y), \ix, Y E IR,1+ X2+y2 vdi M(m )"rY+2 m]=(y+2)(1+J x~:y~+r~)' Ta xetcactru'onghQpkhacnhaucuaa - y. Truong hQ'p1 : 0<a -y ~1. Ta thudu'Qctlt(G2),(3.6),(3.29)vatinhddndi<$ucuatoantaA r~ng (3.30) u(x,y) =A[g(~,Y],u(~,Y]))Kx,y) Z A[ M(~~2+Y]2)Yua(~,Y])Jx, y) 24 ~A[ M(~~2+112)yU~(~,l1)}X,y) =Mm~A[(~~2+112HI +~~2+112t }X' y) =+00. Dob6d63.1,(i).Dayladi6uvoIy. Truong hqp2 : I <ex- y<2. Ap d\lllgb6d63.1,(ii) tathudu'<;1ctu (Gz),(3.6)vaunhdondi~ucuatmintuA, ding (3.31) u(x,y) =A[g(~,11,u(~,l1))Kx,y) ~A[ M(~~2+112)yua(~,l1)JX' y) ~A[ M(~~2+112}U~(~'l1)}X,y) =Mm~A[(~~2+112HI+~~2 +112t}x,y) a 1Milll. ) a-,-I ;:::2(x+1(ex-1-1) (1+~x2 +y2 =m2(1+~x2+y2 rq2 =U2(X,y), trongdo M a Y -Iilll . q =ex- ., 2 (3.32)ill2 =2(x+1(ex-1-1) B~ngquyn<;lptagiasur~ng (3.33)u(X,Y)~Uk-l(x,y)=mk-JI+~x2+y2jqk-l, 'Ii(x,Y)EIR2. Ne'uexqk-lY>I, khi do,sud\lllgb6d63.1,(ii) tathudu'<;1ctu(Gz),(3.6),(3.33) r~ng (3.34) u(x,y) =A[g(~,11,u(~,l1))Kx,y) ~A[M(~~2+112}ua(~'l1)}X,y) 25 ~A[ M(~~2+1121U~-I(~,l1)JX' y) =Mm~-IA[(~~2+1121(1+~~2+112tqk_1JX' y) > Mmk-l . 1 - 2"'Qk-1+1(exQk-l- "'1-1) ( ~2 2) ("'Qk-1-"f-l) 1+ x +y =Uk(x,y)=mk(I+~x2+y2 rqk, trongdo cac day sf) {qk}'{mk}du'<;Icxac dinhb~ngGongthuGquyn<;tp (3.35) qk=aqk-I- Y-1, k =2,3,...; ql =1, Mmk-l k =2,3,..., (3.36)mk= 2"'Qk-1+1qk Tli (3.35), (3.36)ta thudu'<;Ic 1 (2 ) k-l k-l 1 M '"- - ex ex ex - mk-l (3.37) qk = - "'I , mk = +1' k = 2,3,... ex- 1 ex- 1 2"'%-1 qk Do 1<a - Y <2, ta co th~ch<;msf)tv nhien 1<0phl,lthuQcvao a, y saocho (3.38)In (a-2Y ::;; ko <Ina2-a-2ay. 2-a+y 2-a+y Voi sf)tvnhien1<0du'cjc hQn,taco: (3.39)0<aqk - y::;;1.0 sa dl,lngb6d~3.1,(i), tathudu'<;Ictli (G2),(3.6),(3.30)r~ng (3.40)u(x,y)=A[g(~,11,u(~,l1))Kx,y) ~A[M(~~2+112U"(~'11)JX,y) ~A[ M(~~2+1121U~o(~,l1)JX'y) =Mm~oA[(~~2+1121(1+~~2+112tqkOJx, y)=+00. Di~udomallthu~nvadinhIy 3.2du'cjchungminhchotru'ongh<;lp2. Tniong hqp3: a-y =2. 26 Vdi ex-y =2, apdl:mgb6d~3.1,(iii)tathudu'<;fctu(G2),(3.6)vatinhdondi~u cualoantaA dng (3.41) u(x,y)= A[g(~,YJ,u(~,YJ))Kx,y) 2A[ M(~~2+YJ2Ju"(~'YJ)Jx,y) 2 A[ M(~~2+YJ2J u~(~,YJ)Jx, y) =Mm~A[(~~2+YJ2HI +~~2+YJ2tJx, y) 2 Mm~In(1+~x2+y2). 2".~X2+y2 Ta suytu(3.41)r~ng ! C2 Inp2 [ 1+~X2+y2 J(3.42)U(X,y)2V2(X,y)= ~x2+y2 2' 0, X2+y2 2 I, X2+y2::;1, trongd6 ( ) a 1 a m] (3.43)P2=1; C2=-Mm]=M- . 2a 2 Giasadug (3.44) ! Ck-] InPk-l ( I+~x2+y2 J 2 2 U(X,Y)2Vk-JX,y)= ~x2+y2 2' x +y 21, 0, x2+y2::;I, trongd6Pk-],Ck-lla cach~ngs6du'ong. Sadl,mg iathie't(G2)va(3.6),(3.44)tac6 (3.45) u(x,y) =A[g(~,YJ,u(~,YJ))](x,y) 2 A[ M(~~2+YJ2J u,,(~,YJ)Jx, y) 2A[ M(~~2+YJ2J v~j~,YJ)Jx, y) 27 = M f/vI~2+112Y v~)~,11)d~d11 21tIR'~(x-~Y +(Y-11Y ~ M If (vI~2+11:yv~)~,~)d~d11 21t~'+'1'~I~(x-~) +(Y-11) a InaPk_I [l+~~:+'1'J >MCk-l If ~ )d~d~- 21t ~2+r12~1( 2+112~~2+112+~X2 +y2 +00 InaPk-l ( l+r ) ~McL, f ~ 2 dr1 r r+~x2+y2) . Ta xet tru'ongh<;ipX2+y2~1 taco InaPk-J ( I+r ) InaPk-J ( I+r )+00 2 +00 2 (3.46) f ( )dr~ f ~ )dr1 r r+~x2+l ~x2+y2r r+~x2+l l ap [ 1+~x2+l J + f oo dr>n k-l . - 2 ~x2+y2r(r+~X2+y2) =InaPk-l ( I +~x2 +l J . 1 . +J [ !- 1 ] dr 2 ~X2+l ~x2+y2 r r+~x2+y2 ] +00 1+~x2+y2 1 .In r 2 ~ln""'-{ 2 }~X2+y2 r+~x2+yp.i =lnaPk_l ( I+~X2+y2 ) . In2 . 2 ~X2+y2 Voi X2+l ~1tadung(3.45),(3.46) InaPk-l ( 1+r )+00 2 (3.47)u(x,y)~MC~-lf ~ ~ )dr1 rr+ x2+l 28 ~ MC~_IIn 2 .Inapk-l ( 1+~x2+y2 J . ~X2+l 2 Tu (3.45),(3.47)tathuduQc ! C ( 1+~X2+ 2 J k InPk y x2 +y2 >1 (3.48) u(X,Y)~Vk(X,y)= ~x2+y2 2' -, 0, x2 +y2 ~1, trongdoPk,Ck la cach~ngs6duclngxacdinhbdicongthucquyn;;tp (3.49) Pk =apk-l; Ck =MC~_,In2, k =3,4,... Tu (3.43),(3.49)taco (3.50)Pk =ak-2, k-2 C. ~(MID2):"[(MID2)o"C;;f' ~(MID 2):~Hrn,M"~:::)('D2"-J . Nhovao(3.50),tavie'tI;;ti(3.48)voi X2+/ ~1nhusau (3.51)u(X,Y)~Vk(X,y) -I [ 2a-1 [ J] ak-2 - (MIn2)~! Ma(a-I)(I 2) ~ 1 1+~x2+y2 - ~ ml n a-I n .X 2 +y2 2 2 ChQn(x,y)saocho 2a-l 1 ( 1 -J 2 2 J ~mIMa(a-l)(In2)a-lIn + X2+y >1 hay (3.52)Jx2+y2>-1+2CX) -'"~ --,- } =po. 1mIMa(a-I)(1n2)a-1 Khi dotaco (3.53)u(x,y)~ Iim Vk(X,y)=+ct),~x2+y2>Po.k~+oo 29 Di~unayvo1y.Dinh1y3.2duQcchungminhchotntC1nghQp3. T6 hQpcactruC1nghQp1-3 tasuyfa d.ngdinh1y3.2duQcchungminh. ._.

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0_2.pdf
  • pdf1_2.pdf
  • pdf2_2.pdf
  • pdf3.pdf
  • pdf5_2.pdf
  • pdf6.pdf
  • pdf7.pdf
Tài liệu liên quan