Bài giảng Lý thuyết xác suất và thống kê Toán - Chương 1: Biến cố ngẫu nhiên và xác suất - Phạm Thị Hồng Thắm

LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế 01-2011 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN Phân bổ thời gian: Lý thuyết: 43 Bài tập: 17 Tiêu chuẩn đánh giá sinh viên: Trên lớp: 10% Kiểm tra: 20% Thi cuối học phần: 70% Phạm Thị Hồn

pdf140 trang | Chia sẻ: huongnhu95 | Lượt xem: 425 | Lượt tải: 0download
Tóm tắt tài liệu Bài giảng Lý thuyết xác suất và thống kê Toán - Chương 1: Biến cố ngẫu nhiên và xác suất - Phạm Thị Hồng Thắm, để xem tài liệu hoàn chỉnh bạn click vào nút DOWNLOAD ở trên
g Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN 1 LÝ THUYẾT XÁC SUẤT BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT BIẾN NGẪU NHIÊN VÀ QUY LUẬT PHÂN PHỐI XÁC SUẤT MỘT SỐ QUY LUẬT PHÂN PHỐI XÁC SUẤT THÔNG DỤNG BIẾN NGẪU NHIÊN HAI CHIỀU LUẬT SỐ LỚN 2 THỐNG KÊ TOÁN Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN Contents 1 LÝ THUYẾT XÁC SUẤT BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT BIẾN NGẪU NHIÊN VÀ QUY LUẬT PHÂN PHỐI XÁC SUẤT MỘT SỐ QUY LUẬT PHÂN PHỐI XÁC SUẤT THÔNG DỤNG BIẾN NGẪU NHIÊN HAI CHIỀU LUẬT SỐ LỚN 2 THỐNG KÊ TOÁN Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Chương 1: BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT CÁC KHÁI NIỆM CƠ BẢN ĐỊNH NGHĨA CỔ ĐIỂN VỀ XÁC SUẤT ĐỊNH NGHĨA THỐNG KÊ VỀ XÁC SUẤT NGUYÊN LÝ XÁC SUẤT LỚN VÀ NGUYÊN LÝ XÁC SUẤT NHỎ MỐI QUAN HỆ GIỮA CÁC BIẾN CỐ CÁC ĐỊNH LÝ CỘNG VÀ NHÂN XÁC SUẤT CÁC CÔNG THỨC XÁC SUẤT Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT CÁC KHÁI NIỆM CƠ BẢN Phép thử Phép thử ngẫu nhiên Biến cố Biến cố chắc chắn Biến cố không thể có Biến cố ngẫu nhiên Xác suất của biến cố Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phép thử Định nghĩa Là việc tiến hành một nhóm các điều kiện cơ bản nào đó nhằm quan sát một hiện tượng có xảy ra hay không. Ví dụ 1, Tung một đồng xu → xem kết quả là sấp hay ngửa. 2, Gieo một xúc xắc → xem kết quả mặt mấy chấm xuất hiện. 3, Quan sát quá trình sản xuất ra 1 sản phẩm → xem sản phẩm là tốt hay xấu. 4, Thả 1 chiếc cốc thuỷ tinh từ tầng 5 xuống sân bê tông → xem cốc có vỡ hay không. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phép thử Định nghĩa Là việc tiến hành một nhóm các điều kiện cơ bản nào đó nhằm quan sát một hiện tượng có xảy ra hay không. Ví dụ 1, Tung một đồng xu → xem kết quả là sấp hay ngửa. 2, Gieo một xúc xắc → xem kết quả mặt mấy chấm xuất hiện. 3, Quan sát quá trình sản xuất ra 1 sản phẩm → xem sản phẩm là tốt hay xấu. 4, Thả 1 chiếc cốc thuỷ tinh từ tầng 5 xuống sân bê tông → xem cốc có vỡ hay không. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phép thử ngẫu nhiên Định nghĩa Là phép thử mà khi ta thực hiện nó thì ta không thể đoán biết trước kết quả nào trong số các kết quả có thể có của nó sẽ xảy ra. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Biến cố Định nghĩa Là hiện tượng xảy ra trong kết quả của phép thử. Ký hiệu: A, B, C. . . Ví dụ Với các phép thử ở vd trên, ta có các biến cố tương ứng: 1, S: "xuất hiện mặt xấp"; N: "xuất hiện mặt ngửa" 2, Ai : ”xuất hiện mặt i chấm”; C: ”xuất hiện mặt chẵn chấm”; 3, T: "sản phẩm sản xuất ra là chính phẩm" Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Biến cố Định nghĩa Là hiện tượng xảy ra trong kết quả của phép thử. Ký hiệu: A, B, C. . . Ví dụ Với các phép thử ở vd trên, ta có các biến cố tương ứng: 1, S: "xuất hiện mặt xấp"; N: "xuất hiện mặt ngửa" 2, Ai : ”xuất hiện mặt i chấm”; C: ”xuất hiện mặt chẵn chấm”; 3, T: "sản phẩm sản xuất ra là chính phẩm" Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phân loại biến cố Biến cố chắc chắn: Là biến cố nhất định xảy ra khi thực hiện một phép thử, ký hiệu U. Biến cố không thể có: Là biến cố nhất định không xảy ra khi thực hiện một phép thử, kí hiệu V. Biến cố ngẫu nhiên: Là biến cố có thể xảy ra hay không xảy ra khi thực hiện 1 phép thử. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Xác suất của biến cố Định nghĩa Là con số đặc trưng khả năng khách quan xuất hiện biến cố đó khi thực hiện một phép thử. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT ĐỊNH NGHĨA CỔ ĐIỂN VỀ XÁC SUẤT Định nghĩa cổ điển về xác suất Các tính chất của xác suất Các phương pháp tính xác suất bằng định nghĩa cổ điển Phương pháp suy luận trực tiếp Phương pháp sơ đồ Venn Phương pháp dùng các công thức giải tích tổ hợp Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Định nghĩa cổ điển về xác suất Ví dụ Gieo một xúc xắc cân đối và đồng chất. Ta thấy chỉ có 6 trường hợp có thể xảy ra: xuất hiện mặt 1,2,. . . ,6 chấm. Những trường hợp này đều thỏa mãn 2 tính chất: - Duy nhất: chỉ xảy ra 1 và chỉ 1 trong 6 trường hợp. - Đồng khả năng: Cả 6 trường hợp đều có khả năng xảy ra như nhau. Ta nói có 6 kết cục duy nhất đồng khả năng khi gieo 1 xúc xắc. Biến cố C : "Xuất hiện mặt chẵn chấm" xảy ra nếu xảy ra 1 trong 3 trường hợp: mặt 2, 4, 6 chấm xuất hiện. Do đó có 3 kết cục thuận lợi cho biến cố C. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Định nghĩa cổ điển về xác suất Định nghĩa Xác suất xuất hiện biến cố A trong một phép thử là tỷ số giữa số kết cục thuận lợi cho A và tổng số kết cục duy nhất đồng khả năng có thể xảy ra khi thực hiện phép thử: P(A) = m n trong đó, m là số kết cục thuận lợi cho biến cố A; n là số kết cục duy nhất đồng khả năng của phép thử. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Định nghĩa cổ điển về xác suất Ví dụ Tiếp ví dụ trên: C : "Xuất hiện mặt chẵn chấm", n = 6; m(C) = 3 =⇒ P(C ) = 3 6 = 1 2 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Các tính chất của xác suất Tính chất Xác suất của biến cố ngẫu nhiên là một số dương thuộc khoảng (0; 1): 0 < P(A) < 1. Xác suất của biến cố chắc chắn bằng 1: P(U) = 1 Xác suất của biến cố không thể có bằng 0: P(V) = 0 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Các phương pháp tính xác suất bằng định nghĩa cổ điển Phương pháp suy luận trực tiếp: Trong trường hợp số các kết cục là nhỏ và suy đoán đơn giản. Phương pháp sơ đồ Venn: Là việc liệt kê các kết cục của phép thử dưới dạng sơ đồ, gồm 3 loại: Sơ đồ hình cây Sơ đồ dạng bảng Sơ đồ dạng tập hợp Phương pháp dùng các công thức giải tích tổ hợp Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp suy luận trực tiếp Ví dụ Trong hộp có 5 bi trắng, 3 bi đỏ. Lấy ngẫu nhiên 1 viên bi. Tìm xác suất để lấy được bi đỏ. Giải A: Biến cố "Lấy được bi đỏ". n = 5 + 3 = 8 =⇒ P(A) = 3 8 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp suy luận trực tiếp Ví dụ Trong hộp có 5 bi trắng, 3 bi đỏ. Lấy ngẫu nhiên 1 viên bi. Tìm xác suất để lấy được bi đỏ. Giải A: Biến cố "Lấy được bi đỏ". n = 5 + 3 = 8 =⇒ P(A) = 3 8 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ hình cây Ví dụ Tung 2 đồng xu cân đối và đồng chất, tìm xác suất để được ít nhất một mắt sấp. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ hình cây Ví dụ Tung 2 đồng xu cân đối và đồng chất, tìm xác suất để được ít nhất một mắt sấp. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ dạng bảng Ví dụ Gieo hai con xúc xắc đều đặn và đồng chất. Tìm xác suất để được một mặt 6 chấm, ít nhất một mặt 6 chấm, tổng số chấm bằng 7. −→ số kết cục duy nhất đồng khả năng được mô tả dưới dạng bảng: 1 2 3 4 5 6 1 11 12 13 14 15 16 2 21 . . . 25 26 3 31 34 36 4 41 43 46 5 51 52 56 6 61 62 63 64 65 66 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ dạng bảng Ví dụ Gieo hai con xúc xắc đều đặn và đồng chất. Tìm xác suất để được một mặt 6 chấm, ít nhất một mặt 6 chấm, tổng số chấm bằng 7. −→ số kết cục duy nhất đồng khả năng được mô tả dưới dạng bảng: 1 2 3 4 5 6 1 11 12 13 14 15 16 2 21 . . . 25 26 3 31 34 36 4 41 43 46 5 51 52 56 6 61 62 63 64 65 66 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ dạng bảng Ví dụ A: "Một mặt 6 chấm", B: "Ít nhất một mặt 6 chấm", C: "Tổng số chấm bằng 7" =⇒ P(A) = 10 36 ;P(B) = 11 36 ;P(C ) = 6 36 = 1 6 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ dạng bảng Ví dụ A: "Một mặt 6 chấm", B: "Ít nhất một mặt 6 chấm", C: "Tổng số chấm bằng 7" =⇒ P(A) = 10 36 ; P(B) = 11 36 ;P(C ) = 6 36 = 1 6 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ dạng bảng Ví dụ A: "Một mặt 6 chấm", B: "Ít nhất một mặt 6 chấm", C: "Tổng số chấm bằng 7" =⇒ P(A) = 10 36 ;P(B) = 11 36 ; P(C ) = 6 36 = 1 6 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ dạng bảng Ví dụ A: "Một mặt 6 chấm", B: "Ít nhất một mặt 6 chấm", C: "Tổng số chấm bằng 7" =⇒ P(A) = 10 36 ;P(B) = 11 36 ;P(C ) = 6 36 = 1 6 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ dạng tập hợp Ví dụ Một lớp 30 học sinh thì 15 em học Tiếng Anh, 13 em học tiếng Pháp, 7 em học tiếng Nhật, 8 em học Anh–Pháp, 2 em học Pháp-Nhật, 3 em học Nhật-Anh và 1 em học cả 3 ngoại ngữ kể trên. Chọn ngẫu nhiên 1 học sinh. Tìm xác suất để em đó: a. Học ít nhất 1 ngoại ngữ kể trên b. Chỉ học tiếng Anh c. Học tiếng Anh biết rằng em đó học tiếng Pháp. d. Chỉ học thêm tiếng Anh biết rằng em đó học tiếng Pháp. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ dạng tập hợp Ví dụ =⇒ P(A) = 23 30 ; P(B) = 13 30 ; P(C ) = 8 13 ; P(D) = 7 13 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp sơ đồ Venn: Sơ đồ dạng tập hợp Ví dụ =⇒ P(A) = 23 30 ; P(B) = 13 30 ; P(C ) = 8 13 ; P(D) = 7 13 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Số chỉnh hợp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử khác nhau từ n phần tử Akn = n! (n − k)! = n (n − 1) ... (n − k + 1) , k ≤ n Số chỉnh hợp lặp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử từ n phần tử: A¯kn = n k Số hoán vị của n phần tử: Pn = n! Số tổ hợp chập k của n phần tử: số các tập hợp con k phần tử của tập hợp n phần tử C kn = n! k! (n − k) ! , k ≤ n Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Số chỉnh hợp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử khác nhau từ n phần tử Akn = n! (n − k)! = n (n − 1) ... (n − k + 1) , k ≤ n Số chỉnh hợp lặp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử từ n phần tử: A¯kn = n k Số hoán vị của n phần tử: Pn = n! Số tổ hợp chập k của n phần tử: số các tập hợp con k phần tử của tập hợp n phần tử C kn = n! k! (n − k) ! , k ≤ n Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Số chỉnh hợp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử khác nhau từ n phần tử Akn = n! (n − k)! = n (n − 1) ... (n − k + 1) , k ≤ n Số chỉnh hợp lặp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử từ n phần tử: A¯kn = n k Số hoán vị của n phần tử: Pn = n! Số tổ hợp chập k của n phần tử: số các tập hợp con k phần tử của tập hợp n phần tử C kn = n! k! (n − k) ! , k ≤ n Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Số chỉnh hợp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử khác nhau từ n phần tử Akn = n! (n − k)! = n (n − 1) ... (n − k + 1) , k ≤ n Số chỉnh hợp lặp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử từ n phần tử: A¯kn = n k Số hoán vị của n phần tử: Pn = n! Số tổ hợp chập k của n phần tử: số các tập hợp con k phần tử của tập hợp n phần tử C kn = n! k! (n − k) ! , k ≤ n Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Số chỉnh hợp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử khác nhau từ n phần tử Akn = n! (n − k)! = n (n − 1) ... (n − k + 1) , k ≤ n Số chỉnh hợp lặp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử từ n phần tử: A¯kn = n k Số hoán vị của n phần tử: Pn = n! Số tổ hợp chập k của n phần tử: số các tập hợp con k phần tử của tập hợp n phần tử C kn = n! k! (n − k) ! , k ≤ n Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Số chỉnh hợp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử khác nhau từ n phần tử Akn = n! (n − k)! = n (n − 1) ... (n − k + 1) , k ≤ n Số chỉnh hợp lặp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử từ n phần tử: A¯kn = n k Số hoán vị của n phần tử: Pn = n! Số tổ hợp chập k của n phần tử: số các tập hợp con k phần tử của tập hợp n phần tử C kn = n! k! (n − k) ! , k ≤ n Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Số chỉnh hợp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử khác nhau từ n phần tử Akn = n! (n − k)! = n (n − 1) ... (n − k + 1) , k ≤ n Số chỉnh hợp lặp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử từ n phần tử: A¯kn = n k Số hoán vị của n phần tử: Pn = n! Số tổ hợp chập k của n phần tử: số các tập hợp con k phần tử của tập hợp n phần tử C kn = n! k! (n − k) ! , k ≤ n Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Số chỉnh hợp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử khác nhau từ n phần tử Akn = n! (n − k)! = n (n − 1) ... (n − k + 1) , k ≤ n Số chỉnh hợp lặp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử từ n phần tử: A¯kn = n k Số hoán vị của n phần tử: Pn = n! Số tổ hợp chập k của n phần tử: số các tập hợp con k phần tử của tập hợp n phần tử C kn = n! k! (n − k) ! , k ≤ n Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Số chỉnh hợp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử khác nhau từ n phần tử Akn = n! (n − k)! = n (n − 1) ... (n − k + 1) , k ≤ n Số chỉnh hợp lặp chập k từ n phần tử - số cách sắp xếp có thứ tự k phần tử từ n phần tử: A¯kn = n k Số hoán vị của n phần tử: Pn = n! Số tổ hợp chập k của n phần tử: số các tập hợp con k phần tử của tập hợp n phần tử C kn = n! k! (n − k) ! , k ≤ n Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Ví dụ Đăng ký ngẫu nhiên một biển số xe máy gồm 4 chữ số. Tìm xác suất để được biển số a. Gồm 4 chữ số khác nhau. b. Gồm 4 chữ số lẻ. c. Là một số chẵn có bốn chữ số. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Ví dụ n = A¯410 = 10 4 = 10000 ma = A 4 10 = 10! 6! = 5040 ⇒ P (A) = 5040 10000 = 0, 504 mb = A¯ 4 5 = 5 4 = 625 ⇒ P (B) = 625 10000 = 0, 0625 mC = 9.A¯ 2 10.5 = 4500 ⇒ P (C ) = 4500 10000 = 0, 45 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Ví dụ Có 6 học sinh, trong đó có 2 nữ, ngồi ngẫu nhiên vào một chiếc ghế dài. Tìm xác suất để: a. Hai học sinh nữ ngồi ở 2 đầu ghế. b. Hai học sinh nữ ngồi cạnh nhau. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Ví dụ n = P6 = 6! = 720 a) A: "Hai học sinh nữ ngồi ở 2 đầu ghế." ma = P4.P2 = 4! 2! = 48 ⇒ P (A) = 48 720 = 1 15 b) B: "Hai học sinh nữ ngồi cạnh nhau" mb = P2.P5 = 2! 5! = 240 ⇒ P (B) = 240 720 = 1 3 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Ví dụ Trong hộp có 4 bi đỏ và 6 bi xanh. Lấy ngẫu nhiên đồng thời 3 viên bi. Tìm xác suất để. a. Lấy được toàn bi xanh. b. Lấy được 2 bi xanh, và 1 bi đỏ. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Phương pháp dùng các công thức giải tích tổ hợp Ví dụ n = C 310 = 120 a) A: "Lấy được toàn bi xanh" mb = C 3 6 = 20 ⇒ P (B) = 1 6 b) B: "Lấy được 2 bi xanh, và 1 bi đỏ" ma = C 2 6 .C 1 4 = 60 ⇒ P (A) = 1 2 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT ĐỊNH NGHĨA THỐNG KÊ VỀ XÁC SUẤT Ví dụ Tung 1 đồng xu −→ A: “Xuất hiện mặt xấp” Tung đồng xu 10 lần −→ Có 4 lần xuất hiện mặt sấp; f = 4/10 là tần suất xuất hiện mặt sấp trong 10 lần tung. Thực hiện một phép thử −→A là biến cố nào đó; Thực hiện phép thử n lần −→ m(A) = số lần xuất hiện biến cố A −→ f (A) = m(A)/n gọi là tần suất xuất hiện biến cố A trong n phép thử Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT ĐỊNH NGHĨA THỐNG KÊ VỀ XÁC SUẤT Ví dụ Tung 1 đồng xu −→ A: “Xuất hiện mặt xấp” Tung đồng xu 10 lần −→ Có 4 lần xuất hiện mặt sấp; f = 4/10 là tần suất xuất hiện mặt sấp trong 10 lần tung. Thực hiện một phép thử −→A là biến cố nào đó; Thực hiện phép thử n lần −→ m(A) = số lần xuất hiện biến cố A −→ f (A) = m(A)/n gọi là tần suất xuất hiện biến cố A trong n phép thử Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT ĐỊNH NGHĨA THỐNG KÊ VỀ XÁC SUẤT Định nghĩa Tần suất xuất hiện biến cố trong n phép thử là tỷ số giữa số phép thử trong đó biến cố xuất hiện và tổng số phép thử được thực hiện. f (A) = m(A) n trong đó f là tần suất xuất hiện biến cố A, m(A) là số lần xuất hiện biến cố A trong n phép thử. Nếu tiến hành một số khá lớn các phép thử thì tần suất dao động rất ít xung quanh 1 giá trị p nào đó −→ thì p được gọi là xác suất của biến cố A theo quan điểm thống kê. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT ĐỊNH NGHĨA THỐNG KÊ VỀ XÁC SUẤT Định nghĩa Tần suất xuất hiện biến cố trong n phép thử là tỷ số giữa số phép thử trong đó biến cố xuất hiện và tổng số phép thử được thực hiện. f (A) = m(A) n trong đó f là tần suất xuất hiện biến cố A, m(A) là số lần xuất hiện biến cố A trong n phép thử. Nếu tiến hành một số khá lớn các phép thử thì tần suất dao động rất ít xung quanh 1 giá trị p nào đó −→ thì p được gọi là xác suất của biến cố A theo quan điểm thống kê. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT ĐỊNH NGHĨA THỐNG KÊ VỀ XÁC SUẤT Định nghĩa Xác suất xuất hiện biến cố A trong một phép thử là số p không đổi mà tần suất f xuất hiện biến cố đó trong n phép thử sẽ hội tụ về p khi n tăng lên vô hạn. f → n→∞ p Trong thực tế, với n đủ lớn, ta có thể lấy P(A) ≈ f (A) Ví dụ Xác suất để một xe máy gặp tai nạn = tỷ số giữa số xe máy gặp tai nạn và số xe máy tham gia giao thông. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT ĐỊNH NGHĨA THỐNG KÊ VỀ XÁC SUẤT Định nghĩa Xác suất xuất hiện biến cố A trong một phép thử là số p không đổi mà tần suất f xuất hiện biến cố đó trong n phép thử sẽ hội tụ về p khi n tăng lên vô hạn. f → n→∞ p Trong thực tế, với n đủ lớn, ta có thể lấy P(A) ≈ f (A) Ví dụ Xác suất để một xe máy gặp tai nạn = tỷ số giữa số xe máy gặp tai nạn và số xe máy tham gia giao thông. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT ĐỊNH NGHĨA THỐNG KÊ VỀ XÁC SUẤT Định nghĩa Xác suất xuất hiện biến cố A trong một phép thử là số p không đổi mà tần suất f xuất hiện biến cố đó trong n phép thử sẽ hội tụ về p khi n tăng lên vô hạn. f → n→∞ p Trong thực tế, với n đủ lớn, ta có thể lấy P(A) ≈ f (A) Ví dụ Xác suất để một xe máy gặp tai nạn = tỷ số giữa số xe máy gặp tai nạn và số xe máy tham gia giao thông. Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT NGUYÊN LÝ XÁC SUẤT LỚN VÀ NGUYÊN LÝ XÁC SUẤT NHỎ Nguyên lý xác suất lớn: Nếu một biến cố có xác suất gần bằng 1 thì về mặt thực tế có thể cho rằng nó sẽ xảy ra trong một phép thử đơn lẻ. P(A) ≈ 0, 95 Nguyên lý xác suất nhỏ: Nếu một biến cố có xác suất rất nhỏ (gần bằng 0) thì về mặt thực tế có thể cho rằng nó sẽ không xảy ra trong một phép thử đơn lẻ. P(A) ≈ 0, 05 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT NGUYÊN LÝ XÁC SUẤT LỚN VÀ NGUYÊN LÝ XÁC SUẤT NHỎ Nguyên lý xác suất lớn: Nếu một biến cố có xác suất gần bằng 1 thì về mặt thực tế có thể cho rằng nó sẽ xảy ra trong một phép thử đơn lẻ. P(A) ≈ 0, 95 Nguyên lý xác suất nhỏ: Nếu một biến cố có xác suất rất nhỏ (gần bằng 0) thì về mặt thực tế có thể cho rằng nó sẽ không xảy ra trong một phép thử đơn lẻ. P(A) ≈ 0, 05 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT NGUYÊN LÝ XÁC SUẤT LỚN VÀ NGUYÊN LÝ XÁC SUẤT NHỎ Nguyên lý xác suất lớn: Nếu một biến cố có xác suất gần bằng 1 thì về mặt thực tế có thể cho rằng nó sẽ xảy ra trong một phép thử đơn lẻ. P(A) ≈ 0, 95 Nguyên lý xác suất nhỏ: Nếu một biến cố có xác suất rất nhỏ (gần bằng 0) thì về mặt thực tế có thể cho rằng nó sẽ không xảy ra trong một phép thử đơn lẻ. P(A) ≈ 0, 05 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT NGUYÊN LÝ XÁC SUẤT LỚN VÀ NGUYÊN LÝ XÁC SUẤT NHỎ Nguyên lý xác suất lớn: Nếu một biến cố có xác suất gần bằng 1 thì về mặt thực tế có thể cho rằng nó sẽ xảy ra trong một phép thử đơn lẻ. P(A) ≈ 0, 95 Nguyên lý xác suất nhỏ: Nếu một biến cố có xác suất rất nhỏ (gần bằng 0) thì về mặt thực tế có thể cho rằng nó sẽ không xảy ra trong một phép thử đơn lẻ. P(A) ≈ 0, 05 Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT MỐI QUAN HỆ GIỮA CÁC BIẾN CỐ Tổng của các biến cố Biến cố xung khắc Tích của các biến cố Biến cố độc lập, phụ thuộc Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Tổng của các biến cố Định nghĩa Biến cố C được gọi là tổng của hai biến cố A và B, ký hiệu C = A + B, nếu C xảy ra khi và chỉ khi có ít nhất một trong hai biến cố A và B xảy ra. Ví dụ Hai người cùng bắn vào một bia. Gọi A là biến cố "Người thứ nhất bắn trúng bia" và B là biến cố người thứ 2 bắn trúng bia, C là biến cố "Bia trúng đạn". =⇒ C = A + B Phạm Thị Hồng Thắm hongthampham.isfa@gmail.com Trường Đại học Kinh tế Quốc dân - Khoa Toán Kinh tế LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN LÝ THUYẾT XÁC SUẤT THỐNG KÊ TOÁN BIẾN CỐ NGẪU NHIÊN VÀ XÁC SUẤT Tổng của các biến cố Định nghĩa Biến cố C được gọi là tổng của hai biến cố A và B, ký hiệu C = A + B, nếu C xảy ra khi và chỉ khi có ít nhất một trong hai biến cố A và B xảy ra. Ví dụ Hai ngư

Các file đính kèm theo tài liệu này:

  • pdfbai_giang_ly_thuyet_xac_suat_va_thong_ke_toan_chuong_1_bien.pdf
Tài liệu liên quan