( /' I 1/' /' :Jr;P
I{t~ilt j/ (bit' ( ;(t(>,f[ ~c ~O(J/ ,A;j;ryb/l 37z(///t~ 0;;:;
CHUdNG 1
~? ~ ,
TONG QUAN VE PHUdNG TRINH LAPLACE
I. M()T s6 DINH NGHiA
1. f)illh Ilghfa..
- XCl nc RII va h~lIllso u: Q ~ R lhllQchip c2 (D),
Toan lli'Laplacl; t<ICdl,\11gh~nham so u (llrqcd!nhnghlabi~i
II
,,- ')
L1:=~Dk
k=1
lrung cl6 I)~ la cl<,lOham rieng cftphai,
- 1-)<.10ham rieng co nhi€u ky hi~lI kl1<lcnhall, do d6 L1uc6 th~dl1"c;Jc
viaLdu'djI1H)lLrungnhITngd<;lngsau:
Vl~i
10 trang |
Chia sẻ: huyen82 | Lượt xem: 1763 | Lượt tải: 0
Tóm tắt tài liệu Một số tính chất của hàm điều hòa, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
x =(XI ,.." XII)E D,
II
i) L~U(x) =IDk~I(X)
k=1
,. II a'2 II a'2
II) L1U(x) =I ~lI(X) =I ~U(Xl""'XII)
k=laxk k=laxk
II
iii) L1U(x) =LlIXkXk (x)
k=l
2) nillh Ilgltfu ..
XCl Q c H."vahamsoLlll.rCu E c2 (D).
I-Hu11s(iudLrl}cgQilahamdi€u boatrenD neu
L1II(X)=0, '\Ix E Q (1)
CIIiI/hie" ..
. Khi dinh nghla h~undi€u boa, ngLrejita co lh~ xel h~lI11II c6 gia tr!
pink, lilY nhien lrong lu~nvan nay cluing loi chI xer h~lIllsO'u c6
giJ lr! Ll1Lrc,
5t«ldt(f;~~(' f)(~,/ L~C 200/ 2
--t/" - 1:'77/ OJ/,:
Jf;pvye'/t JhiV'/th 1"/;
. Trong lu~nvan nay,chungloi c~liXCI mi~nxac d!nhclla hamaieu
hoaIii qp conclla R" vdin ~2,
. Thay VI ghi nhu'(1), ngLt'oila c6 lh~ghi la :
"~ubhng0 lrenn"
3. lJillll Ilgllia ..
- Phlfdng lrlnh Laplace la phlrdnglrlnh co lh,lng
~u(x) =0, vx E n
tronglit)n c R" vau lahams6din 11m,
- Bili lOanDirichletd6i vdi phlfljngtdnhLaplaceIii bai loanco d~lng
nillt'sau:
Tim u E C2(n) n C (n) lhoa
f~u(x) =0, vx En
1 u(x) =rex),vx Ean
lrongdt)r Iii hamS6l1llrclienH,IClIen an,
- Hili loanNeumannd6i vdi phl(dngldnhLaplacela bai lOanco di;lng
nhu'sau:
Tim u E C2(D) n C (D) lh6a
l
~u(X) =0, vx E Q ,
au
-(x) =g(x),VxEaDau
lrungJ6 g Iii hams6 IIWclien t~IClrenaD va ~~(x) la d"tohamclla u ti;lix
Ihcnhlt'dngclia vecWu , vdi u la philpvecWdonV!hlt'dngngoaiclia bien
an,
4) Cfllt tllicll ..
Phlt'dnglrlnh Laplace IllY la plHfl1ngtrlnh d~1Oham rieng cd b,ln nhlt'ng
ra'tquan lH,>ngVI n6 xua'thi~n nhi€u lrong v~t Iy, chang h~lntrang tHrong
llnh Ji~n, lH,Jnglnt'ong..,
- Xc [ D Iii mQtlllienmd,bjch~n,lien [hongcoduraIHrongLInhdi~n,
Coi v la I mienIronnhmtmngn
J-)i9nIhongquam~tav bhng()
~0;(ill }(t~t (Itt. A'~c 200/ 3 L/tj;t;1'8n5n'cvllh%
f Ku dS=0
av
lrongtit)E IiI vecWClrolIgdC?di~nwrongva u la phapvecltfdOnvi htrdng
ngoai CllaI11ZiI av.
n611
TheD d!nh19Gauss- Green lhl
fdivE dx=f E.u dS
v av
fdivE dx=0
v
))0 th) divE =0 Iren n
Vdi II IiI di~1Ithe'lhl E =- 'Vu
SllY ra div (Y'u) =0
Y~Y .0.11=() Ircn Q
- Trong cac tHrongkhac, vi~cthie'tl~ppln((jogtrtnhLaplace tt((jogtt.!'
nhlr trungIn'-lingnnhdi<:;n.
II. N(;HII!~!VITRONG MOT SOTRVONG H(iP D~C nl~T
J) nillll l.y:
XcI hili 10<lnll\ll1l E C2 (R'\ {OJ) th6a
f L1u(x)=O, VxERn\{O)
III (x) labitSuthaclheo I x I
Nghi~111clia bAi loan co d<;lngoInt san
l
bInlxl+c, n ~ 2
u(x)= h 3---::;- +C, o:?:-
Ixlll--
lrung (II) h,c lit cac hang so.
CIl "ollgmillil
Ch(fng l11inhclla dinh 19nay dtrdc lrlnh hay d lrang 21 cuon sach [11
2) nillll Ii:
XcI h:li loan Dirichlel uoi
B(O,r)= Ix E l{": I x 1<r}
vdi mien ~ong clla qud cAlI
(/' '//'. /' '-ff-'
I ({(.bIt f/ /ZII {'((D J[ 9G!!OO I 4 ~Ajl(;jlg'/t5fZtt'/tjz%
{
L'lll(X)=0, Vx E 13(0,r)
HeX)= rex), Vx E 8B(0,r)
lrong lh) ria ham lien ll,c L1'enbien aB.
Nghiqm lIEC\B)nC(B) clla bai loan Hl LIllYnhal va Cl) bi6u lht(clren
B(O,1')nluf sall
')
11
2
I r-- x
lICK)=- f f(~)dS(~) , Vx E B(O,r)(Dr
I I
u
1~I=r~- x
lrong d6 (t)IA di~nlich clla m~Hcall odn vi 813,
C{)ngIhu'cclla 1Id lfen ciL(ejcgqi la c!lfC.kgqi li\ c6ng lhtfe Hehphan
? 112
Poisson, nell dall'J(~,x)= ~r-- x Ihlc6ngLhtfc(renLrdIhanh
mrI~-xlll
lICK)= f H(~,x)r(~)dS(~)
1~I=r
(,/ut Ilticlt: Trong lrt(dnghelPn=2lhl II c6 IhtSViellheo lqa 00 Cl,fCnht(
sall
I 211 ] - 1'2
lIeI', 0) = f i«p)d(p
2IT n 1'2+] - 2rcos(8 -tp)
,'V(r,8)E [0,1)x[O,2IT)
C'dlng lIlinh
Chu'ng minh cLia u!nh 19 lren du'cjc Irlnh bay d lrang JO7, quyGn sach
121
Clllt tlticlt:
Tinh chflLclia H nlllr SilU
(a) II(~, x) E COO
(h) L'lJI (~,x) =0
(c) fH(~,X)dS~= I
1~I=r
(LI)H(~,x»Oneu kl =r, Ix I <I'
(c) Nell I ~I =r, khi06 lim H(~,x)=0
X-7~
Ixl<r
neB kl~r, Ixl*r,~*x.
Hell Ixl*r, I~I =r.
neB I xl<1'.
"Y;;rf/I 'Pr(~i(0(;0 Yt(;c 200/ 5 ejtj:;t;;yJn ,71:a?thc;{i
vagi(iihi}nnayd~utheo~trenmi~n
{~E /(11: I ~I =l'va I ~- ~I >0>O},vdi0Hisodl(ongtoyy,
~ ~', ~,." ;:: ,
III. MOT SO TINH CHAT CUA HAM DIEU HOA.
1.Dfllit l.v(congtlnkgicitrj trungbinh):
Xct n Ii'!t~pmdtrongWIvauIa hamso'th~(cthuQcc2 (£1)
Di~ukil$ndn vaaud6II Iii hiimso'di~llhoatren£1Ia
HeX)= ~I-I fu(~)dS~,VB (x, 1')C £1cur
3B(x,r) .
trungd6 U)Iii di~nrich clia m~tdll dclnvi va C0l,n-1la di~nrich clia m~tdu
ban kinh L
Cflli thieh:
Ne'u linh trungblnh rhearich phan kh6i thl ham oi~uhoa v~nthoa, tac
Iii
ll(X) =~ fu(y)dyVel')
l3(x,r)
trung(\()V (r) ILlth6tichclia CIliadu bankinh r .
Cflli'llg millh
Binh Iy trenOl(QCchangminha trang25,sach[1]
2.Hillh if' (nguyenl.vqtc ([{Ii):
Giii SL(1IE c2 (£1)n C (£1)la hamc1i~llboatfen£1(vdin Iii t~pmdhi
ch~n R").
a) Khi (\()
maxu =maxu
Q , ail
b) NcLin Iii l~plienthongvat6nt~lix" E Q saGcho
u(x,,)= nE~xu
Q
Khi d() II lahiu11hangtren£1,
Chli'llg millh
:£~~l;t')/(Z~('6r~o(7f~c200/ 6
,1/' ~, t7T/ c//.'
L/):?':!Ie'7t~ c/ /l{!//lh f/ it,
Dinh Iy LrencfL(c.Jcch(tngminhd trang27, sach [I]
3, Vi/lh ij (nguyenly q(Cliiu) :
Gi~1sli'[I E Cl(D.)n c (D.)
neR",
Iii h~llnui~uhoa tren t~pmd bi ch~n
a) Khi lit) minu=minu
Q aD.
h)Ne~LIn lien thongva tdnt<;liXl)E n saocho
LI(Xo)= nunu ,
n
khi de)LI lil hill11hang tren n,
4. j-Ji/lh iy (djnh ly Harnack) :
Giii sLl'n lil L~pmd lien LhongLrongRn, K la t~pcompactnam trongn,
Khi dt) tl)n Lai hangso c E (0,1) saocho,
LI(X) . IcS;-S,-
Hey) c
Vt1imoi hill11di~uboadlwngUX,1Cdinhtrenn va vdi mqiX,y E K,
Cllll/lg Illillh
Xcm trang33, sach[I]
5. fJi/lh i5'(nguyenly Harnack):
(.iii sli' n lil qp md lien thongtrungUn , {UlIJ la day cac hamui~u
boaLangLl'fngditSmLrenD.
Khi dt), mollrung hai lnWng hCJpsauxay ra
a) VXEn, LIllI (X) -+ + (f.)khi m -+ 00,
h) '1\111Lai1110thams611cli611boalrenn saocho lulu}h0i tl,ld6uv6u
tren mqi L0PcompactKen,
Cldi/lg Illi/lh
UaL VII'= [l1I1-[ll+llhl vwdlWng vt1imqi m.
a)CJiii sLi'lAn t(,liXEn lh6a LI1I\(X)-++00khi m-++oo:
.Z ;~i/t'1ft~t'(ftO (;(~c !lOOI 7 J'f;1~cYiJ~t5flw/l1Zc;:;
Cui Y LllY9 LhllQcQ.
T~p K={x,y}Iii t~pcompacLtmngQ.
1\p dl,lngdjnh 19Harnack(djnh 191I1.4-chlrdngI) dol vdi K ,t6n t~i
hang s6 C E( 1,0)Lhoa
"dI11EN , C vlllx) < vlIlY)
SlIY ra C(UlIlX)-lIl(X)+I) < ulI,(Y)-UI(Y)+1
C(uII1(x)-ul(x)+I)+lll(Y) -I <1l1ll(Y)
Klli I1I *CIJLhivii tnli Lienra vo clfc ,dod6 um(Y) *CIJ.
h)Gi,1sll' lim llllJ (x) t6n t<.lihall h~lnvdi I11qiXEQ :
111~ ex)
1)~Lu(x)= lim Ulll (x).
m~oo
Coi K I~lL~pcompacttoy y lrang Q .
c6 dinhxEK.
1'6n L<.lihang so cE(1,CIJ) thoa bat d~ng lh((c Harnack(djnh 19 111.4-
chl(l1ngI).
Coi i la st{nguyendlWngtoy9.
I
"dYEK, "d111>1,(ll'll-llj)(Y)::; -(UII1-Uj)(X)
c
I
IlIllI(y)-uj(y)1::;-IUIlI(X)-llj(x)1
c
Chu m *(/.),LaUl(}C
]
IU(Y)-llj(y)1 ::; -lll(X)-Uj(x)1
C
1)0 dt')
"d£>O,3NEN ,"dYEK, "diEN, i >N => !IU(X)-Ui(X)1 < £
c
=>IlI(Y)-Uj(Y) <£
V~Y U lien LlJCJ~u Lren K.
0
6. Dj/llllj:
Giii sLi'n la L~p1l1dtrongUnvaUla hamsothl,fcdi~uhoaLrenQ.
~Yi~(t/t'f;t~('(~(~O,/f;,c .200/ 8 A;~t;!Iblt$CVltA:ni
Khi lit>
a) 1I I~Ih~lll1giiii lieh lren O.
h) Vdi a lOY Y lhllQC0, l6n l~i mQl Ian c~nVa clia a sao cho chlloi
Toylorclla 1Ih()ill.1llly~ld6ivad6ulrongIanc~nVa.
Chlloi Taylorclia II l~liJanc~ncliaa la
00 D(xlI(a)
HeX) ='" (x- a)a
~ a'
I(XI=o .
hoac viet dieh khac nhl(sall
00
u(x)=LPm(x-a)
III=0
lrung lit') Pili(x - a) = LCo:.cx- a)(:(
lal=m
c)1:)allllk Pili trong khai tri€n clia ham di6u hoa u cling la ham di6u
boa lren V".
Cfdl/lg 11li/lh
Dinh Iy lrendU\5ch((ngminhIH5ilrang31,sliGhIII va trang24 sliGh
13\.
IV. TiNH IHJY NHAT CUA NGHII~M
1)lJj/l1t(v:
Giii Sll'0 la t~pmdhi ch~nhongnil va fEC(aO) .
Khi lI6 t6n t~litoj da mQtnghi~mII E C2(O)nc(o) d6i vdi hai loan
gia lrj bienDirichlet
{
.6.1I=0 lren 0
U=f lfen 00
CIUI/lg 11li/lh
Xcm lrang28,s,'ich11],
2. lJjlllt i}:
h;(illfrt~f (rt<,jit;(; J!OO/ 9
,I " v-v: OJ/,:
J(y-":jl6'lt L7lilV/lli f/ t'i
Giii sll' Q fa l~pmd, bi ch~n,lien thongtrongRI1va r E C(Q),
Xet nghiQl11uE C2(Q) aD'ivoi bai loan gia lri bien Neumann
{
~U= 0 lren Q
du
J' ~ an.- = lren .H.
du
(lmng ell) u la phap veclO adn vi hl(dng ngoai cllt\bienao.)
Khi ell)caenghi~mthll()eC2(Q) (ntu t(int<;ti)sesaikhacvoi nhall Il1Qt
h~lIl1hang,
C/Hlllg lIlillh
-- IhMc 1 (In(Ong h<.Jp1'=0):
Vdi lI, v E C2(Q), lheo c6ng lh((cGreen la c6
n d
Iv ~udx=- fL VXj UXjdx + fv d~dS
n n i=l an
XC! v =II vau la hamdi~uh6t\(hamc6 ~u::: 0) lhl congthactrentrd
lhanl!
fL
lI ')
f
du
0=- u~dx+ u-dS
Xi du
n i=\ an
Ncli f=() lhl ~ lrietlieu bienaD ,dod6
du '
II
JLu~idx=() ,
ni=l
lLi'c1[11I1[\ham hang tren 0.,
- IhMc 2 (In(OngIlljp rba'tky):
Gia sLYhai lOanNeumanc6 hai nghi~mu\, U2E (D),
h' I ' I
,'"
I
'
C
?
(n.)
" dll ~ b'~I-)al 1I::: lI, - lh t 1 1(\)11(leu 10au E -~.! vaco -::: 0 lren ten
. - du
aD.
Thcn kC'll1l1iiclia bl(OC1 lhlula hamhang lren D,
0
,~L~t;t 'f(l~{'0(~(,i/i'~D 20[J! 10 ,A;~,,?g1t3,icMIZ%
('1111thich:Xet vdi bai loanghl trj bienDirichletdO'ivdi mi<sngoai
clla 0 (vdi 0 la t~pmd,lien th6ng,bi ch~ntrongR")
{
llU =0
u=f
tren
tren
1(11\0
an
Bai Loantren c() the c6 nhi~l1nghi~lp.Chung toi trlnh bay chi tie'td
chl((jng4.
/ A ., A
V. TINH TON Tl}I CUA NGHII}:M:
- XcLbai to,lnDirichlettrenmi<sn
fllu =0 Lren n
lu=r LTen an
(llicn ltlclrenbienan)
- Trung Lll((JngIH.jpn la quacall B(O,r) thl bEdLoanLIenc6 nghi~m
Lluynhfllvahi611Lhac iianghi~mdadl((JCtrinhbaytrongdint1911.2.
- Trung lH((Jnghc.jpn la t~pmd,bi ch~ntllY 9 Lrongl~Uthi bai Loan
dura chac c() nghi~m.l:)i~uki~nv~n de bai Loanc() nghi~mse dl(CJCtrinh
bay chi tiel Lrungd1l(Ong3.
._.