Phân tích, đánh giá hiệu năng mã kênh sử dụng kĩ thuật đường biên

Nguyễn Thu Hiên và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 116 (02): 51 - 55 51 KÊNH BIÊN * Học viện Công nghệ Bưu chính Viễn thông TÓM TẮT . . Từ khóa: . GIỚI THIỆU* Mã hóa kênh là công cụ hiệu quả trong việc thiết kế các hệ thống truyền thông số. Mục đích của mã hóa kênh (bộ mã hóa và bộ giải mã kênh) là ánh xạ luồng số mang tin mang tin đầu vào càng tốt, tối thiểu hóa đƣợc ảnh hƣởng của nhiễu. . Song, không may điều đó lại làm tăng độ phức tạp giải mã theo hàm m

pdf5 trang | Chia sẻ: huongnhu95 | Lượt xem: 602 | Lượt tải: 0download
Tóm tắt tài liệu Phân tích, đánh giá hiệu năng mã kênh sử dụng kĩ thuật đường biên, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
ũ với độ dài khối, vì vậy trong hơn 60 năm qua các nhà nghiên cứu về mã đã thiết kế đƣợc các mã tốt theo tiêu chí vừa có thể làm giảm độ phức tạp mã hóa và giải mã vừa có thể dần đến đƣợc giới hạn về dung lƣợng kênh của Shannon. Năm 1993, mã Turbo với cấu trúc kết nối song song hai mã chập hệ thống đệ quy tách biệt bởi bộ ghép xen đã trở thành mã có hiệu năng tốt, tiếp cận đƣợc đến gần dung lƣợng kênh, đƣợc đề xuất bởi C.Berrou, A.Glavieux và P.Thitimajshima [1, 2]. Các mã chập kết * Tel: 0902 002030, Email: thuhienptit@yahoo.com nối song song và các kỹ thuật giải mã lặp, dựa trên thuật toán MAP (Maximum A Posteriori) với bộ giải mã vào mềm ra mềm (SISO) là phƣơng thức đắc lực để có đƣợc hiệu năng bộ giải mã kiểm soát lỗi cao với độ phức tạp giảm tƣơng đối ở vùng tỷ số tín hiệu trên nhiễu - SNR thấp. Vì là một kỹ thuật mã hóa khá mạnh, nên ngay từ khi xuất hiện, mã Turbo đã đƣợc đề xuất áp dụng cho các hệ thống thông tin yêu cầu tiết kiệm công suất hoặc hoạt động ở tỷ số SNR thấp nhƣ thông tin vệ tinh, thông tin di động, : Mô phỏng Monte Carlo. . – 10-6) thì việc s : ờ . Nguyễn Thu Hiên và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 116 (02): 51 - 55 52 . . Giới hạn tập M từ mã độ dài n. E là sự kiện giải mã sai tại đầu ra của bộ giải mã, Ei là sự kiện giải mã sai từ mã Ci đƣợc phát và Ei j j i đƣợc. j,i {Aj,i {Aj,i {Aj,i {Aj Aj=(1/M) M i ij A 1 , giải mã sai đƣợc thể hiện bởi (1) và (2).  ji jii EPEP )()( (1) ij jii EPEP )()( (2) Trong đó: P(Ei j) là xác suất lỗi cặp PEP (Pairwise Error Probability) khi Ci đƣợc phát và Cj là lựa chọn duy nhất (Ci, Cj C). , trên kênh, l [4,6,7 . Giới hạn Gallager Gallager đã tìm đƣợc giới hạn tr i (Gallager, 1963) qua kênh không nhớ đầu vào nhị phân đầu ra đối xứng. Theo [7], giới hạn trên về xác suất lỗi khối là: ij j y i XyPXyPEP )()( )( 1 1 1 1 (3) 0 1 trong đó: )( XyP là tham số tối ƣu. Khi =1 . . Giới hạn cầu Theo [5] giải mã là vector ngẫu nhiên n chiều đƣợc xác định bởi Z = (Z1, Z2, , Zn). (4): )()./( )()./()( rZPrZEP rZPrZEPEP (4) trong đó: . Ơclit, r là số thực dƣơng và là bán kính của hình c . Vì P(E/ Z >r) 1 nên: )(min )}(),({)( rP rZPrZEPMinEP e r r (5) (14) , xác suất giải mã sai đƣợc xác định bởi các khoảng cách Ơclit giữa các từ mã đƣợc phát, do đó giới hạ : ),(),( rZEPArZEP j N j j 1 (6) trong đó: Ej là sự kiện lỗi tại đầu ra bộ giải mã, trong khi từ mã giải mã là tại khoảng cách Euclidean j so với từ mã đã phát và Aj là số từ mã trung bình có khoảng cách j so với từ mã đã phát. Vì P(Ej, Z r)=0 với r j/2, do đó tổng trong (6) có thể lấy giới hạn theo j với r> j/2. Nguyễn Thu Hiên và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 116 (02): 51 - 55 53 Thay (6) vào (5) ta có: )}(),({)( )( rZPrZEPAMinEP j rN j j r 1 (7) trong đó: N(r) +1 là giá trị nhỏ nhất của j thỏa mãn r j/2 Cho: )(),()( )( 1 rZPrZEPArP j rN j je (8) Rõ ràng là r có thể có giá trị trong khoảng 1/2 r ( 1 là khoảng cách Euclidean cực tiểu giữa các từ mã đã phát). Thay thế r= 1/2 vào Pe(r), vì N( 1/2) =0, ta sẽ tìm đƣợc giới hạn khoảng cách tối thiểu Pe(r= 1/2)= P( Z 1/2). Cho r dần đến vô cùng, ta sẽ có giới hạn tập: N j jje EPArP 1 )(.)( (9) Giới hạn tiếp tuyến Giới hạn tiếp tuyến đƣợc phát triển bởi E.R.Berlekamp dựa trên thực tế là tất cả các từ mã của mã nhị phân đều thuộc vào mặt phẳng của hình cầu Euclidean có bán kính n , đƣợc mô tả trong [6] nhƣ sau: Xác suất giải mã sai P(E) biểu thức (10): N j j jj j Q n n QQAEP 1 0 2 0 2 )/( 4/ 4/ 2 )( (10) trong đó 0 là nghiệm của phƣơng trình (11): N j j j j n n QA 1 2 0 1 24/ (11) Giới hạn cầu tiếp tuyến (Tangential-Sphere Bound) Giới hạn cầu tiếp tuyến là giới hạn trên về xác suất lỗi khối của giải mã ML đối với các mã nhị phân [7 điều chế mã hóa M-PSK, cũng nhƣ đối với một mã hình cầu bất kỳ, vì năng lƣợng phát là nhƣ nhau đối với mỗi từ mã. Có thể thấy rằng giới hạn cầu tiếp tuyến luôn cho kết quả chặt hơn giới hạn tiếp tuyến và giới hạn tập tại vùng tỉ số SNR thấp và trung bình [6,7]. Theo [6], giới hạn cầu tiếp tuyến về xác suất lỗi khối P(E) h của mã khối tuyến tính và có thể viết nhƣ sau: kk kz z k zr kk r r dyyfzQAA dzdyyfAzfMinEP 2 0 111 11 1 22 1 2 1 /: )( )()./)(( )()()( (12) (29) trong đó: 2 02 N (33) 2 2 1 1 2 exp .2 1 )( z zf r nE z r s z ).1( 1 1 r nE r z k s k z k 2 4 1 2 1 1 .)( s k k nE r 4 1 2 . (34) . . [3]. T h 1. 1: Nguyễn Thu Hiên và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 116 (02): 51 - 55 54 1: kênh AWGN : )(dPidpidp i N N i P d i d d b 221 1 1 2 (13) : i N dilt idp ),,( ; )(dP2 . . (14): N i s id N i b N dE QE i N N i iweightofeventerrorob N i P 1 0 1 2 Pr (14) 2: kênh fading Rayleigh [5] (18,19,20,21,22,23). 1 d N E P d s d 0 2 0 21 sin sin (18) C 2 i d j d s d d d jd N E P 1 0 2 1 2 1 12 12 1 (19) 1 0 2 4 1 22 1 d j j d j j P (20) dj j d j j P 2 4 1 2 (21) 1 d d P 1 2 1 (22) PEP d d P d d 2 4 1 2 1 (23) : 0 0 1 N E N E s s Kết quả đánh giá . 2: Nguyễn Thu Hiên và Đtg Tạp chí KHOA HỌC & CÔNG NGHỆ 116 (02): 51 - 55 55 Hình 5: KẾT LUẬN Trong bài báo này, chúng tôi đã trình bày về . Song . Trong thời gian tới, chúng tôi sẽ tiếp tục nghiên cứu . TÀI LIỆU THAM KHẢO 1. Berrou C., Glavieux, A. and Thitimajshima, P., “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes”, in Proceedings IEEE ICC’93, May, pp. 1064 – 1070, 1993. 2. Berrou C. and Glavieux, A., “Near Optimum Error Correcting Coding and Decoding: Turbo Codes”, IEEE Transactions on Communications, Vol. 44, No. 10, Oct, pp. 1261 – 1271, 1996. 3. D. Divsalar, S. Dolinar, R.J. McEliece, F. Pollara., "Transfer Function Bounds on the Performance of Turbo Codes," JPL TDA Progress Report 42-122, August 15, 1995. 4. Duman T.M and Salehi M., “New performance bounds for turbo codes”, IEEE Transactions on Communications, Vol.46, No.6, June 1998, pp.717-723. 5. Eric K.Hall and Stephen G.Wilson, “Design and Analysis of Turbo Codes on Rayleigh Fading Channels”, IEEE Journal on Selected Areas in Communications, Vol.16, No.2, Ferbruary 1998. 6. Herzberg H. and Poltyrev G.,”Techniques of Bounding the Probability of Decoding Error for Block Coded Modulation Structure”, IEEE Transactions on Information Theory, Vol.40, No.3, May 1994, pp.903-911. 7. Poltyrev G., “Bounds on the Decoding Error Probability of Binary Linear Codes via Their Spectra”, IEEE Transactions on Information Theory, Vol.40, July 1994, pp.1284-1292. 8. Sason I. and Shamai S.,” Improved Upper Bounds on the ML Decoding Error Probability of Parallel and Serial Concatenated Turbo Codes via their Ensemble Distance Spectrum”, IEEE Transactions on Information Theory, Vol.46, No.1, Jan 2000, pp.27-47. SUMMARY PERFORMANCE ANALYSIS OF CHANNEL CODES USING BOUND TECHNIQUES Nguyen Thu Hien * , Le Nhat Thang, Vu Thuy Ha Posts & Telecommunications Institute of Technology In the past decades, channel error control codes has confirmed its role in digital communication systems. In low signal-to-noise regions, performance analysis uses simulation of typical turbo coding systems. For higher signal-to-noise regions beyond simulation capabilities, a theoretical analysis approach becomes useful tool. Therefore, this article will introduce bounding techniques which is a method of theoretical performance analysis of channel codes and presents some applications of Turbo codes. Keywords: Turbo code, technical borders, limits collective, Gallager limited, limited sentences, tangential limit Ngày nhận bài:25/01/2014; Ngày phản biện:10/02/2014; Ngày duyệt đăng: 26/02/2014 Phản biện khoa học:TS. Ngô Đức Thiện – Học viện Công nghệ Bưu chính Viễn thông * Tel: 0902 002030, Email: thuhienptit@yahoo.com

Các file đính kèm theo tài liệu này:

  • pdfphan_tich_danh_gia_hieu_nang_ma_kenh_su_dung_ki_thuat_duong.pdf
Tài liệu liên quan