CllltU'llg III
S1/ DdN DI~U VA S1/ H(H TV CUA NGHI~M CUA
PHU'dNG TRINH RICCATI
3.1 S\t do'ndi~ucua nghi~mcua phU'o'ngtdnh Riccati
3.1.1 S\t do'ndi~ucl~langhi~mciia phU'o'ngtdnh RDE
Xet haipllU'o'l1gtdnhRDE
(3.1)
Xk+I =PTXkP - PTXkG(GTXkG +R)-IGTXkF +Q2 (3,2)
trongdoR >0,QI >0,Q2>0, ,XJ >0 (ungv6i (3.1))x;r >0 (lingvo'i
(3.2))
trongdo
F la matr~nvuongcapn
G la m x n matr~n
R la matr~,nvuongcapm,R >0
QI, Q2la caematr~nvuongcapn vaQI >0,Q2>0
./yJ,X6 la caematr
11 trang |
Chia sẻ: huyen82 | Lượt xem: 1837 | Lượt tải: 0
Tóm tắt tài liệu Phương trình sai phân và phương trình vi phân Riccati: Hội tụ, đơn điệu và ổn định, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
~nvuongcapn IanltrQ'tfngvo'icaephu'o'ngtdnh
(3.1)va(3,2)vaXJ >0,X;r >o.
B6 d~3.1 [23]Xit haiphuo'ngtrinh RDE (3.1)va (3.2)vdi caegid
thitt ve caernatrtJnF, G,R, QbQ2,XJ, .X;rvitaneu a tren. GQixl,
,Xf tan l1cQ'tta nghi~1neuaeaephuO'ngtrinh (3.1)va (3.2)va ky hi?u- -
Xk =Xk - Xk lie (t6Xk thdamJin phuo'ngtrinh sau day:
Xk+l =FTXkF - FTXkG(GTXkG +R)-lGTXkF+QI
./Yk+I =PITXkPI - PIT ./YkG(GT./YfG+R)-IGT XkP1 +Q
hay
- - '"?1T . - ~1I ~1T - T - - -1 T - - 1 -
Xk+I - 1 "'(kJl - F ./YkG(G XkG +Rd G ./YkFk+Q
trongd6
PI =F - G(GT./YlG +R)-IGl'XlF
Q =Q2- QI
31
Itk=GTXIG+R
B6d~3.1dU'(!cC.B ueSouzath\fchi~n[14],nodU'\"cS11dvngd~chung
minht{nhdO'ndi~ucuanghi~mphU'O'ngtrlnhRDE (3.1)vaSlfhQitveua
nghi~meuaplllI'o'llgtrlnh(3.1).B6d~naysosaHlIcaenghi~meuaphuO'ng
tdnh RDE (3.1)va (3.2)nola m&rQngcaenghi~meuacaek~tquama
Nishimura[15]vaPoubeJle[16],[17]v~SI,1'sosanhgiuacaellghi~mC1Jacae
phuO'ngtrlnh tuO'ngt\I'nlllI'so saHlInghi~meuacaephuo'ngtrlnh RD E
GQi_xl, _Xl1~n1U'Q't1anghi~meua(3.1)va (3.2)
M~nh ct~3.2 Vo'ieacgic\thi~tnhub6d~3.1vagiaslI'themdingQ1 > Q2
va co Nosan clIo
vI v2
-ANa >-"'\No
L I 11 I' . k 0 vI > v2 I' X l X 2 I'" 1 I' Iue C0 VO"l Il1Ql n > , -"'\No-J-k - -"'\No+k VO'l -k , k an ll'Q't a cae
nghi~Il1cuaplnrejngtrlnh (3.1)va(3~2)
Cluing Ininh
- - 2 1Bat X 7\T =)( 7\T - X 7\T. - lvO lvO lvO
Q =Q2 - Q1
1 2' A - -
Vi XNo ~XNo va Q1 >Q2 Hen XNo <0,Q <0
Ta vi~tl<;l.i(3.1)va(3.2)nhusan:
-"'X-l+1=(F +G}(1)xl(F+GI(l) +I{lRI{l+Q1
-"'X-f+1=(F +Gl{f)-"'X-f(F+GI(f)+I(fRI(f +Q2
Vo'i}{L=-(GT-",X-LG+R)-lGTXLF (i =1,2)
DoXJ >0,-"'X-J> 0,Q1 >0,Q2 >0vaR >0nenXf >0,X~>0
(k=0,1,2,...)
Theo biS d~ 3.1:
-:r __-11'- -=1) -='1T-r -2 -' - -1 -
~\No+1- FNoXNollNo - fiNo~\NoG(GTXNoG + R) 1GT-"'X-NoFNo+ Q
v&i }~o=F - C(CP'X.lvoG +R)-lGTXlvoF
- - 2 - -
Vi -"'X-No 0, Q < 0 HenXNo+1< O.
SllY ra -Xlvo+1~~X-Jro+1
Nlnr th~ta c1a,dnrng minh m~nhc1~dung v&i k =1.
Gia Sll'm~nhd~dungvo'ik, tuc1aj(No+h<O.Ta chungminh
XNo+h+l<0
Th~tv~y,apchlllgb6d~3.1rnQtDinnuata co:
-- - - -,IT -- ~'1 -;'11' - - l' 2 -1 l' - ~1
XNo+h+l - FNo+hXNo+hl No+h-FNo+k-",X-NoHG(G XNo+hG+R) G XNo+kFNo+k-
32
""
Do '/YNo+k 0vaQ <0DentasuyraXNol-k-ll<O.
Theo ly tllllyeLqui Il(;1PLakeLlui;lllXNo+k O.
D d' vI v2 ,. . k 00 .o./\. No+k 2': ./\.No+k VO'l mQl n > .
M~nh d~3.3 Neu./Ykla nghi~mxacc1inhkhongamcuaphlwngtrlnh
RDE
./Yk+l=FT./YkF- FTXtG(GTXkG +R)-lGTXkF +Q (3.3)
khongtangt9.imi?tthCiic1i~mNo
XNo+k< XNo
Khi ay./Y k c1o'ndi~ukhong tang ti?-inwi thCiidi~msail do
./YNo+k+1 O.
Clutng ruinh Ta d6ngnhatXk =Xl, Xk+l=./Yl(doQl =Q2=Q)
VI X No+1 <./Y No Hell
X~r <.xLno - no
Do m~nhd~3.1ta suyfa:
v2 vI ,. . k 0./\.No+k
NllU' the XNo+k+1 O.
M~nh d~3.4 NeuXk la nghi~mxacdinhkhongamcuapillfangtrlnh
(3.3)khonggiamti?-im9tthCiidi~mNonaodo,tuc la
X.No+1>XNo
Khi ayX' k do'ndi~ukhonggiamti?-imQitho'idi~msail do nghiala
XNo+k+l>XNo+kV(J'imQi k >0
Cluing lllinh Ta dongnhatXNo+1= Xlvo' XNo =X'lvo(do Ql =Q2 =Q)
Do XNo+1>XNo ncnXlv-a>./YFvo
Theo m~nhd~3.2sur fa
.X-lvo+k >./Y'lvo+kvo'imQik > 0
Do do Xlvo+k+l > X No+kvo'imQik > 0
M~nh d~3.5 Neuplnfo'ngtrlnh (3.3)cosaiphancaphaixac dinhkhong
dl1o'ngt<;tim9t tho'idi~mNo naGdo, tu.'cla
XNo+2- 2XNo+l+ XNo <0
th!vo'imQik >0 ta co
XNo+k+2- 2XNo+k+l+ XNo+k< 0
33
Cllltng rninh DM LtXk=.Xk+l - Xk
Theo b6 d~3.1L1Xt th6amallpl~U'o'ngtrlnh RD E:
L1Xk+1= ifT L1.XkF'l- F'l'l'L1XkG(GTL1XkG+Ad-IGT L1XkFl
vo'i Fl =F - G(GTXkG +R)GTXkF
Rk=GTXkG +R
Q=Q2 - QI =0 (vIQI =Q2)
Do Xk >0,R >0neniLk=GTXkG +R >0
Ta co
.XNo+2- 2XNo+1+ XNo<0
nen
.XNo+2- XNo+1< XNo+1- XNo
hay L1XNo+1<L1XNo
Theo m~nhd~3,3 ta co:
L1X No+k+l 0
Do do .XNo+k+2- 2XNo+k+1+XNo+k O.
3.1.2Sl! do'ndi~uciianghi~nlcuaplnto"ngtrlnh vi phanRiccati
M~nhd~3.6CoiX(t) langhi~md6ixlrngphU'o'ngtrlnh
/Y(t)=AT/Y(t)+X(t)A - X(t)BR-IBT/Y(t) +Q (3.4)
vo'idi~uki~nd~uX(O) >O.D~tA(t) =A - BR-IBTX(t). Lucdota co:
(i) X (t)=X(t)A(t)+AT/Y(t) 0 .
(ii)X (t)=X(t)}l+ATX (t)- 2X(t)BR-IBT X(t)
ChUng minh
(i) D~ohamvecua(3.4)ta dU'Q'c:
X (t) = ATX(t)+/Y(t)A- [~Y(t)BR-IBT/Y(t) +/Y(t)BR-IBTX(t)]
= (AT - /Y(t)BR-IBT)X(t) +X(t)[A - BR-IBTX(t)]
= ~Y(t)A(t)+AT(t)X(t)
(ii) D~oham2vecua(i) ta dU'Q'C:
0" .. - 0 --1' --1'. - o'
X (t) = X (t)A(t)+X(t)A (t)+A (t)X(t)+ATX
= X (t)A(t)+ATX (t)+X(t)(-BR-IBTX(t) +(-X(t)BR-IB1')X((
= X (t)A(t)+ATX (t)- 2X(t)BR-I B1'X(t)
34
M~nh d~ 3.7 N~u./Y(t)la nghi~mxaec1inhkhOngameuaphlfO'ngtdnh
(3.4)khongtangt<;tim9t tho'ic1i~mt naodo, t1jela
./Y(t)<0
tIll ./Y(t)clancli~ukhOngtangt<;timQithCiidi~msaltdo, nghiala
X(t+5)0
Clni'ng nlillh
D~ehil'ngminhm~nhd~3,7ta din b6d~:
Bo ue 3.8 [8]Xit phuo'ngtdnh Lya]J1lnovthayctditheothcligian
./Y (t) = X (t)M (t) + AfT (t)./Y(t) + vV(t), X (0) = ./Y 0 (3.5)
J(Jj hifU if>(t:,T) lr},ma h'iJn Ch1/,y/n tn}.ng thAi 11719vdi J\;[(t). [(hi ({y
nghi~mczlaphuo'ngtrinh (3.5)rho bd'i
X(t) =pT(t;,O)Xow(t,0)+lotq5T(t,T)TV(T)P(t, T)dT
Bay gill'fa ch'ling1ninhm~nhae 3.7
Theom~nhae 3.6)X(t) to'nghi~mcuaphuO'ngtTinh(3.4)nen
X (t)=XA(t)+AT(t)X(t) (3.6)
vdiA(t)=A - BR-IBT./Y(t)
Nhu the'(3.6) Ia phuo'ngtTinhLyapunovvdi TiV(t) =0) do ao theobd
ae 3.8
X(t +5) =cjJT(t +5,t)X(t)w(t+5,t) v6i mQi5 >0
trangao W(t,T) Ia 17Wtn7,nchuye'ntrg,ngthai 'lingvdi A(t)
, Theogid thie't-,Y(t)0
M~nh de 3.9N~u./Y(t) la nghi~mxaedinhkh6ngameuaphlfO'ngtrlnh
(3.4)kh6nggiamt<;tim9ttho'idi~mt naodo,tlfela
X(t) >0
lile do ./Y(t) la do'ndi~ukhOnggiamt<;timQitho'idi~msail do,nghiala
35
x(t+ s) >0 vo'imQis >0
ChUng Ininh tlfo'ngt1!nlnf chungminhm~nhd~3.6.
3.2 8\1'hQi t\l Ilghi~ln cua nghi~m cua pl111cjngtdnh Riccati
3.2.1 Sl).'h<)it\l cila nghi~nl cila plUI'd'ngtdnh RDE
M~nhde 3.10Xernphu'o'ngtdnhRDE ungVQ'ibaitoandi~ukhi~nt6i
l1uLoan pllU'o'ngtuy~ntlnh ro'ir9'cVOh~n1.3.1
x =FTXF - FXG(GTXG +R)-lGTXF +Q (3.6)
trongdo
. (F, G) 6n d~nhhoadlfQ'C.
. (F, Q) quan sat c111<;ic.
. Q >0vaR >O.
Luc do plnro'ngtrlnh(3.5)coduynhatnghi~mX C1!Cd~i, d6i xung,
xcicdinh d110'ng.
ChUng Ininh
Vi fl >0,Q >0,(F,G)611 djnhboaduQ'cvaR=(~~)tacorank
ii = rankR+ rankQ nentheodinhIf 1.10phU'O'ngtdnh(3.6)co nghi~m
cluynha:tX qrc d0-i,c16ixlfng,xacdinhkhongam.
Nay ta chil'ngminh/Y >O.Th~tv~y,theodinhly 1.10ta cogiatri t6i
U'ucuabaiLoan1.3.1la
J( xu)=X6/Y Xo
M~tkhactheodillhly 16.5.3[10]cou E U saoclIo
J(xo,u) =J(xo)=X6XXo
Gic\ Slr co Xo ::I 0 eMX6X Xo lilc do
<X)
J(xo, u) L (X[QXk +u[Ru,J=0
k=O
Sur ra uk = 0v&iillQik =0,1,2,.. . (vI R >0)
QXk =0 vo'i Il1Qik =0,1,2, . . .
VI xk+l =F:rk+G1lknen xk+l =FXk vaxk=Fkxo.Dodo
QXk =QFkxO =0 v&i Il1Qik =0,1,2,...
NhU'v~yXoE °F,Q = }(er Qn }(erQF n... n ](erQFn-l
36
Dieunaychungto (F,Q) khongquansatdU'Q'c.Vo ly
V~y -"Y>o.
Dinh Iy 3.11 Coiph7lo'ngtdnh (3.7)
-"Yk+l=FTXkF - FI'-"YkG(GTXkG +R)-IGI' XkF +Q (3.3)
trongdo
. (F,G) o"ndinh hoa duQ'c.
. (F, Q) quansat duQ'C.
. R >0) Q >o.
. Xo >0
Luc doXk -t )( khik -t 00vdiX Langhifmcuaph'l1cJngtrinh (3.5).
Clnfng Ininh Vooicaedieuki~ncuadinhlyvatheom~nhde3.10,phU'o'ng
trlnh (3.6)collghi~lllcluynhat-"y- qrc cli;ti,cloixung,xac dinh dU'O'ng.Ta
chu:ngminhphlfO'ngtrlnh(3.7)luonconghi~mvooimQik =0,1,..°
Theogiathi~tta co: R > 0;Xo >0 HenGT-"YoG+R > O. Do etoma
tr~nGTXoG+R kh.1nghich.
D9-t1(0=_(GTXOG+R)-lGI'-"YoF
Lucdo
(3.8)
Xl = FT -"yoP- FT-"YOG(GT-"YoG+R)-lGT XoF +Q
= FTXoF +FTXoG1(o+Q
= (FI' +1(6'GT)Xo(F+G1{o)- 1<6'GTXoF - 1<6'GI'XoGJ(o +Q
Tir (3.8)suyfa: GTXoF=_(GTXoG+R)1(o
Nen
-"Y1 = (F +G1(o)1'-"Yo(P+G1(o)+ 1(6'(GT-"YoG+R)1(o- K6'GXoGJ(o+Q
- (F +G1(o)TXo(F+G1(o)+J(6'RKo+Q
Do -"Yo>0,R >0,Q >0 Hen-"YI>O.
Gi.1SlrXk > O. 'fa cllLl'ngminh )(k+1>O. Th~t v~y:
D~tKk =_(GTXkG+R)-lGI' XkF
Khi do, ly lu~ntlfO'ngt\!OnhU'trenta co:
Xk+1= (F +G1(dT-"YdF+GJ(d +1<[R1<[+Q
VI. Xk >0, R >0,Q >0 HenXk+l>0
37
Theo nguyenly qui n~pthl plnfO'ngtrlnh (3.7)luan co nghi~mXk vOii
m9ik=1,2,...
Bay giG'ta clnl'ngto {Xd h<)it~l.
'fa dabi~toX- la nghi~mcuaphU'O'ngtrlnh(3.6)Hen
/Y = pT X F --FT XG(GX G + R) GT /Y F + Q
vacoiplnfo'ngtrlnh(3.7):
/Yk+l=FT/YkF - pT/YkG(GTXkG+R)GTXkF+Q
Khi aytheob6d~3,1ta co
/Yk-I-l=pT/YkP - PTXkG(GTXkG+R)-lGT/YkPl
trongdo:- -
Xk =Xk -/Y
P =F - G(GT/YG +R)-lGT}(F
VIGT/YkG+R >0Den:
- - -
Xk+l <FXkF forallk E N
Suy ra /Yk <(FT)k/Yo(F)k,dodo
(3,8)
VI (P, G) 611 dinh hOa dlf<!C, (A, Q) qua11 sat dlfQ'C, R=(~ ~) do
e16rank R=rankR+ rankQ nentheodtnhly 16.6.4[10]F 121matr~n
6ndinhnenIIFII < 1. Dodo
IIXkl1 <IIXoIIIIPI12k
lim IIXkl1 =0k---+00
hay
lim IIXk - XII =0
k-~oo
V~yX" --+X khi k -+00. Dtnh ly duQ'cchungminh,
3.2.2 81,1'hQi t~lcua nghi~In cua phl1'o'ngtdnh vi phan Riccati
M~nh c1~3.12Xemphu'O'ngtrlnhRiccatid~i86ARB (3.9)lien k~tvOii
bai toan di~ukhi~nt6iU'u to21nphuo'ngtuy~nHuh tren khoangtho'igian
va h<;tIl2.2.1
AT/y +/YA - XBR-IBTX + Q = 0 (3.9)
38
Lrongdo
. (A,B) 511djnh hoadLfQ'c.
. (A,Q) quaIlsa,tchrQ'c.
. Q >0va,R >O.
Khi ayplllwngtrlnh(:3.9)tOnt;;ticluynhatnghi~mX qrc d;;ti,d6ixu-ng,
xac c1!nhdll'o'ng.
CIllfng ruinh
Ta co (A, B) 5n c1!nhhoadHQ'C,Q > 0, R > 0, (A, Q) quansat duQ'C
nenR = (~ ~?)corankII =rankR+rank (2, thea dinh 1]116.3.3
[10],plnl'O'ngtrIllh p.9) co nghi~mcluynhat ./Y ql'C d;;ti,d6i xu'ng,xac
d!nhkhong21,r11.Ta chu'ngto ./Y >O. Th~tv~y,theobaj toan 2.2.1ta co
J(xo) =x3'./Y:rotheo cljnhIy 16.2.4co 1£E U saocho J(xo, u) = J(xo).
Gia str co Xo =f0 sao clIo X6XXo =0tuc la
J(xo, lL)=10=(xT(t)QX(t)+117(t)Ru(t))dt=J(xo)=0
Suyrau(t)- 0 (vIR >0)
Qx(t) 0 (vIQ >0)
Dox(t)=Ax(t)+Bu(t)nenx(t)=Ax(t)
I<hiayx(t)=eAtxo
ClIonen Q1:(t;)=QeAtxo 0v6iXo=f 0
Dieunaychungto (Q,A) khongquansatduQ'c(clef1 trang30[14]).
Vo If V~y./Y>o.
Dinh If 3.13Xemplnto'ngtTinhvi phdnRiccati
./Y(t)=J'P'X(t) +X(t)A- )((t)BR-IBT./Y(t) +Q (3.10).
tTOngao
. (A,B) dn afnhhoaauQ'c.
. (A,Q) quansata'l1Q'c.
. R >O! Q 2:: ()va X (())>().
J(hi d/y./Y(t) -t X khit -t 00 vdi X la nghi~mduynluitJ qtc ar;riJa6/i
xungJ xac dinh duO'ngcuaphuo'ngtTinh(3.9).
Chang lllinh
Ta chungminhd!uhIi chotnl'cmghQ'p X(O)=o.
39
Theogiathietta co (A,B) 5ndinhhoadlfQ'C,(A,Q) quailsatduQ'C,
If > 0, Q 2::0 Hell plnwng trlnh (3.9) co cluy nhat nghi~mX qfc d<;ti,d6i
xli'ng,xac dinh duO'ng.
VI R >0,Q >0va.X(0)=0 nen theo dinh ly 16.4.3[10]pl1l1'O'ngtdl1h
(3.10)t6n t9,jcluynhat nghi~mX(t) va vo'jmQit thu<?c[0,00). 81/ton
t<;tinghi~mclla plnfO'ngtrlnh 3.10lam cho bai loan 2,3.1d<;ttgia tri t6i
uu J(xo) =x6X(T)xo,trongdo x(O)=Xo la tr<;tngthaiband~ucuah~
phuongtdnhx(t) =Ax(t)+Bu(t).
Theom~nhde2.8t5nt9,i1LE U d~clIo
-']'
J(xo) =10(xT(t)Qx(t)+1L1'(t)R1L(t))dt=X6/Y(T)xo
vo'i1L(t)=_R-IB1'/Y(t)x(t).
Nayta clnfngminhx6X.(T)xola hamtang.Th~tv~y,v6imQiTl >0,
T2>0 saoclIoTl <T2ta tImctieukhi~nt6i uuclIohaiphiemham(xem
bai loan2.3.1)
r1'l
J*(Tb xu,1L) = Jo (x1'(t)Qx(t) +1L1'(t)R1L(t))dtva
1*(72,l:O,u) = 101'2(xl'(t)Qx(t)+1LT(t)R1L(t))dt (3.11)
Ta co J*(T1,xu,u) 0,R >0)
Dodoplnwngtrlnh(3.10)conghi~mvo'imQit E [0,00)HenJ(T1,xu,u),
J(T2, xu,u) l~nluQ.td<;ttgiatri t6i uula xl X(Tl)XOvaxl X(T2)XO'Tir do
theo(3.11)taco:
xl' /Y ('l'})XO<xl' /Y (T2)XO
V~yxo/Y(T)xolahamtang.
Ngoai fa v6i lllQi Xo ERn,
= fo1'(x1'(t)Qx(t)+1L1'(t)Ru(t))dt
< fooo(x1'(t)Qx(t)+uT(t)Ru(t))dt= J(x,O)
(xembailoan2.2.1)
d~Y ding(]dayta xetbailoan2.2.1v6i S =O. Tif do sur fa J*(xo) <
J(xo) hayxoX(T):ro < :ro~Y:ro'
I-lamx3'x(T)xotangvabich~nen7FIll xo/Y(T)xo ton t~ivo'imQixo-+00
thuQcRn
J*(T, xu,u)
40
D~thay1'YT(t)clingla nghi~mcua(3.10)nhU'ngVI tlnhcluynhatcua
nghi~mo'la phu'o'ngtdnh (3.10)nenX(t) =XT(t). VI X(t) la matr~n
d6ixungva Iim X (T), ta chungminhX =1'Y.
T-hX)
Th~t v~yta co:
AT 1'Y+ 1'YA = 101(A]'X~+X A)dt
= rI lim (ATX(t +T) +1'Y(t+T)A)dtJo 1'-+00
= rI lim[X(t+T)BR-I BTX(t +T) - Q+X(t +T)]dt(do3.1C./0 1'-+00
= 1'YBR-I BT X - Q + lim r1X(t +T)dt1'-+00Jo
- X BR-I BTX - Q+ Iim(1Y(t+T) - X(T))1'-+00
VI Iim (X(T + 1)- X(T)) =0 nen
1'-+00
ATX +X A =)( BR-I BTX -Q hayATX +1'YA-X BR-IBT X +Q =O.
. 81,1'ki~nnaydni'ngto 1'YIa nghi~mcua(3.9).NhU'ng(3.9)conghi~m
cluynha:tnenX =X. NhU'v~y
IimX (t)=X.Too
M~nhd~dlfQ'Cchu'ngminh.
41
._.