32
CHUaNG 3
cAc nANH GIA CHOLOP HAM G
Trangchu'dngnay,chungWisetie'nhanhdanhgiacacd(;liIu'Qngd~ctru'ng
chomi~nchu§'nA vamoduncuacachamgEG. E>~thie'tl~pcacdanhgiacho
lOphamG, chungtac~nd1!avaocacdanhgiacacd(;liIu'QnghinhhQccu~lOp
ham f E F, voi f=g-l,gEG dii neu a ph~n 1.2 voi chu Y
M'(oo,f)=m*(oo,gfX=1,g=f-l, fEF.
3.1Danh ghi M* (0,g)
Dinhly 3.1:Du'oicackyhi~uvagiathie'tdiineua ph~n1.2,VgEG taco:
M* (0,g) 2:: 1,
M' (O,g);' 2-';'(~r
(3.1)
(3.2)
E>~ngthuca(3.1)xayrakhivachikhi
16 trang |
Chia sẻ: huyen82 | Lượt xem: 1467 | Lượt tải: 1
Tóm tắt tài liệu Đánh giá phép các phép biến hình á bảo giác lên mặt phẳng bị cắt theo các cung tròn đồng tâm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
B=BovoiBo lam~tph~ngphucmarQng
w bi celtdQc p clingtroll d6ngHimt(;li0 saocho Bo bie'nthanhchinhno bai
phepquay;=/~w va g(w)=awlwr-1voi lal=1.
Chungminh:
XetPBHKABG f E F mi~nA lenmi~nB, theo(2.24)taco:
P\ <s,1- S'(0,f), f EF
:rRK
D1!avao(1.11)va(2.20)tadu'Qc
2
~Sl <s,1- M* (0,gfK ,g E G ,
:rRK(g)
(3.3)
trangdod~ngthucxayrakhivachikhi w=f(z)=g-l(z)=bzlzr~-lvoi Ibl=1,tuc
B =f (A) =Bo.
33
Tif (3.3),taco:
*
( )-1: PSIM O,g ~1-~,gEG,
7rRK
hay
M*(O,g}~~ 1 ~1,gEG.
1- PSI2
TrRK
Nhu'v~y taco (3.1)voi tru'onghQpd~ngthuexciy rakhiva emkhi (3.3)xciy ra
d~ngthue,tueIa B=Bova z=g(w)=I-I (w)=awlwr-Ivoi lal=1.
M~tkhae,dl!avaoeongthue(2.32),taco:
'
( ) c(R,/)m 0,I ~ -1- 1-' I E F
4 PRK
2
=>m'(0,/) ~4"c(R,/)
d(R,/) ,/EF,
ke"thQpvoi (2.20),tasuyra
M* (O,grX~4*~,gEG.d
V~ytaco (3.2).
3.2Danhgia Ig(w)1
DinhIy 3.2:Du'oicaekyhi~uvagicithie"t(jphffn1.2,VgE G,WEB ta co:
4-~lwIK~lg(w)I~4~M*(O,g)lwIK. (3.4)
Chungminh:
Theo(2.31), V/EF,zEA,taeo:
4-~m'(O,f)lzIX ~I/(z)1~4~Izlx.
Thay z=g(w) va f(z)=w , tadu'Qe
1- 1 1- I
4-pm'(O,/)lg( W)IK~Iwl~4pIg( W)IK,
34
tlido
....
Ig(w)l~ 4pIWlKK va Ig(w)I~4-~lwIK,
m'(O,j)
ke'th<jpvoi (2.20)tadu'<jc
K
I
K
4p IwK K
I ( )1<
)
-1'
4-plwl ~ g w - M*(O,g
suyra (3.4)8
3.3Danh gia ban klnh R(g)
Djnhly 3.3:Du'oicaekyhi~uvagiathie'tdphftn1.2,VgE G tacocaedanhgia:
K K
4-PdK ~R(g)~4P M*(O,g)CK, (3.5)
K
R(g»
[~(1-M*(0,g)f) ]
-2 voiSI>0. (3.6)
PSI
Chung minh:
Tli (2.32),chungminhtu'dngtv'(3.4)taco
Rt ~ ~(R,j) va Rt ~4-;d(R,j),j E F,
4-"m'(O,j)
hay
K K
K 4pc
4-PdK~R~ K,jEF.
m'(O,j)
Ke'th<jpvoi (2.20),tadu'<jc(3.5).
Tli congthuc(3.3)tad~dangsuyradu'0,
R-i (g)~~(l-M* (O,gri), VgE G,PSI
tuctaco(3.6)8
35
Danhgia(3.1)coth€ lamchos~channho
H~qua3.1:
D~t E= PSIc!(;~~O),ta co:
7rC2p
M*(O,g)~(l+E)t ,VgEG. (3.7)
D~ngthucxiiyrakhivachIkhi B=Bova g(w)=awlwIK-1voi lal=1.
Chungminh:
Ke'th<;5p(3.3)va(3.5)tasuyra
PSI
7r4;C2M* (O,g)t ~1- M* (O,g)-t
hay
M* (O,g)t ~1+ P~I .
7r4PC2
Tli dotaco(3.7).
D~ngthuc(3.7)xiiy ra khi va chIkhi d~ngthuc(3.3)xiiy ra hIedo SI=0 keD
theoE=O,tuc1aB=Bova z=g(W)=f-I(W)=awlwIK-Ivoi lal=1..
H~qua3.2:
Trangtru'ongh<;5pK =1,M*(O,g)=Ig'(O)1nen(3.7)trdthanh
Ig' (0)1~../1+E, Vg E G . (3.8)
D~ngthucxiiy rakhi va chIkhi B=Bo vag(w)=awvoi lal=1,ba'"td~ngthuc
nay s~chanba'"td~ngthucc6 di€n Ig'(O)1~1,Vg EG voi K =1(xem[10],IT.350).
3.4Dauh gia g6cmd 2~(g)
Nhu'tadffbie't0<~(g)<7r,Vg EG. Bay gio, ta timcaedanhgia co th€ s~c
P
hancho ~(g)trongmQts6tru'ongh<;5pnaGdo.
36
3.4.1C:}ndumcua r3(g):(DungphuongphapdQdaiqie tri)
Dinh Iy 3.4:Voi caeky hi~uva gia thie't rongml,le1.2, gia sa c<d, khi do
VgEGtaeo:
f3(g) '2 IT -
P
n
ITK21n4' dM*(O,g)t
c
d
2p f- dr
c rO(r)
1£
'2 IT _
/
nO.oK2In4 PdM* (O,g)t
p ~ c2pln~ . (3.9)c
Chungminh:
~
..R......
O
""""::::::::"':§~::"':::::~
o
"""'"
'/ '" \ \.(Tj
(T .
2 . : 0 : :
\..::::':.:::::::=::::<::/
A
..(""""""""""""""""",~
(
t
>""~:::::::::4.::::"""
j
"'~)
/ 0 """"":~L: """'" ..., '. I
(.. " ~:::::::::::::::::./ i
\ z ),
Hinh3.1
Ap dl,lngb6d~2.10vaobailoandangxetvoi Bo la tugiaeeongcohai
e~nhn~mlIen haiduangtronIwl=c va Iwl=d; haieanhconl~ila caeeungcua
(TIva (T2va dQdo p(z) =1~I'zEAo, Ao=g(Bo),taco:
Ip(
Cr
) =fp(z)Idz1=f~,- - 1 z I
co' c,
voi Cr={zllzl=r}nBo,c~r~d,Cr=g(CJ.
B<)tz=re'<P,taeo:
Idz I =Ie'<Pdr + ire'<PdqJ 1 = 1 dr + irdqJ I '2 1 irdqJ I =1dqJ I.
IzI Ir I r r
37
(Ba'td~ngthuctrenco duQcVI c<;lnhhuy€n cuatamghicvuongkhongnhohon
c<;lnhgocvuong).
VI v~y,taco:
lp(c,);, fld~;'2a~t -P).
c,
M~t khac, do tinh d6i xung quay (1.4) va d~t B' =BnH voi
H={wlc<lwl<d},A'=g(B'), ta tha'y
m(c,g)~lzl~M(d,g),gEG,taco:
A' n~m trong hlnh vanh khan
Sp (Ao) = Jf p2 (Z )dxdy =! H p2 (Z )dxdy
Au P A'
=! Ifdxt =! If ~dY2=! Ifrdr~qJ
P A' Izl P A' X +y P A' r
~! 2]dqJ1dr =21l:1rlM(d,g).
P 0 m r P m(c,g)
Tli dotheob6d€ 2.10tasuyra
21l:InM(d,g) ~.l(2a)2 J dr ~.l(2a)2~ Jdr ,
P m(c,g) K c rQ(r) K Qoc r
tuc
a~
M(d,g)
1l:Klnm(c,g)~
d dr
2pfrQ(r)c
~Kln M(d,g)
m(c,g)
2pInd
c
Ngoaifa,theo(3.4)k€t hQpvoi(1.8)va(1.9), taco:
-K K
m(c,g)=4PcKvaM(d,g)=4PM*(O,g)dK,gEG.
38
Suy fa
2K
n-Kln4"M*(O,g)dK
a::::: I cKd <
2p f dr -
c rO(r)
2K
~Kln 4" M*(O,g)dKcK
d
2pln-
c
VI f3=TC-a tac6(3.9).
p
Nhanxet:
Ne'uc=const,d=constvacho Do~O ma M*(O,g):::::M~=constthl a~O
~
f3
TC
We ~ - .
p
Vi dV3*1:
;=h(w)
~
-
'
-
I
K-l
(
-
)z=zz =k z
~AB
/"""'
CS
~
2J
\\ /.
~
;..
y
""""""""\ /""""""""'~"""
)
'......
r (:_~)red \R ( t""); -,) Ii (( (-'; R \
\ :; / \ : ~::: / \ :.::::~ j
------ gEG ~
Hinh 3.2
Gia sa Bo=Bn{wlr<IwI<R} e6d<;lngnhuhinh3.2(p=2),c6dinh c, d va
eho Do~ 0 ta chungrninh M* (0,g), g EG kh6ngdffnde'n 00 khi Do~ 0 tucla
M* (O,g):::::Mo =const.
39
GQi ;=h(w) la PBHBG dondi<%pmi€n BIen mi€n A la m~tph~ngmd
rQngbi ca:t dQcp cungtroll tam 0 thai h(0)=0, h(00)=00 vakhaitri€n Laurent
cuah(w) trongIanc~nw=00 c6 dc,lllg
h( )
a1 az
w =w+ao+-+2+'"w w
(3.9a)
tucla anhcuaduongtrOllIwl =R voi R ra'tIOnbdi h g~ntrungvoi duongtroll
1;1=R . N6i cachkhac
m*(oo,h)=Ih'(00)1=HmIh(w)l-
w-+ooIwl - 1.
TheoThao[ll, tr. 109],ham h(w) Ia PBHBG dondi<%pmi€n B !enmi€n A
A c6 tfnh d6i xung quay ca'p p. GQi z=k(;)=;VIK-lla
PBHKABG mi€n A lenmi€n A trongd6m6iduongtroll1;1=R duQcbie'nthanh
va do d6 mi€n
duongtroll Izi =RK . VI argz=arg;nenk(;) clingc6tfnhd6ixungquayca'pp.
Khi d6 z=g(w)=ko(h(w)) la PBHKABG mi€n BIen mi€n chufinA c6tinhd6i
/ ,.(' H - * ( ) I. M(R,g) I. RK 1 V " Gxl1ngquaycapp. onnua m oo,g= 1m K = 1m~=. ~ygE .R-+oo R R-+ooR
GQi C, la anhcua C,={wllwl=r} voi r ra'tbebdi h va C~Ia anhcua C,
bdi k; ZlEC~ saochoIzll=M(r,g), ;1EC, saochok(~)=z,va w,EC, saocho
h(w,)=~.Tac6:
M. (0 g) =lim M (r ,g) =lim1:J =lim I k (~)1=lim I ~I K, ,-+0 rK ,-+0rK ,-+0 rK ,-+0rK
=lim Ih(WI)IK=lim h(Wl)
I
K =
l h'(O)I K -:I:-0 (VI h IaPBHBG)
H-+o Iw,IK H-+o W,
40
Mi;itkhac,nSu r~O thl ta colh(w)I~lh'(O)llwl=lh'(O)1rtuc Cr g~ntrung
du'ongtron1;1=;, voi ;=Ih'(O)fr.
NSun6ihaicungcuanhatcfittrongmi€n anhAd€ du'Qcdu'ongtroll 1;1=R)
thltrongmi€n B clingsecohaicungn6itu'dngling.Nhu'da:neutren,anhcac
du'ongtroll Iwl=R, Iwl =r voi R d't IOnva r ra'tbebdi h g~ntrlingvoicac~
du'ongtroll 1;1=R va1;1 =Ih'(O)lr.
Khi cho Qo~ 0 do tinhba'tbiSncuamodunhai mi€n nh!lien quaPBRBG
R R R) ~ .:.
;=h(w)taco R) ~ d' Ih'(0)1r r
V A,.,!' ,.,!' 1/ , ,.,!' b / h' - d Ih ( )1
R) d Ch '<;lyneu R rat on va r rat e t 1 R) ~ , '0 ~ - ~ -. 0 r ~ 0 vac c
R ~ 00 taco I h'(0)1=d .c
T6m I~i,tac6 M' (O,g)=(~r<00.
V~ydanhgia(3.9)lacoynghiavatic$mc~ndungtrongtru'onghQpnay.
3.4.2 C~ntren cua ~(g):
D~u lien, ta chiami€n B lam p ph~nb~ngnhaub~ngp du'ongcong
JordanYj(J=1,2,...,p) n6i 0 va 00,du'ongnQchuy€n thanhdu'ongIda bdi phep
quaymOtgoc 2nj. Cac du'ongcong Yj nay chiami€n B thanhp mi€n nh!lien
p
B~,(J=1,2,...,p)voibientronglamOthanhph~nbienG"jcuaB.
Ki hic$uC(a,r)chidu'ongtrOlltamt<;lidi€m avabankinhla r.
Tren B] ( baadongcuami€n B] =B; ) ta co th€ ve-themhaidu'ongtrOllphg:
Du'ongtrollthunha'tla C(W)'1)) gioi h<;lnmOt hlnh troll dong chua thanh ph~n
41
bien (}j;Duong troll thu hai la C(w2'r2) chuatrong Bl va baabQc C(WI'1j). GQi
B2la mi€n nhiliengioih~nbdi C(w],1j)va C(W2'r2).
z=g(w)
~
B A .........
c:::::>/.
.. ~
.
. '. .
Q
.
.;..
..f
/>3fI\;\ B, ) B,
/ 0 ...\\jJ) ).,
~~
~
~
/ AI
I::i'l ~A, .
\ /// ..~
--./
w z
Hinh3.3:PBHKABG z=g(w)bie'nmi€n A leDmi€n A voi p =4
Thea h~qua2.3,taco:
mod(B2)~mod(B]).
D<)t
R. =min{lwllwE C(w2,r2)}'
~=max{lwllwEC(w2,r2)}'
tuc RI=lw21-r2
(O<)~ =lw21+r2
(3.10)
Saudotatie'pt\lCvehaiduongtroll C(0,RI) va C(0,~), tucC(w2'r2)n~mtrong
phftngiaacuaBJ vahlnhvanhkhanB3={wiR,<Iwl<~}.
Ta tinhtie'nvaquaymi€n B2 r6i apd\lngb6d€ 2.11,mi€n B2coth€ bie'nbaa
giac dondi~plen hlnhvanhkhan B4={slr <Isl<I} saGrho C (W2'r2) tuongung
voi Isl=1,
42
2 h2 2 I(
2 h2 2)
2 4h2 2, r2 - +lj -\I r2 - -lj - lj ~.
I Iva r =r(lj,r2,h)= , VOl h=W2 - W] .
2ljr2
(3.11)
f)~t Al =g(B1XcA), A2 =g(B2XcA]), gEG.
M~t khact6n t(,liPBHBG don di<%p; =; (z) mi~nA2 ten hinh vanhkhan
Bs={;lr'<I;j<l}.
Vi phepbi€n hinhhQp;ogos-]mi~nA2ten Bsla mQtPBHKABG nentaco:
r'< 7c_r .
Theatinhdondi<%u(1.17)cuahamphvT(p,r,s), taco:
T(2,r',0)~T(2,r7c,0)vdi r xacdinhnhu'(3.11).
GQi D la du'ongkinhcuamQtnhatcatclingtrOllLi' D' la du'ongkinhcuaanh
du'ongtroll C(WI'r]) bdi z=g(w),g EG tilc du'ongkinh bien trongcua A2.R6
rangtaco D ~D'.
f)~tm=m(Rpg) , M=M(R2,g), gEG.
Thea (3.4),taco:
m 2::4-: R] K =m ,M ~4~M* (0,g)R; =M .
Theab6d~2.6,taco
- N€u p =1, d€ coquailh<%D=2Rsin~ c~nthi€t chavi<%ctimc~ntren
cuaP(g) tac~nthemgiathi€t 2p~n vi n€u 2p>nthi D=2R.
Giathi€t naydu'Qcthain€u
(D~D) =2T(2,rt,0)M (R2,g) <2.41r7c4~M* (O,g)R; <2.4-~dK« 2R),
tilc
1>:1-1. * -1>:
4P+'rKM (O,g)R; <4 pdK. (3.12)
Luc naytamdico th€ apdvngdu'Qcquailh<%D =2Rsin~.
43
- Ne'up ~2 thidu'dngnhien 213s 2n S 1[dodo taluauco D =2Rsinp.
p
/ ? ,
Ap dlJngbade2.6,tadu'Qc:
D's 2MF(2,r-K,0).
Mi,Hkhac,taco:
DsD'
va M=M(Rz,g)sM.
Suyfa
DSD's2T(2,r-K,0)M.
Tildo
Ds2T(2,r-K,0)4~M*(O,g)R~
s2.41r-K4~M*(O,g)R~=4~+lr-KM*(0,g)R~.
M~tkhactaco D=2Rsinp
Suyfa
sin13=D < 4~+lr1-M* (O,g)RK
2R - 2R 2 0
-K
Vi R chu'abie't,tathay R b~ngc~ndu'oi,nghlala R ~E=4p dK .
Suyfa
4~+1r1-M* (0 g)RK 4~+1r -M* (0 g)RK0
13< ' 2< ' 2sIn - - K .
2R 2A-1idK
V~y
(
2.42:r1-M* (O,g)RK
J
f3(g)sarcsin dK 2 =f31(g),
44
2K
ydi di€uki~n 2.4pr1-M*(O,g)R;
dK ::;10
M~tkhac,apdl:mgb6d€ 2.8,taco:
D'::; IS In (1- (2 )
-7r
ydi (= T (1,rt ,0) ,
7r
[ 2 ( ) 2 ( )]
7r
[
K *
( )
K _K K]
-
S::;SI =P M R2,g -m Rl'g ::;P 4pM O,g R2 -4 PRJ =S. (3.13)
V~y
D ::;D '::;,I SIn(1- (2)
-7r
2Rsinp~~SIn~~t2) .
Surra
13(g)::;arcsin
SIn(1- (2 )
-7r
2R
K
Thay R =R =4-PdK ta duQc
~sIn(J-t' )
fJ(g)::;arcsinI _K~7r 1=132(g),4 p+2 dK
'0 dO;:; ki' lln~~t')YOI leu <:fn K I ::;1.
4-P+2dK
45
Nhu'vi;tytadatlmdu'Qci;tntrencua fJ(g) du'oid~ng:
Dinhly 3.5:
Du'oicacki hi~uvagiathie'trongm\,lc1.2,vanhu'moilieU(j tren, Vg E G taco
Ne'u p =1va thoa (3.12) hoi;lcp'22 thl fJ(g):::;mill{fJI(g), fJ2(g)},
trongd6
~ (g)=arcsin
[
2.41fr+M* (0,g) R:
J
dK '
(3.14)
fJ2(g) =arcsin
S In(1- (2 )
-7(
4-K+1 dK
(3.15)
voi r,~ va S xacdinhnhu'd (3.10),(3.11)va(3.13).
Vi d1}3.2:
gEG
~
A
(
~ ~
Y4
w z
Hinh3.4
46
Gia sami€n B c6p =4 thanhph~nbien O"j' j =1"",4 la cac du'ongtroll
c (aJ'&) voi aj =euta; & du'dng,du be, Trang d6 thanhph~nbien 0"1la du'ong
troll C(ap&)voi al =a,&=fj >0(ffinh 3.4),
Ta ve du'ongcongJordanrl la du'ongphangiaccuag6cph~ntu'thilnha't.
Saud6dungphepquaytaxacdinhdu'Qcr2'r3va r4la 3du'ongphangiaccua3
g6cph~ntu'conI~i,Cacdu'ongphangiacnaychiaB thanh4ph~nb~ngnhau,
Ta ve themdu'ongtroll C(a,r2)saDchobankinh r2 Ia khoangcachtu a d€n
du'ongphan giac cua g6cph~ntu'thil nha't.Khi d6 mi€n B2 chinhla mi€n nhi
lien gioi h~nbdi haidu'ongtroll C(a,&) va C(a,r2),
Mi€n B2 c6 th€ bi€n baa giac ddndi~pleu hinh vanhkhan r <Isl<1, Theo h~
? 22 / h b"'" b' "'" ? ~ d ,;:, h
'
I' ~ / 1 r2 / &qua. , tIll at len cuamo unmIenn ~len, taco - =-, tilc r =-,
r & r2
M~tkhac, tac6:
ff a
r2=asin4"=12'
V~y r =&12
a
Ap dvng(3,14),tac6:
2.4':'2'EKM' (O,gJ(a+;JK
PI(g)=arcsinI aK (a+&t
Cho a c6 dinh kha lOn, &~ 0 , M* (0,g) sconstthi PI (g) ~ 0,
47
Tu'ongtv, apdvng(3,15)
Sln(1-t2)
V -Jr)
,
I I'
/32(g =arcsm4K+!(a +&t
voi t =+(<:)',0).s=: [M2(R"g)-rn' (R"g)]~: [4'M' (O,g)R;'-4-' R,'r
a a
va RJ =a- .[2,R2=a+.[2 .
Theo (1.24),taco:
[
I
)
I
&.[2K &.[2K .
t ~ T {--;;- J '0 ~ {--;;- J -> 0 kh1& -> 0.
V~ykhicho a c6dinhkhalOn, &~O, M*(O,g)~constthlln(1-t2)~O,tuc ta
clingco /32(g) ~ o.
Nhu'v~ytrongtru'ongh<;1pnay caecongthuc(3.14),(3.15)Ia khonghi€n nhien
vati~mc~ndung.
._.