JlUJl W ha1iu&uJ Yule... Trang13 @JuLdnfJ2: @aeha1~ tJuk..
CHUaNG II
" K 2 "" "-
CAC BAT DANG THUC TICH PHAN
Trongchuangnay,chungt6i mu6nnghiencUucacba'tdAngthlictich
phanbi6u di~ntheogia tri hamva cac d~ohamcua no trencac khmlng
tuangling.K€t quatrongphffnnaychopheptiml~icacba'tdAngthlicthuQc
lm;liOstrowskivacacba'tdAngthliclien quankhac.
Djnh Iy 2.1.
Chof: [a,b]~ IR c6d(lOhamdin c{{pn-1 la f(n-l)lientl:fctuyft
dol tren[a,b] va f(n) EL'"([a,bD. Khi d6tac6beitdangthac
(2.1)
b
ff(t)d
10 trang |
Chia sẻ: huyen82 | Lượt xem: 1541 | Lượt tải: 0
Tóm tắt tài liệu Một số bất đẳng thức thuộc loại ostrowski và các ứng dụng, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
t- I (b-X)k+l + (-l)k(x-a)k+l (k)
a k=O (k +1)! f (x)
~IIf(n)1100[(x-ay+l +(b-xy+l]
(n+1)!
~Ilf(n)t (b- aY+\ \Ix E [a,b],
(n+1)!
trongd6
Ilf(n)1100= suplf(n) (t)1< +00.a5,/:;;b
Cacb(Jtdangthacnayla sitcvahangso'1 la totnhttt.
Chungminh.
DungdAngthlic(1.1),tadu<;1c
(2.2)
b
ff(t)dt- I (b-X)k+l +(-l)k(x-a)k+l
a k=O (k +1)! f(k) (x)
J~t Jb 1J/fL(lJIUJ tJule... Trang 14 ~ 2: @Dehat ilLinLJ t1uLe...
b
=I fKn(x,t)f(n)(t)dt
a
b
:s;suplf(n) (t)1flKn (X, t)ldt
aSISb a
~ Ilf'.' II.[t~~)" dt+ f(b :,1)" dl]
=Ilf(n)!L[(x-ay+l+(b-Xy+l].
(n+I)!
V?y bfftd~ngthucthunhfftcua(2.1)du'<;1cchungminh.
Bfftd~ngthucthuhaicua(2.1)du'<;1csuyfa tubfftd~ngthucsail
(x-ay+l +(b-x)n+l:S;(b-ay+l, \fxE[a,b].(2.3)
Bay gio tad~C?Pd6ntinhs~ccuabfftd~ngthuc(2.1).
X6thamf: [a,b]~ IR nhu'sau
(2.4) Jet) =~
(
t- a+b
)
n
n! 2.
Taco
(2.5) f(k) (t) = 1
(
t - a+b
J
n-k
(n- k)! 2 '
Ilf(n)L, =suplf(n)(01=1,as/sb
va
(2.6)
b b
(ff(t)dt =f~t - a+b)
ndt
a an! 2
=1+(-IY
(
b - a
)
n+l.
(n+I)! 2
Khi do,tu(2.1),taco
JJ~t .to'bat ttdrUJ tJum... Trang15 ~ 2: &i£ batilkuJ tJum...
l+(-lr (
b-a
)n+l n-'(b-x)k+'+(-l)k(x-a)k+' 1 (
a+b
)
n-k
(2.7)1 - -2: x--
(n+I)! 2 k=O (k +I)! (n- k)! 2
~ C [(x-a)n+1+(b-xr+1].
(n+I)!
Thayx =a; b vao(2.7),tadu<;1c
(2.8)
l+(-lr
(
b-a
J
n+' ~ 2C
(
b-a
J
n+l.
(n+I)! 2 (n+I)! 2
NhuV?y C ~1vi a<b va C =1 1ahangs6 t6tnhfft.Do do, dinh1ydU<;1c
chungminhhoantfft.
Ta clingchtiyranghams6
hn:[a,b]~IR, hJx)=(x-ar+1 +(b-xr+',
cotinhchfft
(2.9) inf h (x) =h
(
a+b
)
(b-a )
n+l
xE[a,b] n n - =2 2n'
D d' b'" d
?
h ' '" h'" hA d " (21)kh
'
1'" a+b
0 0 at ang t tic tot n atn (;In u<;1cta. 1ta ay x =2'
Lffyx=a;b trong(2.1).Khi do,tathudu<;1ch~quasau.
H~qua2.2.
Gid sa rlinghamf nhutrangdjnhly 2,1,taco batdangthac
(2,10)
b
ff(t)dt- I 1+(-1)' (b-a)'" f Ck)(
a+b
)a k=O (k+I)! 2k+1 2
~ Ilfcn)t
2n(
(b- a)
n+l
n+1)! .
MQtke'tquakhact6ngquatbfftd~ngthuchinhthang1ah~quasau.
J/UJl M IffllluLruJ tJule... Trang16 @1uLdrl{J2: @ae hat ilLi.nq tJuLe...
H~qua2.3.
V6i cacgiGthietnhutrangdinhly 2.1,tacobatdangthac
(2.11)
b
ff(t)dt-I (b-a)k+lf(kJ(a)+(-l)kf(kJ(b)
a k:O (k+1)! 2
{
1 n=2r,
< 1 (b-aJ"'llf'"'II.x 2"','-1 n:2r+l
- (n +1)! 22r+1'
Chung minh.
Dungd~ngthuc(1.14),tadu<;$c
(2.12)
b
ff(t)dt-I (b-a)k+1f(k)(a)+(-l)kf(k)(b)
a k=O (k+I)! 2
b
=I II: (t)f(n)(t)dt
a
b
::;Ilf(n)IL ~Tn(t)ldt.a
* N€u n =2r, khid6
(2.13) flT2r(t)ldt=~f(b - t)2r+(t- a)2rdta (2r).a 2
=~ !
[
(b - a)2r+l+ (b - a)2r+l
](2r)! 2 2r+1 2r+1
- (b-a)2r+l
(2r +I)!
- (b-ay+l
(n +I)!
* N€u n=2r+1 dAth (t) =(b-t )2r+l_ (t-a )2r+l tE [a b], . 2r+l , ,.
J~t W Iffli iu1ruJtluIR-... Trang17 ~ 2: @Liehat ilfing tluIR-...
Chli Y ding
hzr+1(t)
=0, khi t=a+b
2 '
>0, khi tE[a a+b), ,
2
<0, khi tE (a+b b]
2 ' .
Khi d6
(2.14)
a+b
b ""2
flhzr+1(t)ldt= f[(b - t)zr+1- (t - a)Zr+l]dt
a a
b
+ f[(t-a)Zr+1-(b-t)Zr+1]dt
a+b
Z
- 2(b-a)Zr+z
2r+2
4(b;af'
2r+2
=zr~z[Z(b-a)2n2- (b-a)2n2]22r
= 1 (b-a)2r+2
(
2-~
J2r+2 22r
- 1-
2
(b-a )
2r+2 22r+1_ 1
r+2 x 22r .
Dod6
(2.15)
bib 1
fiT (t)ldt = f- I h (t)ldt
a 2r+1 (2r+l)!a22r+1
- 1-
(
(b )
2r+ 22r+1
2r+2)! -a 'x -I22r+1
JIiL}l ro 1Jt11ilJ"uJ lJum... Trang18 ~ 2: @ae1Jt11~ lJuI£...
1 22r+1-1
= (b-a)n+1x .
(n +I)! 22r+1
Ba'tdAngthuc(2.11)duQcsuyratu(2.12),(2.13)va(2.15).
V?y h~qua2.3duQc hungminh..
Ba'tdAngthucsail day theochuftn11.1100 chokhaitri€n gi6ngTaylor(1.19)
clingdung.
H~qua2.4.
Gia sa riinghamg nhutrongh~qua1.4.Khi d6tac6biltdangthac
(2.16) g(y) - g(a) - ~(y - X)k+1+(-I)k (x - a)k+1L.J (hi)(
k=O (k +I)! g x)
II
(n+l)
II
~ g 00 [(y-xy+l+(x-ay+l]
(n+I)!
II
(n+l)
II
~ g 00 (y-ay+l, 'v'xE[a,y].
(n+1)!
Chungminh.
Chox E [a,y],tucacdAngthuc(1.19),(1.20),taco
(2.17) g(y) - g(a) - ~(y - X)k+1+(-I)k (x - a)k+1L.J (hi)(
~ ~+1)! g ~
y ,
=I fKn(x,t)g(n+l)(t)dt
a
~Ilg(n+I)IL~Kn(x,t)ldta
=l/g(n+l)t[iCt-ay dt+f(y-tYdt]a n! x n!
J~t yj' lull ilLirl{JiJuU!... Trang 19 ~2: @LieWil~iJuU!...
II
(n+l)
II
= g 00 [(x-ay+l+(Y_Xy+l]
(n+I)!
II
(n+l)
II
S g 00 (y-aY+\
(n+I)!
trongdo,bit d~ngthucsailclingcua(2.16)du<jchungminhnho(2.3)..
Chuy2.1.
if Trong(2.16),liy x=a, tadu<jc
k
II
(n+l)
II
g(y) - I (y - a) g(k)(a)S g 00 (y - ay+l,Vy ~a.
k=O k! (n+I)!
Ta clingbi€t rang(2.18)chomQtdanhgiatITcongthuckhai tri€n Taylorc6
(2.18)
di€n xungquanhdi€m x =a maai clingbi€t.
iif Trong(2.16),liy x =a~y , tadu<jc
(2.19) g(y)-g(a)-I 1-(-I)k (y-a)k (k)
(
a+y
)k=l k! 2k g 2
II
(n+l)
IIs g 00 (y - a)n+l Vx E [a y].
2n(n+l)! ' ,
Bit d~ngthuc(2.19)chungtorangvoi g ECoo([a,b])thlchu6i
(2.20) g(a)+f 1-(-I)k (y-a)k (k)(
a+Y
Jk=l k! 2k g 2
hQit\1nhanhv~g(y) nhanhhonchu6ithongthuongf (y - ~)k g(k)(a), mak=O k.
chu6inaychlnhla chu6iTaylorcuag. HonmIa,taclingchuyrangtrong
(2.19)chIchuanhungdt,lohamcip Ie cua g.
JJltll Jij' luLl ilJ.ruJ iJule... Trang20 ~ 2: @Li£hif1ilJ.ruJ iJule...
Ch6 Y 2.2.
if TrongbatdAngthuc(2.1),lay n=1,tac6
(2.21)
!1(t)dt-(b-a)/(x) ~ (x-a)' ;(b-X)' 11/'11.,\fXE[a,b].
Tinh toandongiantathudu<:jc
(2.22)
1 2 b 2 1 b 2 (
a+b
)
2
-[(x-a) +( -x) ]=-( -a) + x-- .
2 4 2
Khi d6,tathudu<:jcbatdAngthucOstrowski
( )
2
a+b
x--
I b 1 2
(2.23)I/(x)--fl(t)dt::; -+ 2 l(b-a)ll/l", \ixE[a,b].b-a a 4 (b-a)
iif TrongbatdAngthuc(2.10),lay n = 1tadu<:jcbatdAngthuctrungdi€m
(2.24)
!f(IJdl-(b-aJf( a;b)l:;; ~(b-aJ21If'II..
iiif TrongbatdAngthuc(2.11),lay n=1,tadu<:jcbatdAngthuchlnhthang
(2.25)
!f(t)dt-(b-a/(a); f(b)[ ~~(b-a)'lIft.
ivf TrongbatdAngthuc(2.16),lay n=1,tathudu<:jcbatdAngthuc
( )
2
a+y
(2.26) Ig(y)-g(a)-(y-a)g/(x)I:o:I.!.+ x- 2, l(y-a)'llgllll,4 (y- a) 00
\ix E [a,y].
Ch6 Y 2.3.
if Trong bat dAngthuc (2.1), lay n =2, khi d6 ta du<:jc
Jlfi}l M Iffli ili1uJ 1JttI£... Trang21 @/w'dmJ2: @LieMl ~ 1JttI£...
(2.27)
b
(
a+b
)fl(t)dt-(b-a)/(x)+(b-a) X-2 II (X)
1
~6[(x-a)3 +(b-x)3]lIlll", VxE[a,b].
Baygio,tachliy rang
(2.28)
(x -a)' +(b-x)' =(b-a{(b;a)'+3(x- a;bn
khi do,taHml(;liduc;5cbatd~ngthlictrong[2]
(2.29)
b
(
a+b
)fl(t)dt- (b- a)/(x) +(b- a) x -2 II (x)
(
x- a+b
J
2
1 1 2
~1-+
I(
b )
3
11
II
II24 2 (b- a)2 - a I ",' Vx E [a,b].
ii/ Trongbatd~ngthlic(2.10),lay n=2, tathuduc;5cbat d~ngthlictrung
di~mc6di~n
(2.30)
!f(l)dl-Cb-a)f( a~b)l;;; 2~Cb-a)'llf't.
iii/ Trongbatd~ngthlic(2.11),lay n=2, tathuduc;5cbatd~ngthlic
(2.31)
b
fl(t)dt - (b- a)lea) +I(b) (b- a)2 II (a)- II (b)
a 2 2 2
< (b - a) 3111IIt .- 6
iv/Cu6icling,trong(2.16),lay n=2, tathuduc;5cbatd~ngthlic
(2.32)
g(y)- g(a)-(y-a)gl (x)+(y-a{x- a~Y)gll(x)
J~t .uf IJiiL ~ tJui'R... Trang22 ~ 2: @ae IJiiL ~ tJui'R...
(
X - a+Y
J
2
1 1 2
~1-+
I( )
3
11
///
11
242 (y-a)2 y-a g oo,VxE[a,y].
._.