CHUaNG 3
A , , ~ A ~
NGHIEM BAI TOAN DIED KIEN DAD. .
PHITDYEN
Trong chuangnay,chungWi nghienCUllbai toangia tri bien va
band~u(1.1)- (1.4)nhusau:
1
Ut-(urr +-ur)+Fc;(u)=f(r,t),O<r<l,O<t<T,r
(3.1)
(3.2) lim .fr ur(r,t) 1<+00,ur(l,t) +h(t)(u(l,t)- uo)=0,
r~O+
(3.3) u(r,O)=uo(r),
I 1
112
(3.4) Fc;(u)=&u U,
trongd6&>O,uola h~ngs6chotruoc,h(t),f(r,t),uo(r) la cac
hamchotruocthoacacdi~uki~nsail:
(HI) UoER,
(H2) UOEH,
(H3) hE WI,oo(O,T),
(H4) f E L2(O,T,H).
Khong
12 trang |
Chia sẻ: huyen82 | Lượt xem: 1386 | Lượt tải: 0
Tóm tắt tài liệu Nghiên cứu một số phương trình nhiệt phi tuyến trong không gian sobolev có trọng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
lamm~ttinht6ngquattal~y&=1.
Nghi~mye'ucua bat toangia tri bien va ban d~u(3.1)- (3.4)
duQcthanhl~pnhusau:
TImuEI3(O,T;V)nLOO(O,T;H)saDchou(t) thoabili loanbitn
phansau
(3.5)
d
- (u(t),v)+(ur(t),vr) +h(t)u(l,t)v(l)+(Fi (u(t)),v)dt
16
=(/(t), v)+uoh(t)v(I),Vv EV, a.e.,t E (O,T),
va di~uki~nddu
(3.6) u(O)=uo'
Khi d6tac6djnhIy sail
Dinh If 3.1. ChoT >0 va (HI) - (H4) dung.Khi do,bai loan
(3.1) (3.4) co duy nhat mQt nghi~m ytu
u EL2(O,T;V)nLOC)(O,T;H)
saocho
(3.7) tuELOC)(O,T;V),tu/ EL2(O,T;H), r2/5uEL5/2(QT)'
Chungminh. G6mnhiSubu'oc.
BuGe1. PhudngphapGalerkin.
La'y {wi},j =1,2,...la m<)tco sa tr1!cchu~ntrongkh6ng gian
Hilbert tachdu'<JcV. Ta tlm um(t)theod~ng
(3.8)
m .
um(t)=LCmj(t)Wj'
j=l
trongd6 cmj (t), 1~j ~m thoah~phu'ongtrlnhvi phanphi tuye'n
(3.9)
(U~(t),Wj) +(umr(t),Wjr) +h(t)um(1,t)Wj(1)
+(Fi (um(t)),Wj) =(/(t), Wj) +uoh(t)wj(1),1~j ~m,
(3.10) um(O)=uom'
trongd6
(3.11) Uom~ Uom~nhtrongH.
D~tha'yding voi m6im,t6nt~imQtnghi~mum(t)c6 d~ng(3.8)
thoa(3.9)va (3.10)hftukhiipnoi tren O~t~Tm,voi mQtTmnao
d6, O<Tm~T.
17
Cac danhgia tien nghil$msauday cho phepta 1a"yTm=T voi
mQlm.
Btioc2. Ddnhgidtiennghi~m.
Ta se1~n1u'Qtthi€t 1~phaidanhgiatiennghil$mdu'oiday.Kh6
khanchinhd ph~nnay1asf)h~ngphi tuye'n
Fl(um(t))=I Um(t)11/2Um(t) thalli gia vao phu'dng trlnh do d6
vil$cdanhgiatinhbich~nvaquagioih~ncuasf)h~ngnaycling
1am(>tkh6khan.Tuynhien,voi sf)h~ngphituye'nCl;lth~tfong
tfu'onghQpnaykh6nggayfa nhi~utfdng~isovoi sf)h~ngphi
K ~ "
tuyentongquat.
a) Danbgia1.Nhanphu'dngtrlnhthlij cuahl$(3.9)voi cm/t)
vat6ngtheoj, tac6
(3.12) ~llum(t)112+21Iumr(t)f +2u~(1,t)dt
1
+ 2 Sri Um(r,t) 15/2dr°
=2(1-h(t))u~(1,t)+2(f(t),um(t))+2iioh(t)um(1,t)
Tli ba"td£ngthlic(2.9),tasur fa rang
(3.13) 211Umr(t) 112+ 2u~(1,t) 211Um(t) II~.
Ta surtli (3.12),(3.13)ding
(3.14)
1
~IIUm(t)112 +II Um(t)II ~+2SriUm(r,t)15/2dr
m °
~211- h(t)1[,811Um,(t) !I'+(2+1/,8)11Um(t) 112]
+211fer) 1I11um(t) II+ 21iioh(t) I~II Um(t)11v
~ 2( 1+IIh IILoo(o,T)) [fill Um(t) II~ +(2+1/P)IIUm(t)112]
18
+11/(1)112+IIUm(t)112+2~luillhll~(O,T) +2Pllum(t)II~
=~liioI21IhI1200+IIJ(t) 112+2/3(2+llhIILOO(OT») llum(t)II~2/3 L (O,T) ,
+[1+2(2+11/3)(1+llhIILoo(O,T»)]llum(t)112,'\ /3>0
ChQn/3>0 saocho
(3.15) 2/3(2+II h IILOO(O,T»)~ 112.
Tir (3.14),(3.15)taduQc
1
(3.16) ~llum(t)112+.!.llum(t)II~+2frlum(r,t)15/2dr
dt 2 0
,;;2~lulllhll~(O'T)+11/(1)112
+ [1 + 2(2 + 11/3)(1+ IIh lIroo(O,T»)]II um(t) 112 .
Lffytichphan(3.16)theot,vasad1;lng(3.10),(3.11)taco
t t 1
(3.17) lIum(t)112+.!.~lum(s)ll~ds+2fdsfrlum(r,s)15/2dr
20 0 0
t
~lluoml12 +~liioI2 11h11200 + ~IJ(s)112 ds
2/3 L (O,T) ;1
t
+[1+2(2+11/3)(1+II hIILoo(O,T»)]~Iurnes) 112ds
0
t
~M ?)+ M}l) ~IUrnes)112ds,
0
trongdo M}l),M}l)1acach[lngs6 chi ph1;lthuQcvao T va duQc
chQnnhusail:
M}l) = 1+ 2(2 + 11/3)(1+ II h II LOO(O,T»)'
Mf2) 211uoml12+C~I ill II hII~oo(O'T»)T+JI/(S) 112dy, '1m.
Nhob6d~Gronwall2.13,tir(3.17)taduQc
19
(3.18)
t t 1
II Um(t)112 +~JII UrneS)II ~ds+2IdsSriUm(r,s)15/2dr
20 0
(2)
(
(1)
)~MT exptMT ~MT, '\1m,'\It, O~t~Tm~T,
Tm=T.nghla 1a
b)Danhgia2. Nhan(3.9)voi t2C~j(t)vat6ngtheoj, taco
21Itu~(t)112+
~
[
II tumr(t)r+h(t)t2u;(1,t)+4t2frl Um(r,t)15/2dr
]m 5 0
=2tllUmr(t)112+u;(1,t)~[t2h(t)]dt
1
+~tfrlum(r,t)15/2dr+2(tf(t),tu~(t))
5 0
+2uo~[t2h(t)um(1,t)]- 2uoum(1,t)~[t2h(t)]
dt dt
TJ:chphan(3.19)theobie'nthaigiantu0 de'nt saildo s~pxe'p1(;li
cacs6h(;lngtaduQc
(3.19)
t
(3.20) 2~lsu~(s)112ds+lltumr(t)r +t2u;(1,t)
0
1
4 2f I 1 5/2+-t r Um(r,t). dr
5 0
t t
=[1- h(t)]t2u;(1,t)+2fsllUmr(s)112ds+ f[s2h(s)]/u;(1,s)ds
0 0
tit
+8 fsds frlum(r,s)15/2dr+2 f(sf(s),su~(s))ds
5 0 0 0
t
+2Ui2h(t)um(1,t)- 2uof[s2h(s)ium(1,s)ds
0
Dungbit dAngthuc(2.9),taco
(3.21) Iitumr(t)r +t2u;(1,t)~~lltum(t)II~,'\ItE[O,T],'\1m.
20
Dungcaeba'td~ngthuc(2.6),(2.8),(2.9)va voi 13>0 nhu'tfong
(3.15),tadanhgiakhongkh6khancaes6h(;tng(j v€ phili cua
(3.20)nhu'sau
(3.22) [1- h(t)]t2u;(I,t)
,:; (I +II hIILw(o,T))[piltum,(t)112 +(2+1/ P)II tum(t) 112J
::;(1+II h IILoo(O,T))[fJlltum(t) II~ +(2+1/13)t2MT 1
t t
(3.23) 2IsilUmr(S)112ds+ I[s2h(s)]/U~(1,s)ds
0 0
,;[ 2T +311(t2h)tw(o,n]]1Um(S)II~ds0
::;2MT
[
2T+3
11
(t2hi
ll ]
,
Loo(O,T)
(3.24)
t
21ito I[s2h(s)] / um(1,s)ds
0
t
::;2F3litol ll (t2hi ll rllum(s)llv
ds
Loo(O,T)JI0
::;21itolll (t2hi ll ~6tMT 'LOO(O,T)
(3.25) 21uot2h(t)um(t) I,,; PII tum(t) II ~+;(uillhIIL~(O.T)r.
t t t 2
(3.26) 21 J(sf(s),su~(s))ds ::; III sf(s) 112ds + ~lsu~(s)1Ids
0 0 0
Do d6,tu (3.20)- (3.26)suyfa
t
(3.27) ~Isu~(s) 112ds +~II tum(t) II~
0 4
::;(1+II h !lroo(O,T))(2+1/fJ}t2MT +2MT(2T +311(t2hi!lroo(O,T))
16 t t
+- III SUm(S) IIv ds +III s f(s) 112ds
5 0 0
+~(uJIIh Ilno,T) r +21 uolll(t2h) / 11t"(O.T).J6t MT
21
t t
~M?) + 16]1surn(s)IIv ds ~M~4)+.!. ]1surn(s)II ~ds,
3 0 40
trongdo M?) ,M~4)=M?) +2~6la cach~ngs6chiphl;lthuQcT
Dob6d€ Gronwall,tu(3.27)suyra
t 2 1
(3.28) ~Isu~(s)II ds +-II turn(t)II~~M~4)et~Mf4)eT =M?).
0 4
M~tkhac,tu(3.18)tacodanhgia
t 1
f n 3/5 1
5/3
(3.29) dsJlr F}(urn(r,s)) dr
0 0
t 1
= Ids frlurn(r,s)15/2dr ~.!.MT~MT
0 0 2
Bu'dc3. Quagidi h(ln
Do (3.18),(3.28),(3.29)ta suyfa, t6n t~imQtday con cua day
{urn}v~nkyhi~ula {urn}saocho
(3.30)
(3.31)
(3.32)
(3.33)
(3.34)
urn~ u trong LOO(O,T;H)ye"u*,
urn~ u trongL2(O,T;V) ye"u,
turn~ tu trong LOO(O,T;V)ye"u*,
(turn)/~ (tu)/ trongL2(O,T;H) ye"u,
r2/5urn~ r2/5u trong L5/2(QT) ye"u.
Dung b6 d€ 2.11v€ tinh compactcua J.L.Lions, ap dl;lngvao
(3.32),(3.33)taco th€ trichra tu day {urn}mQtday conv~nky
hi~ula {urn}saocho
(3.35) turn~ tu m~nhtrongL2(O,T;H).
Theodinhly Riesz- Fischer,tu (3.35)taco th€ la'yra tu {urn}
mQtdayconv~nky hi~ula {urn}saocho
(3.36) urn(r,t)~u(r,t) a.e. (r,t)trong QT=(O,I)x(O,T).
22
Do Fi (u)= I U III 2 u lien Wc, lien
(3.37) Fi(um(r,t))~ Fi (u(r,t)) a.e. (r,t) trongQT'
Ap dlJng b6 d~ 2.12, vdi N = 2, q = 5/3,
Gm=r3!5Fi(um)=r3!5IumI1l2um,G=r3!5Fi(u)=r3!5IuI1l2u.
Tu (3.29),(3.37)suyra
(3.38)r3!5luml1l2um~r3!5IuI1l2utrongL5!3(QT)ye'u
Gia sa cpE c1([O,T]),cp(T)=O.Nhanphu'dngtrlnh(3.9)vdi cp,
saild6 tichphantungphftntheobie'nt, tadu'<jc
T T
- \uom'wi )cp(O)- f\ um(t)'Wi )cp!(t)dt + f\ umr (t), wi r)cp(t)dt
0 0
(3.39)
T T
+ fh(t)um(1,t)w;Cl)cp(t)dt+ f\Fi (um(t)),wi)cp(t)dt
0 0
T T
=f\1(t),wi )cp(t)dt+Uofh(t)w;Cl)cp(t)dt,1~j ~m
0 0
D~ qua gidi hC;lncua so'hC;lngphi tuye'nFi(um(t))trong(3.39)ta
sadlJngb6d~sail
Bfl d~3.1.Taco
T T
lim f\Fi (um(t)),wi )cp(t)dt = f\Fi (u(t)),wi )cp(t)dtm-++00
0 0
Chung minh. Chti yding (3.38)tu'dngdu'dngvdi
TIT 1
(3.40) fdt fr3!51uml1l2umdr ~ fdt fr3!51u 1112udr
0 0 0 0
!
\7'E (L5!\QT)) =L5!2(QT)'
Mi;Hkhac,tac6
T Tl
(3.41) f\Fi (um(t)),wi)cp(t)dt=f Sri umIII 2umWi(r)cp(t)dr dt
0 00
23
T 1
f f(
3/5
1 1
1/2
)(
2/5 )= J r Urn Urn r w;Cr)lp(t drdt.
00
Do (3.40), ta chungminh =r2/5w;Cr)lp(t)E L5/2(QT).
Th~tv~y,do bfftd~ngthuc (2.7), ta co
TIT 1
f~ 5/2 ff
.
i 1
5/2
(3.42) JI1 drdt= r w;Cr)lp(t) drdt
00 00
1 T
f
1/4
1
r
1
5/2 ~
1
5/2
= r- -vrw;Cr) drJllp(t) dt
0 0
5121 T
~(21Iwjllv) fr-1/4drfllp(t)15/2dt0 0
T
15 /,..
11 11
512 ~ 5/2
=3-v2 Wj v Jllp(t)1 dt<+oo.0
Dodo,b6d~3.1.ducJcchungminh.
Cho m~ +00tfong(3.39),tu (3.11),(3.30),(3.31)vab6d~3.1
tasuyfa u thoaphuongtrlnhbie'nphan
T T
- (uo,Wj)lp(O)- f(u(t),Wj)lpl(t)dt+f(ur(t),Wjr)lp(t)dt
0 0
T T
(3.43) +fh(t)u(1,t)w;Cl)lp(t)dt+f(Fi(u(t)),Wj)lp(t)dt,
0 0
T T
=f(/(t),Wj )lp(t)dt+uofh(t)w;Cl)lp(t)dt ,
0 0
V rpE C1([O,T]) ,lp(T) =0, Vi =1,2,...,m.
Dodotaco
T T
- (uo,v)lp(O)- f(u(t), v)lpl(t)dt + f(ur(t), Vr)lp(t)dt
. 0 0
T T
(3.44) + fh(t)u(1,t)v(1)lp(t)dt+ f(Fi (u(t)),v)lp(t)dt
0 0
T T
=f(/(t), v)lp(t)dt+Uofh(t)v(1)lp(t)dt,
0 0
24
'\IcpE C1([0, T]), lp(T) =0,'\IvE V
La'y cpED(O,T), tu (3.44)suyra
T d T
(3.45) f[-(u(t),v)]cp(t)dt+ f(ur(t),vr)cp(t)dt
0 m 0
T T
+ fh(t)u(l,t)v(l)cp(t)dt+ f(Fi (u(t)),v)cp(t)dt
0 0
T T
= f(/(t), v)cp(t)dt+Uofh(t)v(l)cp(t)dt,'\IcpED(O,T),'\IvEV .
0 0
Dodotaco
d
(3.46 -( u(t),v)+(ur(t),vr)+h(t)u(l,t)v(l)+(Fi(u(t)),v)dt
=(/(t), v)+uoh(t)v(l), '\IvEV
dungtrongD(O,T)vadodoh~uhe'trong(O,T).
Cho lpE c1([O,T]),cp(T)=o.Nhanphuongtrlnh(3.46)vdi cp,sail
dotichphantungph~ntheobie'nthaigiantadu<jc
T T
- (u(O),v)cp(O)- f(u(t), v)cp/(t)dt+ f(ur(t),vr)cp(t)dt
0 0
T T
(3.47) + fh(t)u(l,t)v(l)cp(t)dt+ f(Fi (u(t)),v)cp(t)dt
0 0
T T
=f(/(t), v)cp(t)dt+Uofh(t)v(l)cp(t)dt,
0 0
'\IcpE C1([0,T]),cp(T)=0,'\IvEV.
So sanh(3.44),(3.47)tadu<jc
(3.48) - (u(O),v)cp(O)=-(uo,v)cp(O)
'\IcpE C1([0,T]), cp(T)=0,'\IvE V,
ma(3.48)tuongduongvdidi~uki~nd~u
(3.49) u(O)=uo'
Ta chu yding,tu(3.30)- (3.34),taco
uEL2(0,T;V)nLOO(0,T;H),tuELOO(O,T;V)va
25
/ 2
( . )
2/ S Ls/2(Q )tu E L O,T,H, rUE T .
V~yst!t6nt<;tinghit%mdU<;1cchungminh.
Bu'oc4. Tinh duynha'tnghit%m
Trudche't,tacfinb6dSsailday.
B6 d~3.2.Gidsaw Ianghifmytucuahailoansau
1 -
(3.50)Wt-(wrr +-wr)=f(r,t), O<r<l, O<t<T,r
(3.51) Ilim vlrwr(r,t) I <+00,wr(1,t)+h(t)w(1,t)=O,
r~O+
(3.52) w(r,O)=O,
{
wEL2(0,T;V)n LOO(O,T;H),
(3.53)
. twELOO(O,T;V),tw/EL2(O,T;H).
Khido
t
(3.54) ~llw(t)112+ Kllwr(s)112+h(s)w(1,s)]ds
2 0
t
- f(J(s), w(s)}ds=0, a.e.t E(O,T).
0
Chti thich.B6dS3.2la t6ngquathoacuab6dStrongcu6nsach
cuaJ.L.Lions [2]chotruongh<;1pkh6nggianSobolevco trQng.
Chungminhcuab6dS3.2cothS!lmtha'ytrong[8].
GiasauvavIa hainghit%mye'ucuabaitoan(3.1)- (3.4).Khi
do w =u - v la nghit%mye'"ucuabaitoan(3.50)- (3.52)vdive'
phai J(r,t)=-lu(t)I1/2u(t)+lv(t)I1/2v(t).Dungb6dS3.2,ta
cod~ngthucsail
(3.55)
t
~llw(t)112+ f[llwr(s)112+h(s)w2(1,s)]ds
2 0
t
=- f(1 u(s) 11/2U(S)-I V(S)11/2V(S),W(S))ds:::;0,
0
26
do tinhchiltdondi~utangcua I u11/2u. Tir (3.55)ta suyfa ding
w =O.Tlnh duy nhilt du'<;1cchungminh.
V~ydinhly (3.1)du'<;1cchungminhKong.
27
._.