CMUdlMG3
'Nt, CHiNN MOAif~HMONOV
3.1PhepchinhhoaTikhonovchobititORntuye"nHnh.
Tho~tlien ngl1oita fighTdSnvi~eevelieu hoa sai s6 II Fx- yll vOi x EX, tuy
nhientrongtrtfonghcJpX voh~nehi6uth1bairoanevelieuhoanayelingl~ikhong
ehinh.Cv th6taeorn~nhd6sail(xern[7], trang37):
Mfllh d~3.1.1
ChoX, Y lahaikhonggianHilbert.F:X ~ Y la rnQtloantii"tuyEndnhlien
We.Khi doevelieucliaphiEmham II Fx- yll clingla nghi~meuaphuongtrlnh
F *Fx =F *y vangu'cJel~i.
Tikhonovda:thayvi~eetfeti6uhoaIIFx- yll b~ngv
14 trang |
Chia sẻ: huyen82 | Lượt xem: 1531 | Lượt tải: 0
Tóm tắt tài liệu Phép chỉnh hóa Tikhonov cho một số bài toán ngược, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
i~eeveti6uhoamQtphiSm
hamkhae.
Dill" Ilghia3.1.2
Phie-mhamTikhonovJa(x) VOla >0dl1cJedtnhnghTa0011sail:
.la(x)=IIFx-Ylf+allxlf, x EX
(3.1)
Bai loanqfeti6uhoaphiEmhamnayla conghi~mvahonnuanghi~rneuano
l~ilanghi~mcliamQtphuongtr1nhehlnh.
Dillh if 3.1.3
PhiC'mhamTikhonovJa(x) trenkhonggianHilbertX eocluynha'tmQteveti€u
xaEX vanoelinglanghi~mcluynha'tcuamQtphuongtTlnhchinh:
ax+F*Fx=F*y (3.2)
ChU'O'ng3 26
Changminh
TnJ'octieDtachU'ngminhtfnhchinhcuaphuongtrlnh (3.2).
Xetanhx~songtuye'ntfnha:X xX ~ R nhusau:
a(x,z):==a(x,z)+(Fx, Fz)
Anhx~naylitlienWevabU'eVI:.
Ila(x,z)lI:::;all(x,z)II+II(Fx,Fz)11
:::;allxllllzll+IIFxllllFzll
:::;(a+IIFW )llxllllzll
.
a(x,x) ==allxW+IIFrl12~allxW
Xet phi€m hamtuy€n tinh A:X ~ R nhusau:
Az:=(F* y,z)
AP dt;ngdinh1yLax-Milgramtadu~c:
3!xaEX:a(xa,z)=Az,\izEX
Sur fa:
a(xa,z) +(Fxa,Fz) ==(F*y,z) Vz EX
(ax -I-F *F v 7\ ==( [7 * 1J 7)
\../z c V::r ' -'a'~J' J'~ V ~.'l
ax +F* Fx =F* ya a
V?y phucJngtrInh(3.2)conghi~m.
Nghi~mnay1aduynha"tVI:
ax+F* Fx =a=>(ax+F* Fx,x)==0
=>allxW+llfxW==0
=>x=o
£>6kicimtratinh6ndinhtaxetday(x,,)c X thoa:
Y =(aI +F *F )x ~ 0/I /I
Taco:
Chuang3 1.7
(YII'X,,) = allx"W +1IFxllW sllYnIIllxlI1I
~ allx"llslly,,11
~XII~O
Cu6iclingtachungminhqtc ti6ucua(3.1)clingIii nghi~mcua(3.2)viingu'<jc
I~i.
.la(x)- .la(xa)=IIFx-Y112-IIFxa- yW+aCllxW-llxaW)
Ap d\lOgcongthuc lIuW-llvl12=llu-vW+2(v,u-v) ta du'<;1c:
Ja(x)- Ja(xa)=IIF(x- xa)112+2(Fxa- Y,F(x- xa»+allx- xaW+2a(xa'x-xa)
=11F(x- xa)112+allx-xaIl2+2(F*Fxa-F* y +axa'x-xa) (3.3)
Ne'uxaIa nghj~mciia (3.2)th1do (3.3)taco:
.la(X)- .la(xa)=IIF(x- x~)W+allx-xaW~0
DenXuIii qtc 66ucua(3.1).
Ne'uxaIii qJ'cti6uClh (3.1)taapd\lng(3.3)voi X=xa+tz,t>0:
t21IFzW+2t(F*Fxa - 17*y+ axa,z) +at211zW~0
Dongianchotr6ichot ~ 0 tadu'<jc:
(F* Fxa-F*y+axa,z)~O,Vz EX
DiGunaydf{nde'nX"Iii nghi~melm(3.2). 0
Tv daytagqix: Iii nghi~mcuaphuongtdnh:
ax+ F* Fx =17*y"
Phepchlnhhoa trongtru'ongh<;1ptllye'ntinhse H{yx: UlmmQtxa'pXl cho
nghi~mchinhxac x* cuaphu'ongtrlnh17x=y lingvoi saiso'trenduki~nIii 0,
nghlaIii II)i - JIllso.
TnioctieDtasedaubgiasaiso'chotru'ongh<jptuye'ntinhcompact.Ta giasii'
F: X ~ Y Iii m()toaDt-ttuye'ntinhcompactva1-1giuahaikhonggianHilbertvo
h~nchiGu.GQi (,Llj,Xj'Yj)jEf1.JIii singularsystemcllaF. f)~t:
Ra:=(aI+F*Fr' F*
ChU'ffng3 28
Taco Ra Iii tuye'ntinhlientvcdochungminhcuadinhIy3.1.3.
M?nhd~3.1.4
Ra Iii mQtsod6chlnhhoavdi:
'" flj
a) Ray==I-~(Y'Yj)Xj
}~Oa +Pj
1
b) IIRall~ r2 ;a
VYEY (3.4)
(3.5)
Changminh
a) Do (pj,Xj,Yj) Iii singularsystemvii F 1-1Den{Xj}Iii mQth~d~ydu.,nghlaIa:
'"
x== "' (x x. )x. Vx E YL.. ' ) .I' ./
j=l
Xct Y EY vii d~tz=RaYtaco:
(aJ+F*Fr1F*y=z hay (aJ+F*F)z=F*y
IDa:
'" '" 00
F* Y= ICF* y,x)Xj ==ICy,E'.:)xj ==L,uiY'Yj)Xj
j=l j=l j=l '
'"
(al +F* F)z ==IC(al +F* F)z,xj)Xj
j=l
'"
=I[aCz,xj)+CF* Fz,xj)]Xj
j=l
'"
=I[a(z,xj)+Cz,F* Fxj)]xj
j=l
uo
==ICa+ Jl~)(z,x)Xj
j=l
Tlido:
(a+ Jl~)(z,Xj)==,u/Y,Yj)
V~y:
'" '" fl.
Ray=z=I(z,x)Xj=I .I 2 (Y'Y)Xj
}=I }=Ia +Jl j
Chu'o'ng:3 29
b) Do a)
00 2
2" f.1. 2
IIRayll = f:t(a+~~)21(Y'Yj)1
Theoba'td~ngthucCauchy:
1r f.1j <-
a+f.1~z.2-vaflj=>(a+fl~)2- 2ra
(3.6)
Tlid6:
II RaYWs 4~~1(Y'Yj)12S 4~IIYW
V~y:
1
liRalis 2J:x
0
Dinh Ii 3.1.5
Nellx*=F*z EF*(Y) voiIlzllsE thlkhichQna(c5)=~(c>O)tasec6:
Ilx~- x*lls1-(-Fe+ ~)J8E2 -vc
(3.7)
Chungminh
Tac6:
00
x* =I (x*,X)Xj
j=1
-, ~ f1j (I
' * )R(J'x*=L.,;-~ 'x ,Yj Xj
}=1a +f1}
00 2
~ f.1} ( * )x=L..J 2 X ,Xi".i
}=Ia+ f.1j
(M9nhd~3.1.4)
Tlid6:
Chtro'ng3 30
00 a2
II RaF:x*-x*W=" I(x*,x .)12
f=t(a+f-l~)2 .I
(3.8)
=f a2
}=](a+f-l~)21(F*Z,X)12
00 2.
-" a f-l2
-Lt .I
}=I(a +,u~)21(z,Y)12
a
~-llzW4 (do3.6)
Hay:
IIRaFX*-x*IIS..Jd £
2 (3.9)
Nhu'v~y:
Ilx~-x*II~IIRay8-R"Fx*II+IIRJ;X*-x*11
~IIRalll!y8- YII+IIRaFx*-x*11
1 . -r;;s-o+-£
2..Ja 2 (do(3.5)va(3.9»
co
Thay a =Ii taauqc(3.7). 0
Dinh Ii 3.1.6
.' 2
Ne'u x*=F* Fz E F* F(X) volIlzlI~E thlvOlcachCh9lla(o)={;y, c >0
taco:
1 ! ~
IIx: - x"'ll$(c+ r )£3532-..;c
(3.10)
Changminh
Do(3.8)taco:
Chuang3 3f
00 a2
II RaFx"'-x"'W=I 2 21(F'" FZ,Xj)f
J=I(a+Jlj)
00 a2 Jl4. 2
=I ( ~)21(z,x)1j=1 a+Jlj
5allzW
Hay:
IIRaFx*-x*ll~aE
Dov~y:
II x; -x*115I1RaIiIIYo- yll+IIRaFx*-x*11
1
5 ---=0 +aE
2Ja .
2
(
15
)
3
Thay a(O')=c E ta du'<Jc(3.10). 0
Dj~uclangng~cnhicnlab~chOitt)cuaphepchlnhhoaTikhonovkhongth8cao
hondu'<Jcnua.M~nhd~sanchungtodi~ud6. (Xem [7 ], trang40)
M?nh de3.1.7
Cho F:X ~ Y lamQtloantittuye'ntinhcompact,1-1saochoRangeFla voh~n
chi~u.XetXEX, ne'ut6nt~imQthamlient\lca:[0,+00)~ [0,+00)thoa:
. a(O)=0
.
2
8 --
limllxa(8)- xIIO'3=0,0->0 Vy8:IIYO- yll~8
Khi d6 x=0.
BaygiGtasedanhgiasais6euaph6pchlnhh6aTikhonovtrongtru'ongh<JpF
la loantittuye'nHnhlient1,lC.Ta thudu'<Jccaeke'tquatu'ongttfnhu'djnh193.1.5va
3.1.6.
ChutJ'ng3 32
Djnh Ii 3.1.8
Ne'u X*=F*ZEF*(Y) vdillzlJS:E thl:
Ilx:-x*II~ aE+5fa (3.11)
Changminh
Taco:
ax:+F* Fx; =F* y6
ax*+F* Fx*=F* y+a,t'*
SHYfa:
a(x; -x*)+F* F(x; -x*) =-ax*+F*(y6- y)
Nhanvohu'dnghaive'cuaG~ngthli'ctrencho(x~- x*) taGu<;1c:
allx; - x*W+11F(x; - x*)W=-a(F *z,x; - x*)+(y' - y,F(x;- x*))
=-a(z,F(x: -x*»+(y6 - y,F(x: -x*»
~aEIIF(x; -x*)11+51IF(x;-x*)11
=(aE +5)IIF(x: - x*)/I (3.12)
Bobdts6h<;ingc1~utrongve'traicua(3.12)taco:
IIF(x; -x*)II~aE+8 (3.13)
Tli (3.12)va(3.13)tasoyfa:
allx; - x*112~(aE+0/
Nghla la:
Ilx; -x*II~ aE+0ra
0
Ghiclni:
Nell tach(;ma =0 thl:
II x; -x*II=0(-/5)
ChUb'ng3 33
Dtn1l1j3.1.9
Ne'ux*=F*}<zE F* F(X) voiIlzll~E thl:
3
Ilx;-X*lls5+a2E
rex (3.14)
Changminh
D fi t' .-:I? J( )
"
0 Xa a clfc tIeu clla a X nen:
Ja(x;) S Ja(x*-m:)
Nghla1a:
IIFx;- yOW+allx;112sIIF(x*-m:)- yOI12+a!lx*-m:112
IIFx:- y"+aFz-aFzW+allx;-x*+x*W~lIy-y"-aFzW+allx*-azW
Khaitrj~ncab6ns6h?ngtrongba'toiingthucireDtaou\1C:
IIFx: - yO+aFzW-2(Fx:- y" +aFz,aFz)+allx:-x*W+2a(x;-x*,x*)
slly- y"112_2(y-O,aFz)+allm:W-2a(m:,x*)
Thayx*=F* Fz (~s6h<.lilgthli'tl1cuahaive'vas~pxe'pl;,ti:
!lFx;- yO+aFzW+allx;-x*W
slly-yOW+allazI12+2(Fx:- yO,aFz)- 2a(Fx; - y,Fz)- 2(y- yO,aFz)
=lIy-y()W+allm:112+2a(Fx;- yO- Fx; +y- y+yO,Fz) (3.15)
, v '
0
Bo s6h?ngd~utrongve'tniieua(3.15)tadl1<jc:
allx; -x*W ~52+a3E2
Sitd\1ngba'td~Dgthite~ b2sa +b (a,b>0):
2
. 1°2 +a3E2 5+a3E
II ()-x* ll ~ --~ f-
Ixa \ a -va
0
Ghiclul
2
Ne'utaeh9Da=53thl:
2
IIx; -x*lI= 0(53)
Chlfo"lIg3 34
3.2PhepchinhhoaTikhonovchohili toanphituy~n.
Ph~ncu6icuachu'cfngnaytasedaubgfasai86trongtru'ongh<JpF hituye'nva
lient\1cgifi'ahaikhonggianHilbert.Ta vlinxetnghi~mchinhhoax; nh~ndu'<Jctit
vi~cqtcti~uhoaphiC'mhamTikhonov:
.la(x)=IIFx-yW+allxW
Bai toaDqfc ti6uhoanaykhongphaikhi naGclingeonghi~mvanghi~mne'u
corungkhongch~cduynhift.Themvaodotoantii'F dU'<Jex tphai"gdn"v(1imQt
toaDtii'tuyC'nttnhlien t\1ctheemQtnghlanaod6.
Trongphgnnaytadu'aracaegiathiC'tsau:
(AI) T6nt?iclfcti~ux~.
(A2) Tan t?i tmlntii't1JyC'nHnhlien t1;1cG:X ~ Y va 86L >0 thoa:
L
/lFx- F.x:*-G(x - x*)/lS;-/lx- x*W2
'i/xeX
TntoclientatrlnhbayIDQtso'di6uki~ndud~co.(AI) va(A2).
M?n/I de3.2.1
Ne'uF ladongyC'u(nghlalanC'ux"-?-x vaFx"~ y thly=Fx) thl(AI) thoa.
Chungminh
f)~t J=~~fJa(x). Tan t1;liday {XII} sao rho J~(x.J~J d§n de'n
IIFx,,11va IIx,,11bI eh?n.Do tfnhcompacty€u cuacaehinhc£ud6ngtrongkhong
gianHilbertva F la d6ngyC'utarutdU'<Jcdaycon {u,.}cua{x,,}thoa:
u -' x vaFu -' FX" . II
Tir ttnhmlalient\ICdU'oiy€u cuachu~ntac6:
/lxllS;limin~lu,,/i
IIFx - yllS;limin~IFul!- yll
Suyfa:
ChcM1g3 3S
J ::;11FX - YI12+allxI12::;liminfClIFun- yl12+allunW)
=liminfJa(u,,)=J
V~y: .laCx)=J 0
Mfllh d€ 3.2.2
Ne'uF khavi FnkhetvacoL >0 thoa:
IIF\ _F'X, II::;Lllx, -x211 VXI,X2EX
thl(A2)lhoavoi G=F'x.
Changminh
Theo d!nh19giatr!trunggiantaco:
1
F(x) - F(x*) =J r;'x.+1(-<-x.)(x - x*)dt
0
Tli'do:
I
F(x) - F(x*) -:F'x.(x- x*)=J (F'x.+t(X-~.)F'x. )(x-x*)dt
0
Suy fa:
I
IIF(x)-F(x*)-F'x.(x-x*)II::; J Lllx-x*I!2tdt
0
I
=Lllx-x*W J tdt
0
L
=21Ix-x*W
0
Ta sechungminhtrongtru'ongh<Jpdu'c;1cxctcacsai56v~Iighi~mclingcob~c
tu'dngtvnhu'trongtHronghc;1ptuye'ntinh.
Djllh Ij 3.2.3
Ne'u x* =:G *Z E G * (Y) voi IIzll::;~thl:L
5+allzll
IIx~- x*ll::;ra~1-Llizil
(3.15)
ChU'Cfng3 36
Chungminh
Dox; 1actfctieuciia Ja(x) nen:
Ja(x;) ~Ja(x*)
Nghia1a:
JJFx~- yOIl2+allx:W~IIFx*-yOW+allx*W
IIFx: - yO+az-azI12+allx:-x*+x*W ~IIFx*-yOW+allx*W
Khai trieDvarutgc.m:
IIFx:- y'"+azW+allazW-2a(Fx:- yd+az,z)+allx:-x*112=2a(x: -x*,x*)
:$IIFx*-yOW
Bo s5h9-ngd~ucuavritraivasii'dl;mgx*=G *z taco:
allx; -x*W ~IIFx*-y"112+llazW+2a(Fx;-yO -G(x~-x*),z)
, v '
=IIFx*-y" +azI12-2a(Fx*-yO,z)+2a(Fx;- yO~G(x;-x*),z)
=IIFx*-y" +azW+2a(Fx;- Fx*-G(~; - x*),z)
~IIFx*_y8+azW+2allzIlIIFx:-Fx*-G(x; -x*)11.
~IIFx*_y8+azW+2allzll~lIX:-x*W2 (doA2)
Suyra:
a(l- LlizlDllx;-x*W ~IIFx*-yO+azW
:$(1IFx*-yOIl+llazll)2
~(o+allzlli
V~y:
o+allzll
IIx;-x*ll:$Fd.J1-Ll!zll
0
Ghi clUJ
. Nriuchqna =0 thl:
IIx; - x*ll=D(JJ)
ChtW'ng3 37
Djnh Ij 3.2.4
Ne'u x*=G*GwEG*G(X) vdiz=Gw,llzlI::;;! thl:L
L 3
0+--llawll~+a21Iwll-Jl+Llizil
IIXC)- x*ll< 2-a - - ra-JI-L/lzil
(3.16)
Changminh
Dox; la qic ti0uclia Ja(x) nen:
J(
8
) < /(
* \
a xa -. a X' -aw)
NghTala:
IIFx: - y"W+allx~W~IIF(x*-aw)- y"W+allx*-awW (3.17)
Taco:
IIFx; - y"W=IIFx;- y"+aGw-aGwW
=IIFx~- y" +aGwW+11aGwW-2(Fx;- y"+aGw,aGw)
=11F.: - y" +aGwW-lIaGwW-2(Fx:- y",aGw)
Ilx~W==:llx~-x*+x*W
=llx:-x*W+llx*W+2(x:-x*,x*)
=/1x; -x*W+llx*W+2(x~-x*,G*Gw)
=llx~-x*1I2+lIx*W+2(G(x;- *),Gw)
Ilx*-awI12=llx*W+llawI12-2(aw,x*)
=llx*W+llawW-2(aw,G* w)
=lIx*W+llawW-2aIIGwW
(3.18)
(3.19)
(3.20)
Thay(3.18),(3.19),(3.20)VaG(3.17)varutg9ntadu'<Jc:
II.Fx:- y8+aGwW+allx:-x*W ~IIF(x*-aw)- y8W-lIaGwW
+a3I1wW+2a(Fx~- y" -G(x~-x*),Gw)
Bo soh~ngd~ucuav€ trai,tachtichvohu'dngvasird\mg(AI):
allx: -x*W :::;IIF(x*-aw)- y8W-lIaGwW+a3I1wI12.
+2a(fx; - y-G(x; -x*),Gw)+2a(y- yO,Gw)
::;;11F(x * -aw) - y"W-IJaGwjf +a311wjf
+2a~lIx~-x*WllzlI+2a(y-yO,GW) .
ChuO"n~3 38
Hay:
a(l- Lllz)l)llx;-x*WS;IIF(x*-aw)-y8W+a31IwW-(lIaGwW-2(Y-y8,aGW)], ,
Si'td\Ingd~ngthU'cIlull2_lIvW=lIu-vW+2(v,u-v) taco: '
a(l- Lllzll)llx:-x*W ~IIF(x*-aw)- ydW+a31IwW-lIy-d-aGwW+IlY-y8112
==IIF(x*-aw)- y8112_IIY-y8-aGwW +a31IwI12+lIy-8W
, v '
~IIF(x*-aw)- Fx*-G( -aw)W
+2a(y- y8-aGw,F(x *-aw)-Fx*-G(-aw»+ a311w112+82
Sir d\lOg(AI) m('>t]~nnua:
[2 L
a(1- LllzlI)lIx~-x*W ~~llawI14+(25+allz/I)-lIawW+a3I1wW+52
4 . 2 .
L .
=(5+-lIawW)2 +a3l1wW(1+LllzlI)2 .
Suy fa:
L
(5+-llawWi +a3l1wW(1+Lllzll)
Ilx:-x*II~11 2 a(l-Lllzll') .
Tft ba'tdiingth(fc-J02+b2~0+b (o,b>0) tasuyfa:
l ~
8+~llawI12+a21Iwll~1+Llizil
Il x8-x* ll< 2
'a - ra~I-Llizll
0
Ghichll
2
Ne'uchQna =53 thl:
2
Ilx~-x*lI= 0(53)
Chu'a'ng3 39
._.