Nghiên cứu một số phương trình nhiệt phi tuyến trong không gian sobolev có trọng

CHUaNG 3 A , , ~ A ~ NGHIEM BAI TOAN DIED KIEN DAD. . PHITDYEN Trong chuangnay,chungWi nghienCUllbai toangia tri bien va band~u(1.1)- (1.4)nhusau: 1 Ut-(urr +-ur)+Fc;(u)=f(r,t),O<r<l,O<t<T,r (3.1) (3.2) lim .fr ur(r,t) 1<+00,ur(l,t) +h(t)(u(l,t)- uo)=0, r~O+ (3.3) u(r,O)=uo(r), I 1 112 (3.4) Fc;(u)=&u U, trongd6&>O,uola h~ngs6chotruoc,h(t),f(r,t),uo(r) la cac hamchotruocthoacacdi~uki~nsail: (HI) UoER, (H2) UOEH, (H3) hE WI,oo(O,T), (H4) f E L2(O,T,H). Khong

pdf12 trang | Chia sẻ: huyen82 | Lượt xem: 1386 | Lượt tải: 0download
Tóm tắt tài liệu Nghiên cứu một số phương trình nhiệt phi tuyến trong không gian sobolev có trọng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
lamm~ttinht6ngquattal~y&=1. Nghi~mye'ucua bat toangia tri bien va ban d~u(3.1)- (3.4) duQcthanhl~pnhusau: TImuEI3(O,T;V)nLOO(O,T;H)saDchou(t) thoabili loanbitn phansau (3.5) d - (u(t),v)+(ur(t),vr) +h(t)u(l,t)v(l)+(Fi (u(t)),v)dt 16 =(/(t), v)+uoh(t)v(I),Vv EV, a.e.,t E (O,T), va di~uki~nddu (3.6) u(O)=uo' Khi d6tac6djnhIy sail Dinh If 3.1. ChoT >0 va (HI) - (H4) dung.Khi do,bai loan (3.1) (3.4) co duy nhat mQt nghi~m ytu u EL2(O,T;V)nLOC)(O,T;H) saocho (3.7) tuELOC)(O,T;V),tu/ EL2(O,T;H), r2/5uEL5/2(QT)' Chungminh. G6mnhiSubu'oc. BuGe1. PhudngphapGalerkin. La'y {wi},j =1,2,...la m<)tco sa tr1!cchu~ntrongkh6ng gian Hilbert tachdu'<JcV. Ta tlm um(t)theod~ng (3.8) m . um(t)=LCmj(t)Wj' j=l trongd6 cmj (t), 1~j ~m thoah~phu'ongtrlnhvi phanphi tuye'n (3.9) (U~(t),Wj) +(umr(t),Wjr) +h(t)um(1,t)Wj(1) +(Fi (um(t)),Wj) =(/(t), Wj) +uoh(t)wj(1),1~j ~m, (3.10) um(O)=uom' trongd6 (3.11) Uom~ Uom~nhtrongH. D~tha'yding voi m6im,t6nt~imQtnghi~mum(t)c6 d~ng(3.8) thoa(3.9)va (3.10)hftukhiipnoi tren O~t~Tm,voi mQtTmnao d6, O<Tm~T. 17 Cac danhgia tien nghil$msauday cho phepta 1a"yTm=T voi mQlm. Btioc2. Ddnhgidtiennghi~m. Ta se1~n1u'Qtthi€t 1~phaidanhgiatiennghil$mdu'oiday.Kh6 khanchinhd ph~nnay1asf)h~ngphi tuye'n Fl(um(t))=I Um(t)11/2Um(t) thalli gia vao phu'dng trlnh do d6 vil$cdanhgiatinhbich~nvaquagioih~ncuasf)h~ngnaycling 1am(>tkh6khan.Tuynhien,voi sf)h~ngphituye'nCl;lth~tfong tfu'onghQpnaykh6nggayfa nhi~utfdng~isovoi sf)h~ngphi K ~ " tuyentongquat. a) Danbgia1.Nhanphu'dngtrlnhthlij cuahl$(3.9)voi cm/t) vat6ngtheoj, tac6 (3.12) ~llum(t)112+21Iumr(t)f +2u~(1,t)dt 1 + 2 Sri Um(r,t) 15/2dr° =2(1-h(t))u~(1,t)+2(f(t),um(t))+2iioh(t)um(1,t) Tli ba"td£ngthlic(2.9),tasur fa rang (3.13) 211Umr(t) 112+ 2u~(1,t) 211Um(t) II~. Ta surtli (3.12),(3.13)ding (3.14) 1 ~IIUm(t)112 +II Um(t)II ~+2SriUm(r,t)15/2dr m ° ~211- h(t)1[,811Um,(t) !I'+(2+1/,8)11Um(t) 112] +211fer) 1I11um(t) II+ 21iioh(t) I~II Um(t)11v ~ 2( 1+IIh IILoo(o,T)) [fill Um(t) II~ +(2+1/P)IIUm(t)112] 18 +11/(1)112+IIUm(t)112+2~luillhll~(O,T) +2Pllum(t)II~ =~liioI21IhI1200+IIJ(t) 112+2/3(2+llhIILOO(OT») llum(t)II~2/3 L (O,T) , +[1+2(2+11/3)(1+llhIILoo(O,T»)]llum(t)112,'\ /3>0 ChQn/3>0 saocho (3.15) 2/3(2+II h IILOO(O,T»)~ 112. Tir (3.14),(3.15)taduQc 1 (3.16) ~llum(t)112+.!.llum(t)II~+2frlum(r,t)15/2dr dt 2 0 ,;;2~lulllhll~(O'T)+11/(1)112 + [1 + 2(2 + 11/3)(1+ IIh lIroo(O,T»)]II um(t) 112 . Lffytichphan(3.16)theot,vasad1;lng(3.10),(3.11)taco t t 1 (3.17) lIum(t)112+.!.~lum(s)ll~ds+2fdsfrlum(r,s)15/2dr 20 0 0 t ~lluoml12 +~liioI2 11h11200 + ~IJ(s)112 ds 2/3 L (O,T) ;1 t +[1+2(2+11/3)(1+II hIILoo(O,T»)]~Iurnes) 112ds 0 t ~M ?)+ M}l) ~IUrnes)112ds, 0 trongdo M}l),M}l)1acach[lngs6 chi ph1;lthuQcvao T va duQc chQnnhusail: M}l) = 1+ 2(2 + 11/3)(1+ II h II LOO(O,T»)' Mf2) 211uoml12+C~I ill II hII~oo(O'T»)T+JI/(S) 112dy, '1m. Nhob6d~Gronwall2.13,tir(3.17)taduQc 19 (3.18) t t 1 II Um(t)112 +~JII UrneS)II ~ds+2IdsSriUm(r,s)15/2dr 20 0 (2) ( (1) )~MT exptMT ~MT, '\1m,'\It, O~t~Tm~T, Tm=T.nghla 1a b)Danhgia2. Nhan(3.9)voi t2C~j(t)vat6ngtheoj, taco 21Itu~(t)112+ ~ [ II tumr(t)r+h(t)t2u;(1,t)+4t2frl Um(r,t)15/2dr ]m 5 0 =2tllUmr(t)112+u;(1,t)~[t2h(t)]dt 1 +~tfrlum(r,t)15/2dr+2(tf(t),tu~(t)) 5 0 +2uo~[t2h(t)um(1,t)]- 2uoum(1,t)~[t2h(t)] dt dt TJ:chphan(3.19)theobie'nthaigiantu0 de'nt saildo s~pxe'p1(;li cacs6h(;lngtaduQc (3.19) t (3.20) 2~lsu~(s)112ds+lltumr(t)r +t2u;(1,t) 0 1 4 2f I 1 5/2+-t r Um(r,t). dr 5 0 t t =[1- h(t)]t2u;(1,t)+2fsllUmr(s)112ds+ f[s2h(s)]/u;(1,s)ds 0 0 tit +8 fsds frlum(r,s)15/2dr+2 f(sf(s),su~(s))ds 5 0 0 0 t +2Ui2h(t)um(1,t)- 2uof[s2h(s)ium(1,s)ds 0 Dungbit dAngthuc(2.9),taco (3.21) Iitumr(t)r +t2u;(1,t)~~lltum(t)II~,'\ItE[O,T],'\1m. 20 Dungcaeba'td~ngthuc(2.6),(2.8),(2.9)va voi 13>0 nhu'tfong (3.15),tadanhgiakhongkh6khancaes6h(;tng(j v€ phili cua (3.20)nhu'sau (3.22) [1- h(t)]t2u;(I,t) ,:; (I +II hIILw(o,T))[piltum,(t)112 +(2+1/ P)II tum(t) 112J ::;(1+II h IILoo(O,T))[fJlltum(t) II~ +(2+1/13)t2MT 1 t t (3.23) 2IsilUmr(S)112ds+ I[s2h(s)]/U~(1,s)ds 0 0 ,;[ 2T +311(t2h)tw(o,n]]1Um(S)II~ds0 ::;2MT [ 2T+3 11 (t2hi ll ] , Loo(O,T) (3.24) t 21ito I[s2h(s)] / um(1,s)ds 0 t ::;2F3litol ll (t2hi ll rllum(s)llv ds Loo(O,T)JI0 ::;21itolll (t2hi ll ~6tMT 'LOO(O,T) (3.25) 21uot2h(t)um(t) I,,; PII tum(t) II ~+;(uillhIIL~(O.T)r. t t t 2 (3.26) 21 J(sf(s),su~(s))ds ::; III sf(s) 112ds + ~lsu~(s)1Ids 0 0 0 Do d6,tu (3.20)- (3.26)suyfa t (3.27) ~Isu~(s) 112ds +~II tum(t) II~ 0 4 ::;(1+II h !lroo(O,T))(2+1/fJ}t2MT +2MT(2T +311(t2hi!lroo(O,T)) 16 t t +- III SUm(S) IIv ds +III s f(s) 112ds 5 0 0 +~(uJIIh Ilno,T) r +21 uolll(t2h) / 11t"(O.T).J6t MT 21 t t ~M?) + 16]1surn(s)IIv ds ~M~4)+.!. ]1surn(s)II ~ds, 3 0 40 trongdo M?) ,M~4)=M?) +2~6la cach~ngs6chiphl;lthuQcT Dob6d€ Gronwall,tu(3.27)suyra t 2 1 (3.28) ~Isu~(s)II ds +-II turn(t)II~~M~4)et~Mf4)eT =M?). 0 4 M~tkhac,tu(3.18)tacodanhgia t 1 f n 3/5 1 5/3 (3.29) dsJlr F}(urn(r,s)) dr 0 0 t 1 = Ids frlurn(r,s)15/2dr ~.!.MT~MT 0 0 2 Bu'dc3. Quagidi h(ln Do (3.18),(3.28),(3.29)ta suyfa, t6n t~imQtday con cua day {urn}v~nkyhi~ula {urn}saocho (3.30) (3.31) (3.32) (3.33) (3.34) urn~ u trong LOO(O,T;H)ye"u*, urn~ u trongL2(O,T;V) ye"u, turn~ tu trong LOO(O,T;V)ye"u*, (turn)/~ (tu)/ trongL2(O,T;H) ye"u, r2/5urn~ r2/5u trong L5/2(QT) ye"u. Dung b6 d€ 2.11v€ tinh compactcua J.L.Lions, ap dl;lngvao (3.32),(3.33)taco th€ trichra tu day {urn}mQtday conv~nky hi~ula {urn}saocho (3.35) turn~ tu m~nhtrongL2(O,T;H). Theodinhly Riesz- Fischer,tu (3.35)taco th€ la'yra tu {urn} mQtdayconv~nky hi~ula {urn}saocho (3.36) urn(r,t)~u(r,t) a.e. (r,t)trong QT=(O,I)x(O,T). 22 Do Fi (u)= I U III 2 u lien Wc, lien (3.37) Fi(um(r,t))~ Fi (u(r,t)) a.e. (r,t) trongQT' Ap dlJng b6 d~ 2.12, vdi N = 2, q = 5/3, Gm=r3!5Fi(um)=r3!5IumI1l2um,G=r3!5Fi(u)=r3!5IuI1l2u. Tu (3.29),(3.37)suyra (3.38)r3!5luml1l2um~r3!5IuI1l2utrongL5!3(QT)ye'u Gia sa cpE c1([O,T]),cp(T)=O.Nhanphu'dngtrlnh(3.9)vdi cp, saild6 tichphantungphftntheobie'nt, tadu'<jc T T - \uom'wi )cp(O)- f\ um(t)'Wi )cp!(t)dt + f\ umr (t), wi r)cp(t)dt 0 0 (3.39) T T + fh(t)um(1,t)w;Cl)cp(t)dt+ f\Fi (um(t)),wi)cp(t)dt 0 0 T T =f\1(t),wi )cp(t)dt+Uofh(t)w;Cl)cp(t)dt,1~j ~m 0 0 D~ qua gidi hC;lncua so'hC;lngphi tuye'nFi(um(t))trong(3.39)ta sadlJngb6d~sail Bfl d~3.1.Taco T T lim f\Fi (um(t)),wi )cp(t)dt = f\Fi (u(t)),wi )cp(t)dtm-++00 0 0 Chung minh. Chti yding (3.38)tu'dngdu'dngvdi TIT 1 (3.40) fdt fr3!51uml1l2umdr ~ fdt fr3!51u 1112udr 0 0 0 0 ! \7'E (L5!\QT)) =L5!2(QT)' Mi;Hkhac,tac6 T Tl (3.41) f\Fi (um(t)),wi)cp(t)dt=f Sri umIII 2umWi(r)cp(t)dr dt 0 00 23 T 1 f f( 3/5 1 1 1/2 )( 2/5 )= J r Urn Urn r w;Cr)lp(t drdt. 00 Do (3.40), ta chungminh =r2/5w;Cr)lp(t)E L5/2(QT). Th~tv~y,do bfftd~ngthuc (2.7), ta co TIT 1 f~ 5/2 ff . i 1 5/2 (3.42) JI1 drdt= r w;Cr)lp(t) drdt 00 00 1 T f 1/4 1 r 1 5/2 ~ 1 5/2 = r- -vrw;Cr) drJllp(t) dt 0 0 5121 T ~(21Iwjllv) fr-1/4drfllp(t)15/2dt0 0 T 15 /,.. 11 11 512 ~ 5/2 =3-v2 Wj v Jllp(t)1 dt<+oo.0 Dodo,b6d~3.1.ducJcchungminh. Cho m~ +00tfong(3.39),tu (3.11),(3.30),(3.31)vab6d~3.1 tasuyfa u thoaphuongtrlnhbie'nphan T T - (uo,Wj)lp(O)- f(u(t),Wj)lpl(t)dt+f(ur(t),Wjr)lp(t)dt 0 0 T T (3.43) +fh(t)u(1,t)w;Cl)lp(t)dt+f(Fi(u(t)),Wj)lp(t)dt, 0 0 T T =f(/(t),Wj )lp(t)dt+uofh(t)w;Cl)lp(t)dt , 0 0 V rpE C1([O,T]) ,lp(T) =0, Vi =1,2,...,m. Dodotaco T T - (uo,v)lp(O)- f(u(t), v)lpl(t)dt + f(ur(t), Vr)lp(t)dt . 0 0 T T (3.44) + fh(t)u(1,t)v(1)lp(t)dt+ f(Fi (u(t)),v)lp(t)dt 0 0 T T =f(/(t), v)lp(t)dt+Uofh(t)v(1)lp(t)dt, 0 0 24 '\IcpE C1([0, T]), lp(T) =0,'\IvE V La'y cpED(O,T), tu (3.44)suyra T d T (3.45) f[-(u(t),v)]cp(t)dt+ f(ur(t),vr)cp(t)dt 0 m 0 T T + fh(t)u(l,t)v(l)cp(t)dt+ f(Fi (u(t)),v)cp(t)dt 0 0 T T = f(/(t), v)cp(t)dt+Uofh(t)v(l)cp(t)dt,'\IcpED(O,T),'\IvEV . 0 0 Dodotaco d (3.46 -( u(t),v)+(ur(t),vr)+h(t)u(l,t)v(l)+(Fi(u(t)),v)dt =(/(t), v)+uoh(t)v(l), '\IvEV dungtrongD(O,T)vadodoh~uhe'trong(O,T). Cho lpE c1([O,T]),cp(T)=o.Nhanphuongtrlnh(3.46)vdi cp,sail dotichphantungph~ntheobie'nthaigiantadu<jc T T - (u(O),v)cp(O)- f(u(t), v)cp/(t)dt+ f(ur(t),vr)cp(t)dt 0 0 T T (3.47) + fh(t)u(l,t)v(l)cp(t)dt+ f(Fi (u(t)),v)cp(t)dt 0 0 T T =f(/(t), v)cp(t)dt+Uofh(t)v(l)cp(t)dt, 0 0 '\IcpE C1([0,T]),cp(T)=0,'\IvEV. So sanh(3.44),(3.47)tadu<jc (3.48) - (u(O),v)cp(O)=-(uo,v)cp(O) '\IcpE C1([0,T]), cp(T)=0,'\IvE V, ma(3.48)tuongduongvdidi~uki~nd~u (3.49) u(O)=uo' Ta chu yding,tu(3.30)- (3.34),taco uEL2(0,T;V)nLOO(0,T;H),tuELOO(O,T;V)va 25 / 2 ( . ) 2/ S Ls/2(Q )tu E L O,T,H, rUE T . V~yst!t6nt<;tinghit%mdU<;1cchungminh. Bu'oc4. Tinh duynha'tnghit%m Trudche't,tacfinb6dSsailday. B6 d~3.2.Gidsaw Ianghifmytucuahailoansau 1 - (3.50)Wt-(wrr +-wr)=f(r,t), O<r<l, O<t<T,r (3.51) Ilim vlrwr(r,t) I <+00,wr(1,t)+h(t)w(1,t)=O, r~O+ (3.52) w(r,O)=O, { wEL2(0,T;V)n LOO(O,T;H), (3.53) . twELOO(O,T;V),tw/EL2(O,T;H). Khido t (3.54) ~llw(t)112+ Kllwr(s)112+h(s)w(1,s)]ds 2 0 t - f(J(s), w(s)}ds=0, a.e.t E(O,T). 0 Chti thich.B6dS3.2la t6ngquathoacuab6dStrongcu6nsach cuaJ.L.Lions [2]chotruongh<;1pkh6nggianSobolevco trQng. Chungminhcuab6dS3.2cothS!lmtha'ytrong[8]. GiasauvavIa hainghit%mye'ucuabaitoan(3.1)- (3.4).Khi do w =u - v la nghit%mye'"ucuabaitoan(3.50)- (3.52)vdive' phai J(r,t)=-lu(t)I1/2u(t)+lv(t)I1/2v(t).Dungb6dS3.2,ta cod~ngthucsail (3.55) t ~llw(t)112+ f[llwr(s)112+h(s)w2(1,s)]ds 2 0 t =- f(1 u(s) 11/2U(S)-I V(S)11/2V(S),W(S))ds:::;0, 0 26 do tinhchiltdondi~utangcua I u11/2u. Tir (3.55)ta suyfa ding w =O.Tlnh duy nhilt du'<;1cchungminh. V~ydinhly (3.1)du'<;1cchungminhKong. 27 ._.

Các file đính kèm theo tài liệu này:

  • pdf4.pdf
  • pdf0_2.pdf
  • pdf1_2.pdf
  • pdf2_2.pdf
  • pdf3_2.pdf
  • pdf5_2.pdf
  • pdf6.pdf
  • pdf7_2.pdf
Tài liệu liên quan